Consecutive C-C Bond Scission of an Allyl Ligand on a **WOs₃ Cluster Framework**

Joon T. Park,^{*,1a} Byung Won Woo,^{1b} Jeong-Hee Chung,^{1a} Sang Chul Shim,^{1b} Jin-Ho Lee,^{1c} Sung-Su Lim,^{Ic} and Il-Hwan Suh^{Ic}

Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea, Department of Industrial Chemistry, Kyungpook National University, Taegu 702-701, Korea, and Department of Physics, Chungnam National University, Taejon 305-764, Korea

Received April 14, 1994[®]

Summary: The reaction of $Os_3(CO)_9(C_2R_2)$ (R = Tol, Ph; $Tol = p - C_6 H_4 Me$ with $Cp(CO)_2 W \equiv CTol (Cp = \eta^5 - C_5 H_5)$ produces an alkylidyne-alkyne complex $CpWOs_3(CO)_{10}$ - $(\mu_3 - \eta^2 - C_2 R_2)(\mu_3 - CTol)$ [1a (R = Tol), 1b (R = Ph)], which is converted to two isomeric allyl complexes CpWOs₃- $(CO)_{10}(\mu_3-\eta^3-C_3R_2Tol)$ (**2a**,**b** and **3a**,**b**) upon thermolysis. Complexes **3a**,**b**, in which the allyl ligand is π -coordinated to the tungsten atom, undergo consecutive allyl C-C bond cleavage to afford trialkylidyne complexes $CpWOs_3(CO)_9(\mu_3 - CR)_2(\mu_3 - CTol)$ (5a,b) via alkylidynealkyne complex $CpWOs_3(CO)_{10}(\mu_3-\eta^2-C_2R_2)(\mu_3-CTol)$ or $CpWOs_3(CO)_{10}(\mu_3-\eta^2-C_2RTol)(\mu_3-CR)$ (**4a**,**b**), together with formation of $CpWOs_3(CO)_8(\mu_3-\eta^2-\bot-C_2R_2)(\mu_3-CTol)$ or $CpWOs_{3}(CO)_{8}(\mu_{3}-\eta^{2}+L-C_{2}RTol)(\mu_{3}-CR)$ (**6a,b**) as a minor product.

There has been considerable current interest in the synthesis and study of cluster complexes due to their potential as models for the behavior of small unsaturated molecules on catalytic metal surfaces.² One of the characteristic features of metal cluster chemistry is the promotion of bond scission and bond formation reactions of such small organic ligands.³ We report herein a facile carbon-carbon bond formation of alkylidyne and alkyne coupling to form an allyl group and consecutive carboncarbon bond scission reactions of the allyl ligand to afford a trialkylidyne complex on a MOs_3 (M = Mo, W) mixed metal framework.

The reaction of Os₃(CO)₉(C₂R₂) with Cp(CO)₂W=CTol in dichloromethane at low temperature (ca. 0 °C, 10 h) produces an alkylidyne-alkyne complex $CpWOs_3(CO)_{10}$ - $(\mu_3 - \eta^2 - C_2 R_2)(\mu_3 - CTol)$ [1a (R = Tol), 1b (R = Ph] in 65% yield, a spiked triangular arrangement of four metal atoms (see Scheme 1). Thermal coupling (45 °C, 3 h, CHCl₃) of the alkyne and alkylidyne ligands in complex 1 gives an allyl complex of a tetrahedral metal framework, $CpWOs_3(CO)_{10}(\mu_3-\eta^3-C_3R_2Tol)$ (**2a**,**2b**) in quantitative yield, where an allyl ligand is π -coordinated to the osmium atom. Complex 2 may be formed by reductive elimination of the two carbon atoms on the $Os(CO)_2$ center of 1 followed by some bond rearrangements. The allyl ligand of 2 undergoes thermal rearrangement (45 °C, 15 h, CHCl₃) to give isomeric allyl complex **3** (75%)

yield), in which the allyl ligand is π -coordinated to the tungsten center. Results on structural characterization of 1b, 2a, 3a, and 6b (vide infra) by single crystal X-ray diffraction studies have been shown in Scheme 1 and will be reported in a full paper.⁴ Due to the asymmetric nature⁵ of the tungsten center of **3**, ¹H NMR spectra (20 °C, CDCl₃) of 3a (R = Tol) and 3b (R = Ph) show three (δ 2.27, 2.20, and 2.18) and two (δ 2.17 and 2.12, intensity ratio 1.0:1.3) resonances for the methyl groups of the tolyl moieties, respectively.⁶ The variabletemperature ¹H NMR spectra of **3a** reveal a typical two site exchange for the two inequivalent side methyl groups (δ 2.27 and 2.20) of the allyl ligand ($T_c = 50$ °C, 300 MHz), which indicates that localized 2-fold rotation $(k = 31 \text{ s}^{-1}, \Delta G_c^{\dagger} = 70 \text{ kJ mol}^{-1})$ of the carbonyl and cyclopentadienyl ligands on the tungsten atom is taking place above room temperature.

Prolonged thermolysis (50 °C, 16 h, CHCl₃) of 3a induces scission of an allyl C-C bond to produce an alkylidyne-alkyne complex of CpWOs₃(CO)₁₀(μ_3 - η^2 -C₂- Tol_2 (μ_3 -CTol) (4a, 7 36% yield) together with unreacted **3a** (47%) and a small amount (<10%) of **5a** and **6a**. Three isomers (methyl peaks at δ 2.41, 2.22, and 2.20, intensity ratio 1.2:1.0:1.5) of $4b^7$ have been obtained in the case of the diphenylacetylene complex depending on the allyl C-C bond cleaved. An X-ray study of 4a (see Figure 1) confirms the allyl carbon-carbon bond cleavage.⁸ The tetranuclear molecule contains a "butterfly" arrangement of metal atoms, typical of a 62 valence electron (VE) tetranuclear complex,¹⁰ with coordinated alkylidyne and alkyne ligands. The μ_3 -CTol ligand is

[®] Abstract published in Advance ACS Abstracts, July 15, 1994.

^a Abstract published in Advance ACS Abstracts, July 15, 1994.
(1) (a) KAIST. (b) KNU. (c) CNU.
(2) (a) Muetterties, E. L.; Rodin, T. N.; Band, E.; Brucker, C. F.; Pretzer, W. R. Chem. Rev. 1979, 79, 91. (b) Somorjai, G. A. Chem. Soc. Rev. 1984, 321. (c) Sinfelt, J. H. Acc. Chem. Res. 1987, 20, 134.
(3) (a) Adams, R. D.; Horváth, I. T. Prog. Inorg. Chem. 1985, 33, 127. (b) Lavigne, G. In The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. C., Eds. VCH: New York, 1990; Chapter 5. (c) Park, J. T.; Chung, M.-K.; Chun, K. M.; Yun, S. S.; Kim S. Organometallics 1992, 11, 3313 Kim, S. Organometallics 1992, 11, 3313.

⁽⁴⁾ Park, J. T.; et al. To be submitted for publication. All the new compounds 1a-6b were purified by preparative TLC (silica gel) using appropriate mixtures of n-hexane and dichloromethane as eluents.

⁽⁵⁾ Park, J. T.; Shapley, J. R.; Bueno, C.; Ziller, J. W.; Churchill, M. R. Organometallics 1988, 7, 2307. (6) Compound 3a: ¹H NMR (CDCl₃, 25 °C) δ 6.31-7.59 (m, 12H)

^{5.88 (}s, 5H), 2.27 (s, 3H), 2.20 (s, 3H), 2.18 (s, 3H); IR (C₆H₁₂) v(CO) 2072 (s), 2049 (sh), 2038 (vs), 2027 (s), 2002 (m), 1990 (m), 1970 (m), 1949 (w) cm⁻¹. Anal. Calcd for $C_{39}H_{26}O_{10}WOs_{3'}2CH_2Cl_2$: C, 31.19; H, 192. Found: C, 31.35; H, 1.95. Compound **3b**: ¹H NMR (CDCl₃, H, 1.92. Found: C, 51.35, 11, 1.95. Compound 03. If 14 M (C2D), 3, 25 °C) δ 6.02–7.68 (m, 14H), 5.91 (s, 5H), 2.17 (s, 3H), 2.12 (s, 3H); ¹H NMR (C₆D₆, 25 °C) δ 6.62–7.54 (m, 14H), 5.24 (s, 5H), 5.23 (s, 5H), 1.90 (s, 3H), 1.85 (s, 3H); IR (C₆H₁₂) ν (CO) 2073 (s), 2050 (sh), 2039 (vs), 2028 (s), 2003 (m), 1990 (m), 1970 (m), 1949 (w) cm⁻¹. Anal. Calcd for C₃₇H₂₂O₁₀WOs₃·2CH₂Cl₂: C, 30.20; H, 1.69. Found: C, 30.41; H, 1.83

⁽⁷⁾ Compound 4a: ¹H NMR (CDCl₃, 25 °C) & 6.51-7.11 (m, 12H 5.13 (s, 5H), 2.42 (s, 3H), 2.23 (s, 3H), 2.21 (s, 3H); IR ($C_{6}H_{12}$) $\nu(CO)$ 2079 (vs), 2054 (vs), 2033 (vs), 2006 (s), 1989 (s), 1982 (m), 1969 (s), 2079 (vs), 2054 (vs), 2053 (vs), 2056 (s), 1959 (s), 1952 (m), 1959 (s), 1952 (w), 1956 (w), 1957 (w), 2053 (vs), 2056 (d), 2058 (d), 2 H, 1.63.

bonded to the outer face of the W–Os(2)–Os(3) "wing" triangle. The μ_3 - η^2 -C₂Tol₂ ligand lies on the outer face of the other W–Os(1)–Os(2) "wing" and is formally π -bonded to W and σ -bonded to Os(1) and Os(2) atoms. The carbonyl ligand on the tungsten atom is oriented such as to suggest a weak interaction (semibridging) with the Os(1) center [Os(1) · · ·CO(W) = 2.42(6) Å].

Complex 4 undergoes two parallel thermal reactions: the alkyne C=C bond cleavage to give a trialkylidyne complex CpWOs₃(CO)₉(μ_3 -CTol)₃ (**5a**, **5b**)¹¹ in 82% yield by loss of a carbonyl ligand and the alkyne rearrangement from a μ_3 -(η^2 -II) to a μ_3 -(η^2 - \perp) alkyne to afford CpWOs₃(CO)₈(μ_3 - η^2 - \perp -C₂Tol₂)(μ_3 -CTol) (**6a**, **6b**) (58 VE) in 10% yield by loss of two carbonyl ligands. However, initial decarbonylation of **4a** with Me₃NO/ MeCN and subsequent stirring at 25 °C in dichlo-

(9) (a) Sheldrick, G. M. SHELXS86, Program for Crystal Structure Determination. University of Cambridge, England, 1986. (b) Sheldrick, G. M. SHELX-76, Program for Crystal Structure Determination. University of Cambridge, England, 1976.

(10) (a) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1. (b) Mingos, D. M. P.; Wales, D. J. Introduction to Cluster Chemistry; Prentice Hall: Englewood Cliffs, NJ, 1990; Chapter 2.

(11) In a typical experiment, a chloroform solution of **4a** (21.2 mg, 15.0 mmol) was stirred at 55 °C for 80 h. Evaporation of the solvent and purification by preparative TLC (dichloromethane:*n*-hexane = 3:2) provided yellow solid **5a** (17.0 mg, 12.3 mmol, 82%, $R_f = 0.45$) and brown solid **6a** (2.0 mg, 1.5 mmol, 10%, $R_f = 0.39$). Compound **5a**: ¹H NMR (CDCl₃, 25 °C) δ 7.06–7.23 (m, 12H), 5.18 (s, 5H), 2.35 (s, 9H); IR (CCl₄) ν (CO) 2081 (s), 2056 (vs), 2031 (vs), 2015 (w), 2002 (w), 1972 (m) cm⁻¹. Anal. Calcd for C₃₈H₂₆O₉WOs₃: C, 33.05; H, 1.90. Found: C, 32.91; H, 1.88. Compound **5b**: ¹H NMR (CDCl₃, 25 °C) δ 7.07–7.37 (m, 14H), 5.21 (s, 5H), 2.37 (s, 3H); IR (C₆H₁₂) ν (CO) 2080 (s), 2057 (vs), 2031 (vs), 2018 (w), 2003 (w), 1973 (m) cm⁻¹. Anal. Calcd for C₃₆H₂₂O₉WOs₃: C, 31.96; H, 1.64. Found: C, 31.64; H, 1.73.

Figure 1. Molecular structure of **4a**. Distances within the molecule: [metal-metal] W−Os(1) = 2.827(3), W−Os(2) = 2.764(3), W−Os(3) = 2.851(3), Os(1)-Os(2) = 2.874(3), Os(2)-Os(3) = 2.848(3) Å; [metal-(μ_3 -C)] W−C(40) = 2.02-(5), Os(2)-C(40) = 2.13(5), Os(3)-C(40) = 2.06(5) Å; [metal-carbon(μ_3 - η^2 -alkyne)] W−C(20) = 2.29(5), W−C(30) = 2.39(4), Os(1)-C(20) = 2.18(4), Os(2)-C(30) = 2.11(4) Å; [alkyne C=C] C(20)-C(30) = 1.49(5) Å.

romethane for 0.5 h produce only complex **6a** in 42% yield by the latter pathway. Complex **6** can be quantitatively converted back to complex **4** upon carbonylation (80 °C, 1.5 h, toluene, 1 atm of CO). The crystal structure of **5a**,¹² shown in Figure 2, reveals a "butterfly" arrangement (62 VE) of four metal atoms and the presence of three μ_3 -CTol ligands. The two equivalent alkylidyne carbon atoms, C(20) and C(30), are bonded to the outer face of both "wings". The third

⁽⁸⁾ Crystal data for 4a: $C_{39}H_{26}O_{10}WOs_3$; $M_r = 1409.08$; triclinic; space group $P\bar{1}$ [C^1_i ; No. 2]; a = 10.877(3), b = 18.837(2), and c = 10.820(1) Å; $\alpha = 100.94(1)$, $\beta = 103.67(1)$, and $\gamma = 101.73(1)^\circ$; V = 2042.1(6) Å³; Z = 2; μ (Mo K α) = 12.21 mm⁻¹. Diffraction data were collected using a CAD4 diffractometer. The structure was solved by SHELXS86^{9a} and refined by SHELX-76.^{9b} The final discrepancy indices were R = 8.54%, $R_w = 9.08\%$, and GOF = 1.258 for 283 parameters refined against 2562 reflections that had $F_o > 4\sigma F_o$.

Figure 2. Molecular structure of **5a**. Distances within the molecule: [metal-metal] W-Os(1) = 2.831(2), W-Os(2) = 2.819(1), W-Os(3) = 2.797(3), Os(1)-Os(2) = 2.856(2), Os(2)-Os(3) = 2.834(2) Å; [metal-(μ_3 -C)] W-C(10) = 1.97-(3), W-C(20) = 2.03(2), W-C(30) = 1.94(3), Os(1)-C(10) = 2.27(3), Os(1)-C(30) = 2.07(2), Os(2)-C(20) = 2.29(2), Os-(2)-C(30) = 2.33(3), Os(3)-C(10) = 2.28(3), Os(3)-C(20) = 2.10(2) Å.

unique μ_3 -CTol ligand, centered on C(10), spans the tungsten (or "hinge") position and the two "wing-tip" osmium atoms, Os(1) and Os(3). Complex **5a** shows a single resonance (δ 2.35) for the two inequivalent methyl groups of the tolyl moieties, and the two isomers of **5b** also exhibit a single resonance (δ 2.37) for the methyl group of each isomer. This observation indicates that complex **5** in solution may undergo a degenerate metal framework rearrangement that interchanges the three alkylidyne moieties, which can be interpreted as breaking and making Os—Os bonds.¹³ The μ_3 -(η^2 - \bot) alkyne bonding mode in tetrahedral cluster **6** with 58 VE can be understood by analogy with that well established for an alkyne—M₃ unsaturated cluster with 46 VE.¹⁴ Complex **6b** also exists as three isomers which are derived from three isomers of **4b** (three Cp and three methyl ¹H resonances for **6b** in toluene- d_8 : see supplementary material).

Monitoring the pyrolysis of 1a in CDCl₃ at 40 °C by ¹H NMR spectroscopy reveals that complex 2a is formed rapidly in the beginning, but as the reaction proceeds, complex 3a becomes dominant (consecutive first-order kinetics). An analogous kinetic study with 3a at 50 °C shows that complexes 2a and 3a are in equilibrium in a ratio of ca. 1:4 and rapid formation of 4a is followed by slower formation of both 5a and 6a. The corresponding Mo analogue of 1a undergoes analogous sequential reactions much faster than WOs₃ complexes.

The coupling of an alkylidyne with an alkyne to form an allyl ligand $(1 \rightarrow 2)$ has been previously reported in several cases.¹⁵ The analogous coupling reaction $(4 \rightarrow 3)$ was expected in the thermolysis reaction of 4; nevertheless, the C=C bond scission of the alkyne ligand has been observed. There have been several reports that describe the cleavage of alkyne triple bonds in cluster complexes,¹⁶ but unprecedented is the present consecutive C-C bond cleavage from an allyl group to afford trialkylidyne moieties via an alkylidyne-alkyne intermediate $(3 \rightarrow 4 \rightarrow 5)$. To the best of our knowledge compound **5a** represents the first example of a trialkylidyne cluster derived from the cleavage of the C-C bonds of a coordinated allyl ligand.

Further studies on the reactivity, fluxionality, and kinetics of these complexes are in progress.

Acknowledgment. We are grateful to the Korea Science and Engineering Foundation (KOSEF) for the financial support of this work. Partial support to I.-H.S. was provided by KOSEF through the Science Research Center of Excellence Program.

Supplementary Material Available: A listing of spectroscopic data for complexes 1a,b, 2a,b, and 6a,b, tables of experimental details of the X-ray diffraction studies, positional parameters, isotropic thermal parameters, and bond distances and angles for 4a and 5a, and ORTEP diagrams (13 pages). Ordering information is given on any current masthead page.

OM940284U

⁽¹²⁾ Crystal data for **5a**: $C_{38}H_{26}O_9WO_{83}$; $M_r = 1381.07$; monoclinic; space group $P2_1/c$ [C^{6}_{2h} ; No. 14]; a = 20.263(4), b = 9.890(1), and c = 20.011(8) Å; $\beta = 114.80(2)^{\circ}$; V = 3640.5(3) Å³; Z = 4; μ (Mo K α) = 13.70 mm⁻¹. Diffraction data were collected and treated as described for **4a**. The final discrepancy indices were R = 7.8%, $R_w = 8.0\%$, and GOF = 0.7979 for 460 parameters refined against 3609 reflections that had Fo > $4aF_{0}$.

⁽¹³⁾ Park, J. T.; Shapley, J. R.; Churchill, M. R.; Bueno, C. Inorg. Chem. 1984, 23, 4476.

^{(14) (}a) Schilling, B. E. R.; Hoffmann, R. J. Am. Chem. Soc. 1979, 101, 3456. (b) Halet, J.-F.; Saillard, J.-Y.; Lissillour, R.; McGlinchey, M. J.; Jaouen, G. Inorg. Chem. 1985, 24, 218. (c) Raithby, P. R.; Rosales, M. J. Adv. Inorg. Chem. Radiochem. 1985, 29, 169.
(15) (a) Clauss, A. D.; Shapley, J. R.; Wilson, S. R. J. Am. Chem.

^{(15) (}a) Clauss, A. D.; Shapley, J. R.; Wilson, S. R. J. Am. Chem. Soc. 1981, 103, 7387. (b) Chisholm, M. H.; Heppert, J. A.; Huffman, J. C. J. Am. Chem. Soc. 1984, 106, 1151. (c) Hein, J.; Jeffrey, J. C.; Sherwood, P.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1987, 2211.
(d) Ziller, J. W.; Bower, D. K.; Dalton, D. M.; Keister, J. B.; Churchill, M. R. Organometallics 1989, 8, 492. (e) Adams, R. D.; Belinski, J. A. Organometallics 1991, 10, 2114.

M. R. Organometallics 1991, 10, 2114. (16) (a) Fritch, J. K.; Volhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1980, 10, 559. (b) Park, J. T.; Shapley, J. R.; Churchill, M. R.; Bueno, C. J. Am. Chem. Soc. 1983, 3, 6182. (c) Clauss, A. D.; Shapley, J. R.; Wilker, C. N.; Hoffmann, R. Organometallics 1984, 3, 619. (d) Chi, Y.; Shapley, J. R. Organometallics 1985, 4, 1990.