Organic Syntheses via Transition Metal Complexes. 72.¹ (2-(Acyloxy)ethenyl)carbene Complexes by Michael Addition of Carboxylic Acids to Alkynylcarbene Complexes (M = Cr, W). (2-(Acyloxy)ethenyl)ketene **Imines by Ligand Disengagement with Isocyanide**

Rudolf Aumann^{*} and Beate Jasper

Organisch-Chemisches Institut der Universität Münster, Orléans-Ring 23, D-48149 Münster, Germany

Mechtild Läge and Bernt Krebs

Anorganisch-Chemisches Institut der Universität Münster, Corrensstrasse 36, D-48149 Münster, Germany

Received February 18, 1994[®]

 $(2-(Acyloxy)ethenyl)carbene complexes (CO)_5M=C(OEt)-CH=C(OCOR)Ph [(Z)-5] (M = Cr, COCOR)Ph [($ W; R = Ph, p-Me₂NC₆H₄, CH₃, c-C₇H₇CH₂, PhCH=CPh, Me₂C=CH, 1,4-C₆H₄) are obtained by the addition of carboxylic acids $R-CO_2H$ (4) to alkynylcarbene complexes (CO)₅M=C-(OEt)—C=CPh (1) (M = Cr, W) in the presence of Et₃N at 20 °C in 71–78% isolated yields. The reaction is regio- and stereochemically uniform. (Z)-5g (R = PhCH=CPh), $C_{31}H_{22}O_8W$, was characterized by X-ray diffraction. It crystallizes in space group $P\bar{1}$ with cell parameters a = 10.381(6) Å, b = 11.444(6) Å, c = 13.509(7) Å, $\alpha = 107.84(4)^{\circ}$, $\beta = 91.54(4)^{\circ}$, $\gamma = 108.49$ -(4)°, Z = 2, $R_1 = 0.0354$, and $wR_2 = 0.0811$. Ligand disengagement from (Z)-5 with tertbutyl isocyanide (8b) at 20 °C results in the formation of [2-(acyloxy)ethenyl]ketene imines t-BuN=C=C(OEt)-CH=C(OCOR)Ph [(Z)-11] (>95% yields).

Alkenylcarbene complexes (CO)₅M=C-C=C of chromium and tungsten have gained much interest recently as C_3 building blocks for the synthesis of carbocyclic² and heterocyclic³ rings. Though this class of compounds has been known since 1967,⁴ systematic studies have been initiated only recently. Complexes $(CO)_5M = C - C = C(OR^1)$ of types A and B deserve particular attention due to their structural relationship to β -keto ester equivalents of the enol ether ($\mathbf{R}^1 = \mathbf{alkyl}$) and enol ester type $(R^1 = acyl)$, respectively (Chart 1).

Enol Ethers 3

Complexes $(CO)_5M=C-C=C[O(alkyl)]$ (M = Cr, W) of the enol ether type are accessible by several methods (Scheme 1): (a) by the condensation of methylcarbene complexes $(CO)_5M=C(OEt)CH_3$ with dimethylformamide or other nonenolizable acid amides R1-CONR2 (eq 1),⁵ (b) by the condensation of aryl- or alkylcarbene

complexes with enolizable acid amides R^1CH_2 -CONR₂, which involves the insertion of a CCN unit of the acid amide into the M=C bond (eq 2),⁶ (c) by the insertion of alkynes into the M=C bond of alkoxycarbene complexes (eq 3),^{5b,7,8} or (d) by the addition of alcohols to alkynylcarbene complexes (eq 4). $^{9-11}$ The latter reaction has been applied, e.g., to the introduction of carbohydrates as chiral inductors into alkenylcarbene complexes.¹¹ (b)-(d) usually yield (E)/(Z) mixtures of (2-alkoxyethenyl)carbene complexes, in which the (E) stereoisomers predominate (Scheme 1).

Enol Esters 5

Enol esters $(CO)_5M=C-C=C[O(acyl)](5)(M=Cr, W)$ of types A and B are expected to react differently from

- (10) Duetsch, M.; Stein, F.; Funke, F.; Pohl, E.; Herbst-Irmer, R.; deMeijere, A. Chem. Ber. **1993**, *126*, 2535-2541.
- (11) Aumann, R. Chem. Ber. 1993, 126, 2773-2778.

0276-7333/94/2313-3502\$04.50/0 © 1994 American Chemical Society

^{*} Abstract published in Advance ACS Abstracts, July 1, 1994 (1) Part 71: Aumann, R.; Läge, M.; Krebs, B. Chem. Ber. 1994, 127, 731-738

<sup>731-738.
(2) (</sup>a) Dötz, K. H. Angew. Chem. 1975, 87, 672-673; Angew. Chem., Int. Ed. Engl. 1975, 14, 644. (b) Wulff, W. D. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 5, pp 1065-1113. (c) Funke, F.; Duetsch, M.; Stein, F.; Noltemeyer, M.; deMeijere, A. Chem. Ber. 1994, 127; in print CB378/93. (d) Barluenga, J.; Aznar, F.; Valdés, C.; Martin, A.; Garcia-Granda, S.; Martin, E. J. Am. Chem. Soc. 1993, 115, 4403-4404.
(3) (a) Hegedus, L. S. Pure Appl. Chem. 1990, 62, 691-698. (b) Review: Aumann, R. Angew. Chem. 1988, 100, 1512-1524; Angew. Chem., Int. Ed. Engl. 1988, 27, 1456-1467. (c) Aumann, R.; Hinter-ding, P.; Krüger, C.; Betz, P. Chem. Ber. 1990, 123, 1847-1852.
(4) (a) Aumann, R.; Fischer, E. O. Angew. Chem. 1967, 79, 900-901; Angew. Chem., Int. Ed. Engl. 1967, 6, 879-880. (b) Aumann, R.; Fischer, E. O. Chem. Ber. 1968, 101, 954-962.

Fischer, E. O. Chem. Ber. 1968, 101, 954-962.

^{(5) (}a) Aumann, R.; Hinterding, P. Chem. Ber. 1990, 123, 611-620.

^{(5) (}a) Aumann, R.; Hinterding, P. Chem. Ber. 1990, 123, 611-620.
(b) Aumann, R.; Hinterding, P. Chem. Ber. 1991, 124, 213-218.
(c) Aumann, R.; Hinterding, P. Chem. Ber. 1989, 122, 365-370.
(7) Dötz, K.-H. Angew. Chem. 1984, 96, 573-594 (see p 576); Angew. Chem., Int. Ed. Engl. 1984, 23, 587-606.
(8) Casey, C. P.; Polichnowski, S. W.; Shusterman, A. J.; Jones, C. R. J. Am. Chem. Soc. 1979, 101, 7282.
(9) (a) Camps, F.; Liebaria, A.; Moretó, J. M.; Ricart, S.; Viñas, J. M.; Ros, J.; Yáñez, R. J. Organomet. Chem. 1991, 401, C17-C19. (b) Idem. 1992, 440, 79-90.
(10) Duetsch, M.; Stein, F.; Funke, F.; Pohl, E.; Herbst-Irmer, R.;

M = Cr, W; R = Alkyl, Aryl

1-3	м	R	R ¹	[3] %	(<i>E</i> /Z)- 3	lit.
a	Cr	Ph	OEt	62	9	[9,10]
ь	Cr	Ph	Oglucofuranosyl	90	4	[11]
C	w	Ph	Oglucofuranosyl	88	3	[11]
d	Cr	<i>c</i> Pr	OEt	77	100	[10]
e	Cr	CMe ₂ OEt	OEt	76	60	[10]

enol ethers $(CO)_5M=C-C=C[O(alkyl)]$ (3). The C=C-[O(alkyl)] group experiences an increase in electron density due to a π -conjugative interaction stronger than the C=C[O(acyl)] unit, in which the electron-withdrawing effect of the acylcarbonyl group plays the dominant role. An O-acylation usually leads to the destabilization of carbene complexes. This is especially true for compounds in which the acyl group is attached to the carbene carbon atom directly. It is well-known that (1acyloxy)carbene complexes¹² (CO)₅M=C(OCOR)R' (M = Cr, W) are by far less stable than 1-alkoxycarbene complexes $(CO)_5M=C(OR)R'$. The former are used in situ mostly, e.g., for the preparation of alkoxy-,^{13a} imino-,^{13b} or thiocarbene complexes¹⁴ by nucleophilic 1-substitution reactions, or as precursors for the elimination of 1-alkenyl esters¹⁵ from enolizable carbene ligands. (2-(Acyloxy)ethenyl)carbene complexes (CO)5-M = C(OEt) - CR = C(OCOR)R' prove to be more stable than (1-acyloxy)carbene complexes. We initiated studies on the reactivity of such compounds and describe here an efficient route to the preparation of these compounds as well as to their transformation into (2-(acyloxy)ethenyl)ketene imines 11. Striking differences

between enol ethers 3 and enol ethers 5 have been observed in their reactions with isocyanides.

(2-(Acyloxy)ethenyl)carbene Complexes 5

The addition of carboxylic acids to alkynes is an important method for the preparation of carboxylic acid 1-alkenyl esters.¹⁶ In many cases it requires tough conditions and/or catalysts (acids,^{17,18} mercury salts,¹⁹ silver salts,²⁰ palladium salts,²¹ or ruthenium complexes²²). Though unsymmetrically substituted alkynes usually yield mixtures of regio- and stereoisomers,¹⁶ the addition of carboxylic acids to the C=C bond of alkynylcarbene complexes 1 proves to be regio- and stereochemically uniform. It is catalyzed by triethylamine under very mild conditions (20 °C, 2-20 h) and gives stable (2-(acyloxy)) ethenvel carbone complexes (Z)-5 in 71-78% isolated yields (Scheme 2). The formation of isomers (E)-5 has not been observed, nor that of 1,2,4trioxynaphthalines 6, which possibly could arise from cyclocarbonylation^{23,24} of (*E*)-**5**.

Configuration of Enol Ethers 3 vs Enol Esters 5

The addition of carboxylic acids 4 and alcohols 2, respectively, to the C=C bond of alkynylcarbene complexes yields adducts of opposite stereochemistry. 4 forms enol esters 5 of (Z) configuration only, while 2

(17) Fahey, R. C.; Lee, D. J. J. Am. Chem. Soc. 1966, 88, 5555.

(19) Lemaire, H.; Lucas, H. J. J. Am. Chem. Soc. 1955, 77, 939.

^{(12) (}a) Fischer, E. O.; Heckl, B.; Dötz, K.-H.; Müller, J. J. Organomet. Chem. **1969**, 16, P29. (b) Connor, J. A.; Jones, E. M. J. Chem. Soc. A **1971**, 1974. (c) Wulff, W. D.; McCallum, J. S.; Kunng, F. A. J. Am. Chem. Soc. **1988**, 110, 7419. (d) Fischer, E. O.; Selmayr, T.; Kreissl, F. R. Chem. Ber. **1977**, 110, 2947–2955. (e) Berke, H.; Härter, P.; Huttner, G.; Seyerl, J. v. J. Organomet. Chem. **1981**, 219, 317–327.

^{(13) (}a) Semmelhack, M. F.; Lee, G. R. Organometallics 1987, 6,
1839. (b) Murray, C. K.; Warner, P. B.; Dragisich, V.; Wulff, W. D.;
Rogers, R. D. Organometallics 1990, 49, 3142-3151.
(14) (a) Aumann, R.; Schröder, J. J. Organomet. Chem. 1989, 378,

 ^{(14) (}a) Aumann, R.; Schröder, J. J. Organomet. Chem. 1989, 378, 57-65.
 (b) Aumann, R.; Schröder, J. Chem. Ber. 1990, 123, 2053-2058.

⁽¹⁵⁾ Söderberg, B. C.; Turbeville, M. J. Organometallics 1991, 10, 3951-3953.

⁽¹⁶⁾ Review: Frauenrath, H. In *En,X- und In,X-Verbindungen*; Houben-Weyl, Georg Thieme Verlag: Stuttgart, 1993; Vol. E15/1, p 56 ff. Larock, R. C.; Oertle, K.; Beatty, K. M. J. Am. Chem. Soc. **1980**, 102, 1966-1973.

⁽¹⁸⁾ Hudrlik, P. F.; Hudrlik, A. M. J. Org. Chem. 1973, 38, 4254.

 ⁽²⁰⁾ Ishino, Y.; Hirashima, T. Nippon Kagaku Kaishi 1985, 2, 198.
 (21) Lambert, C.; Utimoto, K.; Nazaki, H. Tetrahedron Lett. 1984, 25, 5323.

^{(22) (}a) Johnson, B. F. G.; Lewis, J.; Williams, I. G. J. Chem. Soc. A
(1971, 689. (b) Schumann, H.; Opitz, J. Chem. Ber. 1980, 113, 989. (c)
Süss-Fink, G.; Hermann, G.; Morys, P. J. Organomet. Chem. 1985, 284, 263. (d) Rotem, M.; Shvo, Y. J. Organomet. Chem. 1993, 448, 189-204.

⁽²³⁾ Merlic, C. A.; Burns, E. E.; Xu, D.; Chen, S. Y. J. Am. Chem. Soc. 1992, 114, 8722-8724.

⁽²⁴⁾ Aumann, R. Chem. Ber. 1993, 126, 1867-1872.

Scheme 3. Stereoselectivity Due to Different Protonation Sites in Zwitterionic and Anionic Intermediates, C and D, Respectively

gives enol ethers **3** of (E) configuration mainly. On the basis of earlier studies, an (E)/(Z) interconversion under the mild reaction conditions applied can be excluded for enol ethers 3^{9-11} as well as for enol esters 5.25 The opposite stereochemistry of the products should be kinetically controlled and may result from different protonation sites of the allene-type¹¹ intermediates Cand D (Scheme 3). Due to the higher nucleophilicity of alcohols as compared to that of carboxylic acids, the former are expected to yield zwitterionic adducts C with **1** in the rate determining reaction step. A similar type reaction has been postulated on the basis of kinetic measurements on the addition of amines to 1.26 Carboxylic acids are far less reactive than alcohols toward the addition to 1, but they are easily deprotonated by triethylamine and form carboxylates. The latter are expected to give anionic adducts of type D with 1. Thus the stereodifferentiation may result from different modes of protonation of C and D. An intramolecular proton transfer of C should yield syn addition products (E)-3 (Scheme 3), while an intermolecular protonation of **D**, which is directed by the structure of the ion pair, should lead to the formation of anti addition products (Z)-5.

5 displays chemical shifts within a narrow and characteristic range for 2-H (7.82-8.00 ppm) and OCH₂ (4.40-4.65 ppm) in the ¹H NMR and for C1 [(Z)-5a; 334 ppm; (Z)-5b-k, 305-307 ppm], C2 (132-134 ppm), and C3 (139-143 ppm) in the ¹³C NMR spectra. Significant differences are observed between $\delta(C1)$ of the chromium (5a) and tungsten complexes (5b-k). The presence of a (CO)₅M unit is indicated in the IR spectra by the $[\nu$ -(C=0)] bands [e.g.: (Z)-5a cm⁻¹ (%) 2059.0 (30), 1986.3 (5), 1945.8 (100); (Z)-5b 2067.1 (30), 1982.4 (5), 1944.9 (100)], of which the frequencies of the A₁ bands play a guiding role in distinguishing between the chromium and tungsten complexes. The assignment of the (Z)configuration is based on NOE experiments, which indicate a positive interaction between 2-H and the ortho protons of the 3-Ph group. In order to obtain more structural details, a crystal structure analysis of (Z)-5g was performed.

Crystal Structure Analysis of (Z)-5g

Figure 1 shows the molecular structure and Tables 2 and 3 gives the experimental data for the crystal

Figure 1. View of the molecular structure of (Z)-5g with selected bond distances (pm) and angles (deg) W(1)-C(6) 218.3(4), C(6)-O(6) 131.4(5), C(6)-C(9) 147.3(6), C(9)-C(10) 133.8(5), C(10)-O(7) 139.5(4), O(7)-C(11) 135.9(5), O(8)-C(11) 119.8(5); C(11)-C(12) 149.5(5); C(12)-C(13) 133.4(6); O(6)-C(6)-C(9) 108.5(4); O(6)-C(6)-W(1) 131.5-(3).

 Table 1.
 Selected ¹³C (¹H) NMR Shifts^a and IR Vibrations^b of (2-(Acyloxy)ethenyl)ketene Imines

-									
11	C1	C2	Н <i>С3</i>	C4	OCH_2	3-H	OCH ₂	$\nu(C=C=N)$	v(OC=0)
b	197.3	112.7	110.6	142.4	67.0	6.20	3.50	1994.9	1739.8
с	197.0	112.9	110.9	142.9	67.1	6.25	3.55	1985.5	1719.3
d	194.2	112.3	110.4	142.4	67.0	6.20	3.50	1987.8	1764.3
е	198.4	113.6	111.8	143.9	67.0	6.17	3.48	1986.4	1759.1

^{*a*} In C₆D₆; chemical shifts in ppm relative to TMS, δ scale. ^{*b*} Diffuse reflection; [ν (C=C=N)] and [ν (OC=O)] vibrations in cm⁻¹.

structure of (Z)-5g. The plane defined by O6-C6-C9 at the carbon atom approximately bisects the angle between two cisoid CO groups at the tungsten atom (C9-C6-W1-C1 121.5°). The double bond between C9-C10 is localized [C9-C10 133.8(5) pm] and within the expected range (see, e.g.: 1,3-butadiene, 133.0 pm for C1-C2). The carboxylic group is arranged almost perpendicular to the C9-C10 bond $(C9-C10-O7-C11 - 101.2^{\circ})$. Though a delocalization of electron density from O7 into the C=C bond should be possible from such a conformation, this is expected to be smaller than the delocalization from O6 into the W=C bond (C7-O6-O6-O9 179.5°) according to the shorter distance of O6-C6 131.4 pm as compared to O7-C10 139.5 pm. The C=C bond C9-C10 is arranged s-trans with respect to the W=C bond (W1-C6-C9-C10 -149.0°) and forms a 1-metalla 1,3-diene unit in an "open conformation".

(2-Alkoxyethenyl)- and (2-(Acyloxy)ethenyl)ketene Imines

Common to enol ethers **3** and enol esters **5** is the ease by which the M=C bonds are transformed into C=C bonds by the insertion of an isocyanide. This type of reaction has been studied with a broad range of carbene complexes and seems to be of a very common type.^{3b,c} Nevertheless, different products are obtained on reaction of isocyanides **8** with enol ethers **7** (Scheme 4) and enol ethers **5** (Scheme 5), respectively. The former, e.g.,

⁽²⁵⁾ Aumann, R.; Jasper, B.; Läge, M.; Krebs, B. Organometallics, following article in this issue.

⁽²⁶⁾ Pipoh, R.; van Eldik, R.; Henkel, G. Organometallics **1993**, *12*, 2236–2242.

Table 2. Crystal Data and Structure Refinement for (Z)-5g^a

empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) vol (Å ³) Z density (calcd) (Mg/m ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) θ range for data collen (deg) index ranges no. of reflns colled no. of ind reflns refinement method Data/restraints/params goodness-of-fit on F^2 final <i>R</i> indices [$L \ge 2\pi(D)$]	C ₃₁ H ₂₂ O ₈ W 706.3 293(2) 0.710 73 triclinic $P\overline{1}$ 10.381 (6) 11.444 (6) 13.509 (7) 107.84 (4) 91.54 (4) 91.54 (4) 108.49 (4) 1435.1 2 1.635 4.07 692 0.22 × 0.25 × 0.32 2.09-27.06 0 ≤ h ≤ 13, -14 ≤ k ≤ 13, -17 ≤ l ≤ 17 6656 6302 [R(int) = 0.0145] full-matrix least squares on F^2 6300/0/361 1.133 $R_1 = 0.0354$ w $R_2 = 0.0811$
Data/restraints/params	6300/0/361
goodness-of-fit on F^2 final R indices $[I \ge 2\pi(I)]$	$\begin{array}{l} 1.133 \\ R_1 = 0.0354 \ wR_2 = 0.0811 \end{array}$
R indices (all data)	$R_1 = 0.0407, wR_2 = 0.0841$
largest diff peak and hole $(e Å^{-3})$	+1.138 and -1.269

^a Further details of the crystal structure (complete bond length and angles and displacement parameters) may be requested from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen 2, FRG, on quoting the depository number CSD-57818, the name of the authors, and the journal citation.

the (2-alkoxyethenyl) carbene complex (E)-7b, inserts cyclohexyl isocyanide (8a) and yields a 4,5-dihydropyrrolylidene complex 9b (probably via intermediates E and F, Scheme 4), in line with earlier observations on similar reactions with (E)-7 a^{27} and related compounds.²⁸

A quite different reaction takes place with enol esters (Z)-5. These add 2 equiv of *tert*-butyl isocyanide (8b) instead of 1 and give hitherto unknown²⁹ (2-(acyloxy)ethenyl)ketene imines (Z)-11 in essentially quantitative yields at 20 °C (Scheme 5). 8b apparently reacts faster with (Z)-10 than it does with (Z)-5 and replaces (Z)-11 by formation of an isocyanide complex 12. A cyclization of (Z)-10 to give 4,5-dihydropyrrolylidene complexes 13 (of type 9) is not observed with enol ester (Z)-5. In contrast to (Z)-(2-(acylamino)ethenyl)ketene imines, which are obtained in a similar reaction from (Z)-(2-(acylamino)ethenyl)carbene complexes, and which undergo a spontaneous ring-closing metathesis at 20 °C with formation of pyrroles and isocyanates,³⁰ the (Z)-(2-(acyloxy)ethenyl)ketene imines do not produce furans in an analogous metathesis reaction, even at 90 °C (Scheme 5). The ketene imines (Z)-11 on the other hand prove to be more sensitive to hydrolysis than the corresponding acylamino derivatives³⁰ on chromatography on silica gel and yield α -chiral acid amides 14 by addition of water (Scheme 5). The isolation of (Z)-11 is possible by fractional crystallization, which of course involves a severe drop in yields. We therefore recom-

Table 3.	Atomic Coordinates	(×104) and	d Equivalent
Isotropic Di	splacement Paramet	ers (Å ² $ imes$ 1	(0^3) for (Z)-5g ^a

	r		(. (
	<i>x</i>	у	z	U(eq)
W (1)	2099(1)	3034(1)	164(1)	47(1)
O(1)	-850(6)	2418(7)	-1010(5)	127(2)
O(2)	5113(5)	3606(6)	1193(4)	100(2)
0(3)	3259(6)	3034(5)	-1978(4)	107(2)
O(4)	2890(7)	6080(5)	618(6)	141(3)
O(5)	1653(5)	12(4)	-428(4)	91(1)
O(6)	490(4)	3612(4)	2152(3)	66(1)
O (7)	-686(3)	1640(3)	2843(2)	46(1)
O(8)	257(3)	3158(3)	4412(2)	57(1)
C(1)	200(6)	2636(6)	-579(4)	76(2)
C(2)	4022(5)	3399(5)	843(4)	64(1)
C(3)	2855(6)	3012(5)	-1214(4)	70(1)
C(4)	2572(7)	4983(6)	491(5)	80(2)
C(5)	1783(5)	1081(5)	-220(4)	60(1)
C(6)	1241(4)	2980(4)	1614(3)	48(1)
C(7)	151(9)	4616(8)	1858(6)	104(3)
C(8)	-872(7)	4966(6)	2445(6)	92(2)
C(9)	1405(4)	2050(4)	2115(3)	46(1)
C(10)	569(4)	1459(4)	2687(3)	40(1)
C(11)	-743(4)	2491(4)	3783(3)	41(1)
C(12)	-2181(4)	2441(4)	3923(3)	43(1)
C(13)	-2309(4)	3375(4)	4751(3)	46(1)
C(14)	777(4)	466(4)	3094(3)	44(1)
C(15)	-320(5)	-396(5)	3355(4)	65(1)
C(16)	-133(7)	-1327(6)	3735(5)	80(2)
C(17)	1123(7)	-1412(5)	3857(4)	76(2)
C(18)	2208(6)	-590(7)	3604(6)	90(2)
C(19)	2050(5)	364(6)	3229(5)	76(2)
C(20)	-3523(4)	3585(4)	5179(3)	50(1)
C(21)	-4787(6)	2595(5)	5017(5)	77(2)
C(22)	-5872(6)	2881(7)	5500(6)	90(2)
C(23)	-5712(6)	4122(6)	6129(5)	75(2)
C(24)	-4488(6)	5099(6)	6297(4)	70(1)
C(25)	-3393(5)	4831(5)	5837(4)	60(1)
C(26)	-3317(4)	1389(4)	3130(4)	54(1)
C(27)	-3935(5)	1671(6)	2358(4)	71(1)
C(28)	-4954(6)	680(9)	1601(6)	105(2)
C(29)	-5360(7)	-560(8)	1608(8)	119(3)
C(30)	-4788(6)	-858(6)	2381(8)	114(3)
C(31)	-3747(5)	117(5)	3150(6)	81(2)

^a U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Scheme 4. 4,5-Dihydropyrrolylidene Complexes 9 by Cyclization of (2-Alkoxyethenyl)carbene Complexes (E)-7 with 8a

7, 9: R = H, $R^1 = Et$ (a); Ph, Me (b)

mend to test mixtures of (Z)-11 and 12 directly for further chemical transformations.

4,5-Dihydropyrrolidene complexes 9 show the spectroscopic characteristics of aminocarbene complexes [e.g. **9b**: NMR $\delta(CrC) = 265.2 \text{ ppm}, \delta(CHN) = 5.25, \delta(CHN)$ = 68.5; IR ν (C=O): 2055.2 cm⁻¹, 1977.8, 1933.4]. Ketene imines (Z)-11 are easily distinguished from 9 by the ¹³C NMR signals of the central (δ 194.2–198.4 ppm) and terminal carbon atoms (δ 112.7–113.6) of the

⁽²⁷⁾ Aumann, R.; Hinterding, P. Chem. Ber. **1991**, *124*, 213-218. (28) Aumann, R.; Heinen, H. Chem. Ber. **1986**, *119*, 3801-3811. (29) Review: Perst, H. In Keten-imine. Methods of Organic Chem-istry; Houben-Weyl, G. Thieme Verlag: Stuttgart, 1993, Vol. E15 III, pp 2531-2700. (30) Aumann D. C.

⁽³⁰⁾ Aumann, R. Chem. Ber. 1994, 127, 717-724.

Scheme 6. Bis(carbene) Complexes (Z,Z)-5h and (E,Z)-5k

NCC unit, as well as by the IR bands of ν (N=C=C) at 1985–1995 cm⁻¹ and of ν (OC=O) at 1719–1764 cm⁻¹ (Table 1).

(Bis)carbene Complexes 5h and 5k

The reaction shown in Scheme 2 can also be applied to the addition of dicarboxylic acid **4h** to **1c**, in which case a bridged bis(carbene) complex (Z,Z)-**5h** is obtained. By addition of an amino carboxylic acid **4i** to **1c** the (2aminoethenyl)carbene complex (E)-**5i** is formed. This reacts with a further molecule of **1c** to give (E,Z)-**5k**, if Et₃N is added as a catalyst (Scheme 6). Thus, apparently, a bigger variety of bis(carbene) complexes is available from 1c in high stereoselectivity.

Experimental Section

All operations were performed under argon. Solvents were dried by distillation from sodium/benzophenone, Melting points are uncorrected. ¹H NMR and ¹³C NMR, Bruker WM 300 (multiplicities were determined by DEPT; chemical shifts refer to $\delta_{\rm TMS} = 0.00$ ppm); IR, Digilab FTS 45; MS, Finnigan MAT 312; elemental analysis, Perkin-Elmer 240 elemental analyzer; column chromatography, Merck-Kieselgel 100; TLC, Merck DC-Alufolien Kieselgel 60 F 254. R_f values refer to TLC tests.

[(2Z)-3-(Benzoyloxy)-1-ethoxy-3-phenyl-2-propenylidene]pentacarbonylchromium [(Z)-5a]. To 350 mg (1.00 mmol) of pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)chromium (1a) and 121 mg (1.00 mmol) of benzoic acid (4a) in 3 mL of dichloromethane/diethyl ether (1:1) is added at 20 °C in a 5-mL airtight screw-top vessel with stirring 50 mg (0.50 mmol) of triethylamine. After a few minutes the formation of polar dark brown (Z)-5a can be detected by TLC ($R_f = 0.5$, pentane/dichloromethane 3:1). 1a is completely consumed after 12-15 h at 20 °C. Workup by (rapid) chromatography on silica (column 20×2 cm) with pentane/dichloromethane (3:1) to (2:1). After a small yellow-orange fraction a dark brown fraction of (Z)-5a is obtained (360 mg, 76%, black crystals from diethyl ether/pentane (1:5), mp 83 °C). ¹H NMR $(C_6D_6): \delta$ 8.05, 7.15, and 7.00 (2:1:2, o-:p-:m-H, 3-benzoyloxy). 7.82 (1H, s, 2-H), 7.55, 6.90, 6.85 (2:1:2, o-:p-:m-H, 3-Ph), 4.55 (2H, q, OCH₂), 0.80 (3H, t, OCH₂CH₃). ¹³C NMR (C₆D₆): δ 334.2 (Cr=C), 224.7 and 217.1 [1:4, trans- and cis-CO, Cr-(CO)5], 163.5 (O-CO), 139.4 (C3), 134.3 (i-C, 3-Ph), 134.1 (CH, 2-C), 129.8 (i-C, 3-benzoyloxy), 131.0, 130.6, 129.2 (1:2:2, p-: o-:m-CH, 3-benzoyloxy), 129.4, 128.4, 127.2 (2:1:2, o-:p-:m-CH, 3-Ph), 77.6 (OCH₂), 14.8 (CH₃). IR (hexane), cm⁻¹ (%): 2059.0 (30), 1986.3 (5), 1945.8 (100) [ν(C≡O)]; (diffuse reflection) 1743.6 (20) [ν (OC=O)]. MS (70 eV), m/e (%): 472 (10) [M⁺], 416 (10), 388 (5), 360 (50), 332 (50) [M⁺ – 5CO], 289 (60), 288 (60), 275 (50), 260 (50), 251 (40), 220 (60), 173 (50), 129 (60), 105 (80), 51 (100). Anal. Calcd for C₂₃H₁₆CrO₈ (472.2): C, 58.48; H, 3.41. Found: C, 58.49; H, 3.52.

[(2Z)-3-(Benzoyloxy)-1-ethoxy-3-phenyl-2-propenylidene]pentacarbonyltungsten [(Z)-5b]. Pentacarbonyl(1ethoxy-3-phenyl-2-propynylidene)tungsten (1c) (482 mg, 1.00 mmol) and 121 mg (1.00 mmol) of benzoic acid (4a) in 3 mL of dichloromethane/diethyl ether (1:1) are treated as described above with 80 mg (0.80 mmol) of triethylamine at 20 °C. Chromatography after 2-3 h yields (Z)-5b, $R_f = 0.4$ in pentane/ dichloromethane (3:1) (470 mg, 78%, dark brown crystals from diethyl ether/pentane (1:6), mp 106 °C). ¹H NMR (C₆D₆): δ 8.00, 7.15, and 7.05 (2:1:2, o-:p-:m-H, 3-benzoyloxy), 7.92 (1H, s, 2-H), 7.55, 6.95, 6.85 (2:1:2, o-:o-:m-H, 3-Ph), 4.40 (2H, q, OCH₂), 0.70 (3H, t, OCH₂CH₃). ¹³C NMR (C₆D₆): δ 305.7 (W=C), 204.3 and 198.0 [1:4, trans- and cis-CO, W(CO)₅], 163.1 (O-CO), 142.6 (C3), 134.3 (i-C, 3-Ph), 134.1 (CH, 2-C), 129.6 (i-C, 3-benzoyloxy), 132.5, 130.6, 129.1 (1:2:2, p-:o-:m-CH, 3-benzoyloxy), 129.6, 128.5, 127.2 (2:1:2, o-:p-:m-CH, 3-Ph), 80.3 (OCH₂), 14.5 (CH₃). IR (hexane), cm⁻¹ (%): 2067.1 (30), 1982.4 (5), 1944.9 (100) [v(C≡O)]; (diffuse reflection) 1744.2 (30) [v(OC=O)]. MS (70 eV), m/e (%), ¹⁸⁴W: 604 (10) [M⁺], 576 $(5), 548 (40), 520 (40), 492 (40), 464 (40) [M^+ - 5CO], 435 (30),$ 407 (30), 105 (100). Anal. Calcd for $C_{23}H_{16}O_8W$ (604.2): C, 45.72; H, 2.67. Found: C, 45.82; H, 2.83.

Pentacarbonyl[(2Z)-3-((p-(dimethylamino)benzoyl)oxy)-1-ethoxy-3-phenyl-2-propenylidene]tungsten [(Z)-5c]. Pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)tungsten (1c) (482 mg, 1.00 mmol) and 164 mg (1.00 mmol) of 4-(dimethylamino)benzoic acid (4c) in 3 mL of dichloromethane/ diethyl ether (1:1) are treated as described above with 80 mg (0.80 mmol) of triethylamine at 20 °C. Chromatography after 5-6 h yields (Z)-5c, $R_f = 0.4$ in pentane/dichloromethane (1: 1) (480 mg, 74%, orange-red crystals from diethyl ether/ pentane (1:1), mp 117 °C). ¹H NMR (C₆D₆): δ 8.15 and 6.25 (2:2, o-:m-H, 3-p-Me₂NC₆H₄), 8.00 (1H, s, 2-H), 7.65, 7.05, 6.85 (2:1:2, o-:p-:m-H, 3-Ph), 4.55 (2H, q, OCH₂), 2.30 (6H, NMe₂), 0.90 (3H, t, OCH₂CH₃). ¹³C NMR (C₆D₆): δ 306.0 (W=C), 204.3 and 198.0 [1:4, trans- and cis-CO, W(CO)5], 162.0 (O-CO), 156.1 (C4', p-Me₂NC₆H₄), 143.0 (C3), 132.6 (i-C, 3-Ph), 132.4 (CH, C2), 119.6 (C1', 3-p-Me₂NC₆H₄), 132.4 and 111.4 (2:2, o-: m-CH, 3-p-Me₂NC₆H₄), 129.8, 128.5, 127.2 (2:1:2, o-:p-:m-CH; 3-Ph); 80.4 (OCH₂), 39.5 (CH₃, Me₂N), 14.6 (CH₃). IR (hexane), cm⁻¹ (%): 2066.1 (30), 1980.2 (5), 1942.3 (100) [ν (C=O)]; (diffuse reflection) 1727.6 (20) [v(OC=O)]. MS (70 eV), m/e (%), ¹⁸⁴W: 649 (1) $[M^+ + 2]$, 621 (2), 593 (4), 565 (4), 537 (2) $[M^+ + 2 - 4CO], 508 (1) [M^+ + 1 - 5CO], 148 (100) [Me_2NC_6H_4$ CO⁺]. Anal. Calcd for $C_{25}H_{21}NO_8W$ (647.3): C, 46.39; H, 3.27; N, 2.16. Found: C, 47.29; H, 3.48; N, 2.38.

[(2Z)-3-Acetoxy-1-ethoxy-3-phenyl-2-propenylidene]pentacarbonyltungsten [(Z)-5d]. Pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)tungsten (1c) (482 mg, 1.00 mmol) and 60 mg (1.00 mmol) of acetic acid (4d) in 3 mL of dichloromethane/diethyl ether (1:1) are treated as described above with 80 mg (0.80 mmol) of triethylamine at 20 °C. Chromatography after 2-4 h yields (Z)-5d, $R_f = 0.6$ in pentane/ diethyl ether (1:6) (395 mg, 73%, dark-brown crystals from diethyl ether/pentane (1:6), mp 99 °C). ¹H NMR (C₆D₆): δ 7.78 (1H, s, 2-H), 7.50, 6.95, 6.90 (2:1:2, o-:p-:m-H, 3-Ph), 4.50 (2H, q, OCH₂), 1.70 (3H, s, COCH₃), 1.00 (3H, t, OCH₂CH₃). ¹³C NMR (C6D6): 8 306.2 (W=C), 204.4 and 198.0 [1:4, trans- and cis-CO, W(CO)5], 166.5 (O-CO), 142.6 (C3), 134.5 (i-C, 3-Ph), 132.4 (CH, 2-C), 131.2, 129.4, 127.1 (1:2:2, p-:o-:m-CH, 3-Ph), $80.2 (OCH_2), 20.5 (COCH_3), 14.9 (CH_3, Et).$ IR (hexane), cm⁻¹ (%): 2067.3 (30), 1981.9 (5), 1944.5 (100) [ν (C=O)]; (diffuse reflection) 1767.8 (20) [v(OC=O)]. MS (70 eV), m/e (%), 184W: $542\,(10)\,[M^+],\,486\,(10),\,458\,(40),\,430\,(10),\,402\,(40)\,[M^+-5CO],$ 343 (40) [402 - COCH₃], 302 (50), 274 (40), 105 (100). Anal. Calcd for C18H14O8W (542.2): C, 39.88; H, 2.60. Found: C, 40.19; H, 2.89.

 $Penta carbonyl [(2Z) - 3 - ((\alpha - cycloheptatrienyl) acetoxy) - ($ 1-ethoxy-3-phenyl-2-propenylidene]tungsten [(Z)-5e]. Pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)tungsten (1c) (482 mg, 1.00 mmol) and 149 mg (1.00 mmol) of (a-cycloheptatrienyl)acetic acid (4e) in 3 mL of dichloromethane/diethyl ether (1:1) are treated as described above with 80 mg (0.80 mmol) of triethylamine at 20 °C. Chromatography after 8-10 h yields (Z)-5e, $R_f = 0.4$ in pentane/dichloromethane (3:1) (450 mg, 71%, dark brown crystals from diethyl ether/pentane (1: 4), mp 71 °C). ¹H NMR (C₆D₆): δ 7.75 (1H, s, 2-H), 7.55, 6.98, 6.90 (2:1:2, o-:p-:m-H, 3-Ph), 6.45, 6.05, 5.05 (2:2:2H, each m, 2'-H bis 7'-H, cycloheptatrienyl), 4.60 (2H, q, OCH₂), 2.50 (2H, d. OC-CH₂), 2.30 (1H, m, 1'-H, cycloheptatrienyl), 1.03 (3H, t, OCH₂CH₃). ¹³C NMR (C₆D₆): δ 306.6 (W=C), 204.4 and 198.0 [1:4, trans- and cis-CO, W(CO)5], 168.2 (O-CO), 142.2 (C3), 134.5 (i-C, 3-Ph), 132.6 (CH, C2), 131.2, 129.4, 126.0 (1: 2:2, p-:o-:m-CH, 3-Ph), 131.5, 127.2, 124.6 (CH each, 2:2:2, cycloheptatrienyl), 80.2 (OCH₂), 37.8 (OC-CH₂), 35.7 (C1', cycloheptatrienyl), 15.1 (CH₃, Et). IR (hexane), cm⁻¹ (%): 2067.3 (30), 1981.5 (5), 1943.8 (100) [v(C=O)]; (diffuse reflection) 1766.5 (20) [ν (OC=O)]. MS (70 eV), m/e ¹⁸⁴W: 632 (5) $[M^+]$, 548 (10), 520 (10), 492 (10) $[M^+ - 5CO]$, 443 (10), 304 (20), 105 (30), 91 (100) $[C_7H_7^+]$. Anal. Calcd for $C_{25}H_{20}O_8W$ (632.1): C, 47.46; H, 3.19. Found: C, 47.60; H, 3.37.

Pentacarbonyl[(2Z)-3-(((2-methyl-1-propenyl)carbonyl)oxy)-1-ethoxy-3-phenyl-2-propenylidene]tungsten[(Z)-5f]. Pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)tungsten (1c) (482 mg, 1.00 mmol) and 100 mg (1.00 mmol) of 3,3dimethylacrylic acid (4f) in 3 mL of dichloromethane/diethyl ether (1:1) are treated as described above with 80 mg (0.80 mmol) of triethylamine at 20 °C. Chromatography after 3 h yields (Z)-5f, $R_f = 0.5$ in pentane/dichloromethane (3:1) (436 mg, 75%, brown crystals from diethyl ether/pentane (1:6), mp 82 °C). ¹H NMR (C₆D₆): δ 7.85 (1H, s, 2-H), 7.65, 7.00, 6.90 (2:1:2, o-:p-:m-H, 3-Ph), 5.70 (1H, sept, ⁴J = 1.1 Hz, 1'-H), 4.55 (2H, q, OCH₂), 2.00 and 1.45 (3H each, d each, ${}^{4}J = 1.1$ Hz each, =CMe₂), 1.08 (3H, t, OCH₂CH₃). 13 C NMR (C₆D₆): δ 306.1 (W=C), 204.4 and 198.1 [1:4, *trans*- and *cis*-CO, W(CO)₈], 162.3 and 161.7 (C_q each, O-CO and =CMe₂), 142.8 (C3), 134.8 (*i*-C, 3-Ph), 132.2 (CH, C2), 131.1, 129.4, 127.2 (1:2:2, o-:p-:m-CH, 3-Ph), 115.1 (OC-CH=), 80.1 (OCH₂), 27.3 and 20.5 [=C-(CH₃)₂], 14.6 (CH₃). IR (hexane), cm⁻¹ (%): 2066.4 (30), 1979.2 (5), 1942.5 (100) [ν (C=O)]; (diffuse reflection) 1744.3 (20) [ν -(OC=O)]. MS (70 eV), *m/e* (%), ¹⁸⁴W: 582 (5) [M⁺], 528 (5), 500 (4), 470 (10), 442 (5) [M⁺ - 5CO], 441 (20), 413 (10), 385 (20), 357 (10), 329 (5), 301 (20), 215 (20), 187 (30), 168 (20), 149 (30), 105 (40), 83 (100) [OC-CH=CMe₂]. Anal. Calcd for C_{21H₁₈O₈W (582.2): C, 43.32; H, 3.12. Found: C, 43.42; H, 3.03.}

Pentacarbonyl[(2Z)-3-(((1,2-diphenylethenyl)carbonyl)oxy)-1-ethoxy-3-phenyl-2-propenylidene]tungsten [(Z)-5g]. Pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)tungsten (1c) (482 mg, 1.00 mmol) and 224 mg (1.00 mmol) of α -phenylcinnamic acid (4g) in 3 mL of dichloromethane/diethyl ether (1:1) are treated as described above with 80 mg (0.80 mmol) of triethylamine at 20 °C. Chromatography after 10 h yields (Z)-5g, $R_f = 0.3$ in pentane/dichloromethane (2:1) (520 mg, 74%, black crystals from diethyl ether/pentane (1:5) at -15°C, mp 119 °C). ¹H NMR (C₆D₆): δ 8.10 (1H, s, 2'-H), 7.82 (1H, s, 2-H), 7.58, 7.26, 7.15, 6.95, 6.85 (2:2:3:5:3H, 3 Ph), 4.59 (2H, q, OCH₂), 1.10 (3H, t, OCH₂CH₃). ¹³C NMR (C₆D₆): 306.4 (W=C), 204.4 and 198.0 [1:4, trans- and cis-CO, W(CO)5], 164.0 (Cq, O-CO), 143.3 (CH, 2'-H), 142.7 (C3), 135.7, 134.7, 134.6 (i-C each, 3-Ph), 132.5 (CH, C2), 132.0 (Cq, C1'), 131.3, 130.4, 130.2, 129.5, 129.3, 128.9, 127.2 (2:4:1:2:1:2:1:2, CH each, 3-Ph), 80.3 (OCH₂), 15.2 (CH₃). IR (hexane), cm⁻¹ (%): 2067.0 (30), 1981.6 (5), 1943.4 (100) [ν (C=O)]; (diffuse reflection) 1733.5 (20) [ν (OC=O)]. MS (70 eV), m/e (%), ¹⁸⁴W: [M⁺] missing, $622 (10) [M^+ - 3CO]$, 595 (10), $566 (10) [M^+ - 5CO]$, 471 (10), 304 (40), 302 (30), 294 (60), 207 (60), 179 (100) $[Ph_2C=CH^+].$

Decacarbonyl[(2Z)-µ-(((1,4-phenylene)dicarbonyl)dioxy)bis(1-ethoxy-3-phenyl-2-propen-3-yl-1-ylidene)]ditungsten [(Z)-5h]. Pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)tungsten (1c) (482 mg, 1.00 mmol) and 83 mg (0.50 mmol) of terephthalic acid (4h) in 3 mL of dichloromethane/ diethyl ether (1:1) are treated with 80 mg (0.80 mmol) of Et₃N as described above for 12 h, 20 °C. (Z,Z)-5h, $R_f = 0.5$ in pentane/diethyl ether (4:1) (420 mg, 74%, dark brown crystals from diethyl ether/pentane (1:1)). $\,^1\!H$ NMR (C_6D_6): $\,\delta$ 8.30 (4H, s, 3-p-C₆H₄), 7.80 (2H, s, 2 2-H), 7.65, 7.40, 7.30 (4:2:4, o-:p-: *m*-H, 2 3-Ph), 4.65 (2H, q, OCH₂), 1.15 (3H, t, OCH₂CH₃). ¹³C NMR (C₆D₆): δ 305.4 (W=C), 204.0 and 197.4 [1:4, trans- and cis-CO, W(CO)5], 163.1 (O-CO), 141.2 (C3), 133.8 (i-C, 3-Ph), 133.6 (2 i-C, 3-p-C₆H₄), 132.7 (CH, C2), 131.5, 130.9, 129.5 (4: 2:4, o-:p-:m-CH, 2 3-Ph); 127.0 (4 CH, 3-p-OOC-C₆H₄-COO), 80.0 (OCH₂), 14.9 (CH₃). IR (hexane), cm^{-1} (%): 2067.3 (20), 1982.4 (5), 1943.4 (100) [ν (C=O)]; (diffuse reflection) 1743.6 (30) $[\nu(OC=O)]$. MS (70 eV), m/e (%), ¹⁸⁴W: [M⁺] missing. Anal. Calcd for $C_{40}H_{26}O_{16}W_2$ (1130.3): C, 42.50; H, 2.32. Found: C, 42.45; H, 2.38.

Pentacarbonyl{(2E)-3-[(4-carboxyphenyl)methylamino]-1-ethoxy-3-phenyl-2-propen-1-ylidene}tungsten [(E)-5i]. Pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)tungsten (1c) (482 mg, 1.00 mmol) in 3 mL of dichloromethane/ diethyl ether (1:1) in a 5-mL screw-top vessel is treated with 151 mg (1.00 mmol) of 4-(methylamino)benzoic acid (4i) to give red polar 5i. The reaction is followed by TLC. After 1 day at 20 °C the solvent is replaced by diethyl ether. On dropwise addition of 2 mL of pentane a beige precipitate of (E)-5i is obtained (385 mg, 80%, red crystals from diethyl ether/pentane (1:1)). ¹H NMR (C₆D₆): δ 8.15 and 7.10 (2:2, 3-p-C₆H₄), 7.19 and 7.05 (3:2, 3-Ph), 7.80 (1H, s, 2-H), 4.15 (2H, q, OCH₂), 3.25 (NCH₃), 0.65 (3H, t, OCH₂CH₃). ¹³C NMR (C_6D_6): δ 270.0 (W=C), 224.3 and 218.0 [1:4, trans- and cis-CO, W(CO)₅], 170.7 (O-CO), 156.2 (C1', p-C₆H₄), 153.0 (C3), 132.8 (i-C, 3-Ph), 131.7 (CH, C2), 125.3 (C4', 3-p-C₆H₄), 129.1 and 126.8 (2:2,

3-p-C₆H₄), 130.0, 128.5, 127.6 (2:1:2, o-:p-:m-CH, 3-Ph), 77.4 (OCH₂), 42.5 (NCH₃), 14.0 (CH₃, Et). IR (hexane), cm⁻¹ (%): 2058.5 (30), 1989.1 (5), 1926.1 (100) [ν (C=O)]; (diffuse reflection) 3455 (5) [ν (NH)], 1681.5 (30) [ν (OC=O)]. MS (70 eV), m/e (%), ¹⁸⁴W: [M⁺] missing. Anal. Calcd for C₂₄H₁₉NO₈W (633.3): C, 45.52; H, 3.02; N, 2.21. Found: C, 45.73; H, 3.45; N, 2.32.

Decarbonylditungsten Bis(carbene) Complex (E,Z)-5k. Pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)tungsten (1c) (1060 mg, 2.20 mmol) and 151 mg (1.00 mmol) of 4-(methylamino)benzoic acid (4i) in 3 mL of dichloromethane/diethyl ether (1:1) are reacted for 24 h at 20 °C and then treated with 80 mg (0.80 mmol) of Et₃N. Isolation by chromatography after 24 h at 20 °C as above yields (E,Z)-5k, $R_f = 0.5$ in pentane/ diethyl ether (3:1) (835 mg, 75% dark brown crystals from diethyl ether/pentane (1:1), mp 147 °C). ¹H NMR (C₆D₆): δ 7.95 (1H, s, =-CH, 2-H, carboxyl), 8.15 and 6.65 (2:2, $3-p-C_6H_4$), 7.55, 7.05, 6.98 (2:1:2, 3-Ph carboxyl), 6.95 and 6.85 (3:2, m each broad, 3-Ph, amino), 7.92 (1H, s, 2-H, amino), 4.50 (2H, q, OCH₂), 4.20 (2H, q, NCH₂), 2.70 (NCH₃), 0.95 (3H, t, OCH₂CH₃), 0.50 (3H, t, NCH₂CH₃). ¹³C NMR (C₆D₆): δ 306.0 and 284.5 (W=C each), 204.2 and 199.8 as well as 204.1 and 197.3 [1:4 each, trans- and cis-CO, W(CO)₅], 162.1 (O-CO), 154.9 (i-C, p-C₆H₄), 150.4 and 142.1 (C_q each, C3), 137.5 and 134.2 (C_a each, *i*-C, 3-Ph), 132.5 and 127.3 (CH each, C2), 131.8, 131.3, 129.6, 128.9, 127.0 (CH each, 1:2:2:4:4:1, 2 Ph and 3-p-C₆H₄), 127.6 (i-C, 3-p-C₆H₄), 80.2 and 77.3 (OCH₂ each), 41.6 (NCH₃), 14.8 and 14.6 (CH₃ each, Et). IR (hexane), cm^{-1} (%): 2064.7 (20), 1982.4 (5), 1936.2 (100) [ν (C=O)]; (diffuse reflection) 1743.9 (30) [v(OC=O)]. MS (70 eV), m/e (%), ¹⁸⁴W: [M⁺] missing. Anal. Calcd for $C_{40}H_{29}NO_{14}W_2$ (1115.4): C, 45.52; H, 2.62; N, 1.26. Found: C, 45.45; H, 2.98; N, 1.00.

Pentacarbonyl[1-cyclohexyl-3-ethoxy-2,5-dihydro-5methoxy-5-phenyl)-2H-pyrrol-2-ylidene]chromium (9b). Cyclohexyl isocyanide (8a) (119 mg, 1.10 mmol) is added to a suspension of 382 mg (1.00 mmol) of (orange) pentacarbonyl-[1-ethoxy-3-methoxy-3-phenylpropenylidene]chromium⁹ [(E)-7b] in 3 mL of pentane and stirred for 2 days at 20 °C in an airtight 5-mL screw-top vessel. 9b is obtained in yellow crystals, 417 mg, 85%, $R_f = 0.2$ in dichloromethane. ¹H NMR (C₆D₆, +20 °C): δ 7.90 and 6.90 (1H each, s each broad, o-H, Ph), 7.15 (3H, s broad, m- and p-H, Ph), 5.25 (1H, t, CHN), 4.70 (1H, s, 4-H), 3.30 (2H, q broad, OCH₂, Et), 3.00 (3H, s, 5-OCH₃), 2.10, 1.80, 1.35, 0.95 (3:1:4:2H, m each, cyclohexyl), 1.30 (3H, t, CH₃, Et). ¹³C NMR (CDCl₃): δ 265.2 (Cr=C), 225.0 and 218.8 [1:4, cis- and trans-CO Cr(CO)₅], 160.2 (Cq, C3), 137.0 (C_g, *i*-C, 5-Ph), 132.1 and 127.8 (CH each, dynamically broadened each, o-C each, Ph), 129.1, and 126.3 (CH each, 2:1, m- and p-C, Ph), 108.3 (Cq, C5), 105.9 (CH, C4), 68.5 (CHN), 66.7 (OCH₂), 52.4 (OCH₃), 33.3, 31.8, 26.6, 26.4, 25.6 (CH₂ each, cyclohexyl), 14.0 (CH₃, Et). IR (hexane), cm⁻¹ (%): 2055.2 (30), 1977.8 (5), 1933.4 (100) [ν (C=O)]. MS (70 eV), m/e (%): 491 (50) [M⁺], 463 (25), 425 (30), 407 (20), 379 (60), 351 (60) [M⁺ - 5CO], 336 (80), 322 (40), 55 (100). Anal. Calcd for C₂₄H₂₅-CrNO7 (491.5): C, 58.65; H, 5.13; N, 2.85. Found: C, 58.84; H, 5.40; N, 3.07.

4-(Benzoyloxy)-N-tert-butyl-2-ethoxy-4-phenyl-1,3-butadien-1-imine [(Z)-11b] and 4-(Benzoyloxy)-N-tert-butyl-2-ethoxy-1-oxo-4-phenyl-3-butenamide [(Z)-14b]. tert-Butyl isocyanide (8b) (17 mg, 0.20 mmol) is added to 47 mg (0.10 mmol) of [(2Z)-3-(benzoyloxy)-1-ethoxy-3-phenyl-2-propenylidene]pentacarbonylchromium [(Z)-5a] or 65 mg (0.10 mmol) of [(2Z)-3-(benzoyloxy)-1-ethoxy-3-phenyl-2-propenylidene]pentacarbonyltungsten [(Z)-5b] and hexamethylbenzene as an internal standard in 1 mL of C₆D₆ at 20 °C. The reaction mixture turns yellow within a few minutes with generation of (Z)-11b and 12b (as well as 12a). Integration of the ¹H NMR signals indicates an essentially quantitative reaction. Chromatography on silica leads to hydrolysis of (Z)-11b and formation of colorless (Z)-14b.

(Z)-11b: ¹H NMR (C₆D₆) δ 8.20, 7.15, 7.05 (2:1:2, benzoyloxy), 7.35, 6.95, 6.80 (2:1:2H, 3-Ph), 6.30 (1H, s, 3-H), 3.50 (2H, q, OCH₂), 1.10 (9H, s, CH₃, t-Bu), 0.95 (3H, q, CH₂CH₃); ¹³C NMR (C₆D₆) δ {199.4 and 195.1 [1:4, W(CO)₅ of 12a], 155.8 [CNR of 12a]}, 197.4 (NCC), 164.1 (OC=O), 142.4 (C_q, C4), 163.3 (i-C, 4-Ph), 133.5, 130.8, 128.8 (CH each, 1:2:2 benzoyloxy, 128.9, 127.9, 124.4 (CH each, 1:2:2, Ph), 112.7 (Co, C2), 110.6 (CH, C3), 67.0 (OCH₂), 61.6 (C_q, t-Bu), {57.9 [CMe₃ of 12a], 30.5 [C(CH₃)₃ of 12]}, 29.9 (3 CH₃, t-Bu), 15.2 (CH₂CH₃); IR (diffuse reflection) $[cm^{-1} (\%)]$ (12a) 2162.4 (30) $[\nu(C \equiv C)]$. 2067.4 (30) and 1937.2 (100) [v(C=O)]; IR (diffuse reflection) $[cm^{-1}(\%)]$ (11b) 1994.4 (25) $[\nu(N=C=C)]$, 1739.8 $[\nu(C=O)]$; MS $(70 \text{ eV}) [m/e (\%)] 363 (20) [M^+], 307 (40) [M^+ - C_4H_8], 264 (10),$ 251 (10), 202 (30), 174 (20), 105 (100). Anal. Calcd for $C_{23}H_{25}$ -NO3 (363.2): C, 76.01; H, 6.93; N, 3.85. Found: C, 75.98; H, 6.92; N, 3.95.

(Z)-14b: ¹H NMR (C₆D₆) δ 8.30, 7.40, 7.15, 7.10, 6.95 (2:2: 1:2:3H, 2 Ph), 6.50 (1H, s br, NH), 5.95 and 4.70 (1H each, AB system, ³J = 8.3 Hz, 2-H and 3-H), 3.55 and 3.35 (1H each, diastereotope OCH₂), 1.25 (9H, s, *t*-Bu), 1.00 (3H, t, CH₃, Et); MS (70 eV) [*m/e* (%)] 381 [M⁺], 325 (20) [M⁺ - C₄H₈], 282 (30) [M⁺ - *t*-BuNHCO], 281 (30), 105 (100) [PhCO⁺]. Anal. Calcd for C₂₃H₂₇NO₄ (381.5): C, 72.41; H, 7.13; N, 3.67. Found: C, 72.52; H, 7.22; N, 3.54.

N-tert-Butyl-4-((4-(dimethylamino)benzoyl)oxy)-2-ethoxy-4-phenyl-1,3-butadien-1-imine [(Z)-11c]. tert-Butyl isocyanide (8b) (17 mg, 0.20 mmol) is added to 52 mg (0.10 mmol) of pentacarbonyl[(2Z)-3-((4-(dimethylamino)benzoyl)oxy)-1-ethoxy-3-phenyl-2-propenylidene]tungsten [(Z)-5c] and hexamethylbenzene as an internal standard in 1 mL of C_6D_6 at 20 °C. The reaction mixture turns yellow within a few minutes with generation of (Z)-11c and 12a. Integration of the ¹H NMR signals indicates an essential quantitative reaction. Chromatography on silica leads to hydrolysis of (Z)-11c. ¹H NMR (C₆D₆): δ 8.30 and 6.30 (2:2H, p-C₆H₄), 7.30, 7.05, 6.90 (2:2:1, 3-Ph), 6.30 (1H, s, 3-H), 3.50 (2H, q, OCH₂), 2.30 (6H, s, Me₂N), 1.10 (9H, s, CH₃, t-Bu), 1.05 (3H, q, CH₂CH₃). ¹³C NMR (C₆D₆): δ {199.4 and 195.1 [1:4, W(CO)₅ of 12a], 153.9 [CNR of 12a]}, 197.0 (NCC), 164.4 (OC=O), 153.9 (Cq, C-NMe₂), 142.9 (Cq, C4), 136.9 (i-C, 4-Ph), 128.9, 127.9, 124.6 (CH each, 1:2:2, 4-Ph), 126.8, 111.3 (CH each, 2:2, p-C₆H₄), 117.6 (C_q, *i*-C, *p*-C₆H₄), 112.8 (C_q, C2), 110.9 (CH, C3), 67.1 (OCH₂), 61.5 (C_q, t-Bu) {57.9 [CMe₃ of 12a], 30.5 [C(CH₃)₃ of 12a]}, 39.6 (CH₃, NMe₂), 30.8 (3 CH₃, t-Bu), 15.9 (CH₂CH₃). IR (diffuse reflection), cm⁻¹ (%): 12a 2162.4 (30) [ν (C=C)], 2067.4 (30) and 1937.2 (100) [ν (C=O)]; 11c 1985.5 (25) $[\nu(N=C=C)], 1719.3 [\nu(C=O)].$

4-Acetoxy-N-tert-butyl-2-ethoxy-4-phenyl-1,3-butadien-1-imine [(Z)-11d]. tert-Butyl isocyanide (8b) (17 mg, 0.20 mmol) is added to 54 mg (0.10 mmol) of [(2Z)-3-acetoxy-1ethoxy-3-phenyl-2-propenylidene]pentacarbonylchromium [(Z)-5d] and hexamethylbenzene as an internal standard in 1 mL of C_6D_6 at 20 °C. The reaction mixture turns yellow within a few minutes with generation of (Z)-11d and 12a. Integration of the ¹H NMR signals indicates an essentially quantitative reaction. Chromatography on silica leads to hydrolysis of (Z)-11d. ¹H NMR (C_6D_6): δ 7.30, 7.05, 6.90 (2:2:1, 3-Ph), 6.20 (1H, s, 3-H), 3.50 (2H, q, OCH₂), 2.00 (CH₃, Ac), 1.10 (9H, s, CH₃, t-Bu), 1.00 (3H, q, CH₂CH₃). ¹³C NMR (C₆D₆): δ 94.2 (NCC), 167.9 (OC=O), 142.4 (Cq, C4), 137.3 (i-C, 4-Ph), 128.9, 127.9, 124.4 (CH each, 1:2:2, Ph), 112.3 (Cq, C2), 110.4 (CH, C3), 67.0 (OCH₂), 61.5 (C_q, t-Bu), 30.3 (3 CH₃, t-Bu), 20.6 (CH₃, Ac), 15.5 (CH₂CH₃). IR (diffuse reflection), cm⁻¹ (%): 12a 2162.4 (30) $[\nu(C=C)]$, 2067.4 (30) and 1937.2 (100) $[\nu(C=O)]$; 11d 1987.8 (25) [v(N=C=C)], 1764.3 [v(C=O)]. MS (70 eV), m/e (%): 301 (15) $[M^+]$, 412 (100) $[M^+ - C_4H_8]$. Anal. Calcd for $C_{18}H_{23}NO_3$ (301.4): C, 71.73; H, 7.69; N, 4.65. Found: C, 71.98; H, 7.45; N, 4.87.

N-tert-Butyl-4-((α-cycloheptatrienyl)acetoxy)-2-ethoxy-4-phenyl-1,3-butadien-1-imine [(Z)-11e]. *tert*-Butyl isocyanide (8b) (17 mg, 0.20 mmol) is added to 63 mg (0.10 mmol) of pentacarbonyl[(2Z)-3-((α-cycloheptatrienyl)acetoxy)-1-ethoxy-

(2-(Acyloxy)ethenyl)carbene Complexes of Cr and W

3-phenyl-2-propenylidene]chromium [(Z)-5e] and hexamethylbenzene as an internal standard in 1 mL of C_6D_6 at 20 °C. The reaction mixture turns yellow within a few minutes with generation of (Z)-11e and 12a. Integration of the ¹H NMR signals indicates an essential quantitative reaction. ¹H NMR (C₆D₆): δ 7.32, 7.10, 7.05 (2:2:1, 3-Ph), 6.48, 6.06, 5.20 (2:2: 2H, each m, cycloheptatrienyl), 6.17 (1H, s, 3-H), 3.48 (2H, q, OCH₂), 2.85 (2H, d, OC-CH₂), 2.40 (1H, m, 1'-H), 1.20 (9H, s, CH₃, t-Bu), 1.05 (3H, q, CH₂CH₃) {0.80 [9H, t-Bu of 12a]}. ¹³C NMR (C₆D₆): δ {199.2 and 196.4 [1:4, W(CO)₅ of 12a], 153.9 [CNR of 12a]}, 198.4 (NCC), 170.7 (OC=O), 143.9 (Cq, C4), 131.4, 128.9, 124.6 (CH each, 2:2:2, cycloheptatrienyl), 127.9, 125.7, 125.3 (1:2:2; p-:o-:m-CH; 3-Ph), 113.6 (C_q, C2), 111.8 (CH, C3), 68.4 (OCH₂), 63.0 (C_q, t-Bu) {59.1 [CMe₃ of 12a], 30.5 [C(CH₃)₃ of 12a]}, 39.2 (OC-CH₂), 37.2 (CH, C1', cycloheptatrienyl), 31.7 (3 CH₃, t-Bu), 15.8 (CH₂CH₃). IR (diffuse

reflection), cm⁻¹ (%): **12a** 2162.4 (30) [ν (C=C)], 2067.4 (30) and 1937.2 (100) [ν (C=O)]; **11e** 1986.4 (25) [ν (N=C=C)], 1759.1 [ν (CO)].

Acknowledgment. This work was supported by the *Volkswagen-Stiftung* and by the *Fonds der Chemischen Industrie.*

Supplementary Material Available: Tables of crystal data and details of the structure solution, positional and displacement parameters, bond distances and angles, and thermal parameters and a figure showing the structure of the compound (7 pages). Ordering information is given on any current masthead page.

OM940123Q