η^3 -Propargyl/Allenyl Complexes of Platinum and Palladium of the Type $[(PPh_3)_2M(\eta^3-CH_2CCR)]^+$

Mark W. Baize, Patrick W. Blosser, Véronique Plantevin, David G. Schimpff, Judith C. Gallucci, and Andrew Wojcicki*

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210

Received August 25, 1995[®]

A study is reported on the synthesis, spectroscopic properties, molecular structure, and reaction chemistry of η^3 -propargyl/allenyl complexes of platinum and palladium of the type $[(PPh_3)_2M(\eta^3-CH_2CCR)]^+$ (M = Pt, R = Ph (1a), Me (1b); M = Pd, R = Ph (2a), Me (2b)). Complexes **1a**,**b** were obtained by each of the following methods: (i) reaction of $trans-(PPh_3)_2$ -PtBr(η^1 -CH₂C=CPh) with AgO₃SCF₃; (ii) treatment of (PPh₃)₂Pt(η^2 -PhC=CCH₂OMe) with BF₃·OEt₂; (iii) addition of RC=CCH₂OS(O)₂C₆H₄Me-*p* to (PPh₃)₂Pt(η^2 -C₂H₄) in solution. Complexes **2a,b** resulted upon (i) abstraction of Br⁻ from *trans*-(PPh₃)₂PdBr(η^1 -CH₂C=CR)/ *trans*-(PPh₃)₂PdBr(η^1 -C(R)=C=CH₂) with AgBF₄ and (ii) treatment of Pd₂(dba)₃·CHCl₃ with PPh₃ and RC=CCH₂OS(O)₂C₆H₄Me-*p*. The structures of **1a**(OTf)·CH₂Cl₂ (Tf = O₂SCF₃) and $2a(BF_4)$ were determined by X-ray diffraction techniques. Both cationic metal complexes show remarkably similar structures, the salient features being the attachment to the metal of all three propargyl/allenyl carbon atoms of the nonlinear C_3 fragment (C(1)–C(2)–C(3) bond angles: 152.2(9)° for 1a, 154.7(5)° for 2a) and the essentially coplanar arrangement of the three carbon, two phosphorus, and platinum or palladium atoms. **1a,b** react readily with MeOH and Et₂NH to afford the corresponding complexes $[(PPh_3)_2Pt(\eta^3-CH_2C(X)CHR)]^+$ $(X = OMe, NEt_2)$; **2a,b** behave analogously, except that the reaction with MeOH requires trace amounts of NaOMe or NEt₃. ¹H and ¹³C NMR spectroscopic data suggest that the reaction products are best formulated as resonance hybrids of η^3 -allyl and metallacyclic structures.

Introduction

In recent years there has been a considerable surge of interest in transition-metal η^{3-} (or π -) propargyl/ allenyl complexes (\mathbf{I}) .¹ The propargyl and the allenyl

ligands, like the allyl ligand, can coordinate to a metal center in a σ or π manner. In the latter, all three skeletal carbon atoms are ligated, and the two different C_3 groups become resonance representations of one and the same species. That mode of bonding was first realized for metal η^3 -butenynyl complexes (II),² which are closely related to **I**. Subsequently, metal η^3 -propargyl/allenyl complexes have been prepared for molybdenum,³ tungsten,⁴ rhenium,^{4,5} zirconium,⁶ platinum,^{7–9} and palladium.^{10,11}

This paper focuses on cationic platinum and palladium η^3 -propargyl/allenyl complexes of the type $[(PPh_3)_2M(\eta^3-CH_2CCR)]^+$ (M = Pt (1), Pd (2); R = Ph (**a**), Me (**b**)). Since analogous η^3 -allyl complexes readily

undergo addition of nucleophilic reagents to the allyl ligand, and since such reactions are of great synthetic⁷ value for palladium,¹² it was of considerable interest to investigate related chemistry of the η^3 -propargyl/allenyl complexes 1 and 2. In fact, a number of organic transformations are known that involve use of propargylic and similar unsaturated compounds in conjunction

[®] Abstract published in Advance ACS Abstracts, December 1, 1995. (1) Reviews: (a) Wojcicki, A. New J. Chem. 1994, 18, 61. (b) Doherty, S.; Corrigan, J. F.; Carty, A. J.; Sappa, E. Adv. Organomet. Chem. 1995

^{(2) (}a) Gotzig, J.; Otto, H.; Werner, H. J. Organomet. Chem. 1985, 287, 247. (b) Jia, G., Rheingold, A. L.; Meek, D. W. Organometallics 1989, 8, 1378. (c) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Frediani, P.; Albinati, A. J. Am. Chem. Soc. 1991, 113, 5453. (d) McMullen, A. K.; Selegue, J. P.; Wang, J. G. Organometallics 1991, 10, 3421. (e) Hills, A.; Hughes, D. L.; Jimenez-Tenorio, M.; Leigh, G. J.; McGeary, C. A.; A., Hughes, D. L., Sinferez-Teloffo, M., Leigh, G. J., McGenzy, C. A.,
 Rowley, A. T.; Bravo, M.; McKenna, C. E.; McKenna, M.-C. *J. Chem. Soc., Chem. Commun.* **1991**, *522*. (f) Field, L. D.; George, A. V.;
 Hambley, T. W. *Inorg. Chem.* **1990**, *29*, 4565.
 (3) Krivykh, V. V.; Taits, E. S.; Petrovskii, P. V.; Struchkov, Yu. T.;

Yanovskii, A. I. Mendeleev Commun. 1991, 103.

⁽⁴⁾ Krivykh, V. V. Organomet. Chem. USSR (Engl. Transl.) 1992, 5, 113; Metallorg. Khim. 1992, 5, 213.
(5) Casey, C. P.; Yi, C. S. J. Am. Chem. Soc. 1992, 114, 6597.

⁽⁶⁾ Blosser, P. W.; Gallucci, J. C.; Wojcicki, A. J. Am. Chem. Soc. **1993**, 115, 2994.

⁽⁷⁾ Blosser, P. W.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A.

Organometallics **1993**, *12*, 1993. (8) (a) Huang, T.-M.; Chen, J.-T.; Lee, G.-H.; Wang, Y. J. Am. Chem. Soc. **1993**, *115*, 1170. (b) Huang, T.-M.; Hsu, R.-H.; Yang, C.-S.; Chen,

J.-T.; Lee, G.-H.; Wang, Y. Organometallics **1994**, *13*, 3657. (9) Stang, P. J.; Crittell, C. M.; Arif, A. M. Organometallics **1993**, 12, 4799.

⁽¹⁰⁾ Baize, M. W.; Gallucci, J.; Wojcicki, A. Abstracts of Papers, 210th ACS National Meeting, Chicago, IL, August 20–24, 1995; American Chemical Society: Washington, DC, 1995; INOR140 (abstract submitted by Apr 17, 1995).

⁽¹¹⁾ Ogoshi, S.; Tsutsumi, K.; Kurosawa, H. J. Organomet. Chem. 1995, 493, C19.

with palladium complexes.¹³ Some of these reactions may well proceed by intermediacy of palladium η^3 propargyl/allenyl species.

We describe herein a comparative study of the chemistry of **1** and **2**, with emphasis on methods of synthesis, spectroscopic properties, solid-state structure, and some reactions with nucleophiles. A more extensive investigation of the reaction chemistry of these complexes will be reported later.¹⁴ Some aspects of our study have already been communicated.15

Experimental Section

General Procedures and Measurements. All reactions and manipulations of air- and moisture-sensitive compounds were carried out under an atmosphere of dry Ar by use of standard procedures.¹⁶ Elemental analyses were performed by M-H-W Laboratories, Phoenix, AZ, and Atlantic Microlab, Inc., Norcross, GA. Melting points were measured on a Thomas-Hoover melting point apparatus and are uncorrected. Infrared, NMR (1H, 13C, 19F, and 31P), and FAB mass spectra were obtained as previously described.^{17,18}

Materials. All solvents were dried, distilled under an Ar atmosphere, and degassed before use.¹⁹ Reagents were obtained from various commercial sources and used as received. Literature procedures were followed to synthesize PhC=CCH₂-Br,²⁰ MeC=CCH₂Br,²¹ PhC=CCH₂OMe,²² PhC=CCH₂OS- $(O)_2C_6H_4Me-p^{23}MeC \equiv CCH_2OS (O)_2C_6H_4Me-p^{23} (PPh_3)_2Pt(\eta^2-\eta^2)$ $C_{2}H_{4}$,²⁴ $Pd(PPh_{3})_{4}$,²⁵ and $Pd_{2}(dba)_{3} \cdot CHCl_{3}^{26}$ (dba = dibenzylideneacetone).

Preparation of *cis*-(**PPh**₃)₂**PtBr**(η^1 -**CH**₂**C**=**CPh**). Phenylpropargyl bromide (0.50 mL, 4.0 mmol) was added dropwise to a stirred suspension of $(Ph_3P)_2Pt(\eta^2-C_2H_4)$ (2.05 g, 2.74 mmol) in 40 mL of hexane at 0 °C. After 20 min the ice bath was removed, and vigorous stirring continued for 2 h as the color of the suspended solid changed from white to yellow. The solid was then collected on a filter frit in air, washed twice with 30 mL of diethyl ether, and dried under vacuum: Yield

(13) Selected publications: (a) Mandai, T.; Tsujiguchi, Y.; Matsuoka, (15) Selected publications: (a) Mandai, 1.; Isujiguchi, Y.; MatSuoka, S.; Saito, S.; Tsuji, J. J. Organomet. Chem. 1995, 488, 127. (b) Mikami, K.; Yoshida, A.; Matsumoto, S.; Feng, F.; Matsumoto, Y. Tetrahedron Lett. 1995, 36, 907. (c) Mandai, T.; Matsumoto, T.; Tsujiguchi, T.; Matsuoka, S.; Tsuji, J. J. Organomet. Chem. 1994, 473, 343. (d) Mandai, T.; Tsujiguchi, Y.; Matsuoka, S.; Tsuji, J. Tetrahedron Lett. 1993, 34, 7615 (e) Bouyssi D.; Gora L.; Balan, C.; Lusis, D.; Wallach, S.; Matsuba, S.; Tsuji, S.; Matsuba, S.; Tsuji, S.; Matsuba, S.; Tsuji, S.; Matsuba, S.; Tsuji, J. Wallach, S.; Tsuji, J. Wallach, S.; Tsuji, J.; Matsuba, S.; Tsuji, S.; Matsuba, S.; Matsuba, S.; Tsuji, S.; Matsuba, S.; M **1993**, *34*, 7615. (e) Bouyssi, D.; Gore, J.; Balme, G.; Louis, D.; Wallach, J. *Tetrahedron Lett.* **1993**, *34*, 3129. (f) Minami, I.; Yuhara, M.;

Watanabe, H.; Tsuji, J. J. Organomet. Chem. **1987**, 334, 225. (14) Baize, M. W.; Blosser, P. W.; Daniel, K. L.; Furilla, J. L. Calligaris, M.; Faleschini, P.; Graham, J. P.; Bursten, B. E.; Wojcicki,

A. To be submitted for publication. (15) (a) Pt (**1a**): ref 7. (b) Pd (**2a**,**b**): ref 10. A preliminary communication on **2a** by another group appeared in print¹¹ subsequent to the submission of our abstract.

(16) Shriver, D. F.; Drezdzon, M. A. *The Manipulation of Air-Sensitive Compounds*, 2nd ed.; Wiley: New York, 1986.
(17) Young, G. H.; Raphael, M. V.; Wojcicki, A.; Calligaris, M.;

(19) Foling, G. H., Raphaet, M. V., Wolcteki, A., Calligaris, M.,
(18) Young, G. H.; Willis, R. R.; Wojcicki, A.; Calligaris, M.;
Faleschini, P. Organometallics 1992, 11, 154.
(19) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of

(20) Forming D. D., Hundrego, W. E. F., Formi, D. R. Tulkaron of Laboratory Chemicals, Pergamon: Oxford, U.K., 1966.
(20) Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes, and Cumulenes, Elsevier: New York, 1981; p 219.
(21) Ashworth, P. J.; Whitham, G. H.; Whiting, M. C. J. Chem. Soc.

1957, 4633.

(22) Stoochnoff, B. A.; Benoiton, N. L. Tetrahedron Lett. 1973, 1, 21.

(23) Reference 20, pp 223-224.

(24) Blake, D. M.; Roundhill, D. M.; Ambridge, C.; Dwite, S.; Clark, H. C. Inorg. Synth. 1978, 18, 120.

 (25) Coulson, D. R. Inorg. Synth. 1990, 28, 107.
 (26) Ukai, T.; Kawazawa, H.; Ishii, Y.; Bonnett, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 253.

2.45 g (98%); ¹H NMR (CD₂Cl₂) & 7.9-7.0 (m, Ph), 2.17 (dd, $J_{\text{PH}} = 8.9, 6.3 \text{ Hz}, J_{\text{PtH}} = 77 \text{ Hz}, \text{ CH}_2); {}^{31}\text{P}{}^{1}\text{H} \text{NMR} (\text{CD}_2\text{Cl}_2)$ δ 18.7 (d, $J_{PP} = 16.4$ Hz, $J_{PtP} = 1906$ Hz), 17.8 (d, $J_{PP} = 16.4$ Hz, $J_{PtP} = 4493$ Hz), 17.3 (d, $J_{PP} = 16.7$ Hz, $J_{PtP} = 1928$ Hz), 15.2 (d, $J_{PP} = 16.7$ Hz, $J_{PtP} = 4351$ Hz); IR (Nujol) ν (C=C) 2160 cm⁻¹. Anal. Calcd for $C_{45}H_{37}BrP_2Pt$: C, 59.09; H, 4.08. Found: C, 59.29; H, 4.08.

Preparation of *trans*-(**PPh**₃)₂**PtBr**(η^1 -CH₂C=CPh). A solution of *cis*-(PPh₃)₂PtBr(η^1 -CH₂C=CPh) (2.45 g, 2.68 mmol) in 200 mL of THF was stirred for 2 h at 55 °C under an Ar atmosphere. All solvent was then removed under vacuum, and the product was dried for 2 h. The yellow solid was triturated with 200 mL of hexane, collected on a filter frit in air, and dried overnight: Yield 2.35 g (96%); ¹H NMR (CD₂Cl₂) δ 8.0– 7.0 (m, Ph), 1.39 (t, $J_{PH} = 8.1$ Hz, $J_{PtH} = 103$ Hz, CH₂); ¹³C NMR (CD₂Cl₂) δ 135–126 (m, Ph), 95.7 (s, J_{PtC} = 96 Hz, *C*Ph), 81.7 (s, $J_{PtC} = 42$ Hz, CH_2C), -5.5 (tt, ${}^1J_{CH} = 140$ Hz, $J_{PC} =$ 3.9 Hz, $J_{PtC} = 637$ Hz, CH₂); ³¹P{¹H} NMR (CD₂Cl₂) δ 24.7 (s, $J_{PtP} = 3144$ Hz); IR (Nujol) ν (C=C) 2175 cm⁻¹. Anal. Calcd for C₄₅H₃₇BrP₂Pt: C, 59.09; H, 4.08. Found: C, 58.96; H, 4.06.

Preparation of [(PPh₃)₂Pt(η³-CH₂CCPh)]O₃SCF₃ (1a(OTf)) from trans-(PPh₃)₂PtBr(η^1 -CH₂C=CPh) and **AgO₃SCF₃.** A solution of AgO_3SCF_3 (0.634 g, 2.45 mmol) in 25 mL of THF was added to a solution of trans-(PPh₃)₂PtBr- $(\eta^1$ -CH₂C=CPh) (2.23 g, 2.44 mmol) in 225 mL of THF. A pale yellow precipitate began to form upon mixing. The slurry was vigorously stirred for 3 h and then filtered through a filter frit to remove the precipitated AgBr. The filtrate was evaporated to dryness under vacuum, and 30 mL of CH₂Cl₂ was added to the residue. The resulting slightly cloudy solution was filtered through a filter frit, and the clear brown filtrate was concentrated to ca. 5 mL. The addition of 100 mL of hexane induced precipitation of the beige product. The volume of the solution was reduced to 50 mL, and the product was collected on a filter frit and dried under vacuum for 3 days: Yield 2.30 g (96%); ¹H NMR (CD₂Cl₂) & 7.5-6.5 (m, Ph), 2.74 (d, $J_{\rm PH} = 6.8$ Hz, $J_{\rm PtH} = 29.9$ Hz, CH₂); ¹³C NMR (CD₂Cl₂) δ 135–128 (m, Ph), 102.1 (dd, $J_{PC} = 47$, 1.5 Hz, $J_{PtC} = 93$ Hz, CPh), 97.3 (dd, $J_{PC} = 4.8$, 3.2 Hz, $J_{PtC} = 63$ Hz, CH_2C), 48.3 (td, ${}^{1}J_{CH} = 170$ Hz, $J_{PC} = 37$ Hz, $J_{PtC} = 126$ Hz, CH_2); ${}^{31}P{}^{1}H{}$ NMR (CD₂Cl₂) δ 15.4 (d, $J_{PP} = 18.7$ Hz, $J_{PtP} = 3785$ Hz), δ 10.5 (d, J_{PP} = 18.7 Hz, J_{PtP} = 4285 Hz); $^{19}F\{^{1}H\}$ NMR (CD₂-Cl₂) δ -78.9 (s). Anal. Calcd for C₄₆H₃₇F₃O₃P₂PtS: C, 56.16; H, 3.79. Found: C, 55.91; H, 4.02.

Preparation of (PPh₃)₂**Pt**(η^2 -**PhC**=**CCH**₂**OMe**). Methyl phenylpropargyl ether (0.18 mL, 1.1 mmol) was added dropwise to a stirred solution of $(PPh_3)_2Pt(\eta^2-C_2H_4)$ (0.75 g, 1.0 mmol) in 30 mL of THF at -78 °C. The resulting solution was slowly warmed to ambient temperature over 8 h, and all volatiles were removed under vacuum. The residue was washed twice with 50-mL portions of hexane, and the pale yellow solid was collected on a filter frit and dried overnight: Yield 0.82 g (94%). ¹H NMR (CD₂Cl₂) δ 7.6–7.1 (m, Ph), 4.06 (t, $J_{PH} = 2.3$ Hz, $J_{PtH} = 14$ Hz, CH₂), 3.16 (s, Me); ³¹P{¹H} NMR $(CD_2Cl_2) \delta$ 28.0 (d, $J_{PP} = 32$ Hz, $J_{PtP} = 3518$ Hz), 24.6 (d, J_{PP} = 32 Hz, J_{PtP} = 3439 Hz); MS (FAB), ¹⁹⁵Pt isotope, m/z 866 (M^++1) , 719 $(M^+ - PhCCCH_2OMe)$.

Preparation of [(PPh₃)₂Pt(η³-CH₂CCPh)]BF₃OMe (1a-(BF₃OMe)) from (PPh₃)₂Pt(η^2 -PhC=CCH₂OMe) and **BF₃·OEt₂.** To a mixture of $(PPh_3)_2Pt(\eta^2-PhC \equiv CCH_2OMe)$ (0.55 g, 0.64 mmol) in 50 mL of diethyl ether at 0 °C was added BF₃·OEt₂ (0.06 mL, 0.7 mmol). After 15 min of stirring, the contents were warmed to room temperature and stirred for an additional 1 h. The pale yellow solid was filtered off, washed first with diethyl ether (50 mL) and then with hexane (50 mL), and dried under vacuum overnight: Yield 0.56 g (92%). The product was characterized by comparison of its ¹H and ³¹P{ ^{1}H } NMR spectra with those of **1**(OTf).

In Situ Preparation of [(PPh₃)₂Pt(η³-CH₂CCPh)]- $O_3SC_6H_4Me-p$ (1a(OTs)) from (PPh₃)₂Pt(η^2 -C₂H₄) and **PhC=CCH₂OS(O)₂C₆H₄Me-***p***.** Solutions of $(PPh_3)_2Pt(\eta^2 - \eta^2)$ C₂H₄) (0.050 g, 0.067 mmol) in 2 mL of CH₂Cl₂ and PhC=CCH₂-

⁽¹²⁾ Selected reviews: (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, 1987; pp 417, 881. (b) Tsuji, J. Tetrahedron 1986, 42, 4361. (c) Bäckvall, J. E. Acc. Chem. Res. 1983, 16, 335. (d) Tsuji, J. Pure Appl. Chem. 1982, 54, 197. (e) Trost, B. M. Acc. Chem. Res. 1980, 13, 385.

 $OS(O)_2C_6H_4$ -p (0.019 g, 0.067 mmol) in 1 mL of CH_2Cl_2 were prepared in a drybox. The phenylpropargyl tosylate solution was added dropwise to the solution of $(PPh_3)_2Pt(\eta^2-C_2H_4)$ at -78 °C, and the contents were stirred for 3 h, during which time the temperature was allowed to rise slightly. The reaction solution was concentrated, and the ³¹P{¹H} NMR spectrum was recorded and found to be essentially identical with that of **1a**(OTf). Attempts at isolation of **1a**(OTs), performed in the drybox, invariably resulted in decomposition to unidentified materials.

In Situ Preparation of $[(PPh_3)_2Pt(\eta^3-CH_2CCMe)]$ -O₃SC₆H₄Me-*p* (1b(OTs)] from (PPh₃)₂Pt(η^2 -C₂H₄) and MeC=CCH₂OS(O)₂C₆H₄Me-*p*. The procedure was similar to that for 1a(OTs). ³¹P{¹H} NMR: δ 18.8 (d, $J_{PP} = 17.4$ Hz, $J_{PtP} =$ 4240 Hz), 12.6 (d, $J_{PP} = 17.4$ Hz, $J_{PtP} = 3754$ Hz). The product decomposed during isolation workup.

Preparation of *trans*-(**PPh**₃)₂**PdBr**(η^{1} -**CH**₂**C**=**CPh**)/ *trans*-(**PPh**₃)₂**PdBr**(η^{1} -**C**(**Ph**)=**C**=**CH**₂). Pd(PPh₃)₄ (3.0 g, 2.6 mmol) in 100 mL of THF was treated with PhC=CCH₂Br (0.53 g, 2.7 mmol). The resulting yellow solution was stirred at 25 °C for 30 min and concentrated to 50 mL under reduced pressure. The addition of 100 mL of hexane gave a yellow precipitate, which was collected on a filter frit and washed with 40 mL of diethyl ether. The product was dried under vacuum overnight: Yield 2.10 g (97%), with the approximate product ratio of 1:2, propargyl to allenyl; ¹H NMR (CD₂Cl₂) δ 7.8–6.6 (m, Ph), 3.62 (s, CH₂=), 1.71 (s, PdCH₂); ³¹P{¹H} NMR (CD₂-Cl₂) δ 26.1 (br, propargyl complex), 22.9 (s, allenyl complex). Anal. Calcd for C₄₅H₃₇BrP₂Pd: C, 65.43; H, 4.51. Found: C, 65.28; H, 4.58.

Preparation of *trans*-(**PPh**₃)₂**PdBr**(η^{1} -**CH**₂**C**=**CM**₂)/ *trans*-(**PPh**₃)₂**PdBr**(η^{1} -**C**(**Me**)=**C**=**CH**₂). This mixture was prepared as described above for the Ph analogue from Pd-(PPh₃)₄ (3.0 g, 2.6 mmol) and MeC=CCH₂Br (0.36 g, 2.7 mmol): Yield 1.88 g (95%) of a yellow solid, approximate product ratio 3:1, propargyl to allenyl; ¹H NMR (C₆D₆/CD₂Cl₂, 1:1) δ 7.8–7.0 (m, Ph), 3.44 (s, CH₂=), 1.59 (s, PdCH₂), 1.45 (s, Me); ³¹P{¹H} NMR (CD₂Cl₂) δ 25.1 (br, propargyl complex), 22.7 (s, allenyl complex). Anal. Calcd for C₄₀H₃₅BrP₂Pd: C, 62.89; H, 4.62. Found: C, 62.73; H, 4.72.

Preparation of $[(PPh_3)_2Pd(\eta^3-CH_2CCPh)]BF_4$ (2a(BF₄)) from trans-(PPh₃)₂PdBr(\eta¹-CH₂C=CPh)/trans-(PPh₃)₂-**PdBr**(η^1 -**C**(**Ph**)=**C**=**CH**₂) and **AgBF**₄. A solution of AgBF₄ (0.118 g, 0.60 mmol) in 5 mL of THF was added to a stirred solution of trans-(PPh₃)₂PdBr(η^1 -CH₂C=CPh)/trans-(PPh₃)₂- $PdBr(\eta^{1}-C(Ph)=C=CH_{2})$ (0.50 g, 0.60 mmol) in 25 mL of CH_{2} -Cl₂. A precipitate of AgBr formed almost immediately. The mixture was stirred for 15 min at room temperature, AgBr was removed by filtration, and the volume of the solution was reduced to ca. 5 mL. Slow addition of 25 mL of diethyl ether gave a pale yellow precipitate. The solid was collected on a filter frit, washed with 20 mL of diethyl ether, and dried under vacuum: Yield 0.45 g (90%); ¹H NMR (CD₂Cl₂) δ 7.5–6.8 (m, Ph), 3.19 (dd, $J_{PH} = 7.8$, 1.5 Hz, CH₂); ¹³C{¹H} NMR (CD₂Cl₂) δ 135–120 (m, Ph), 105.4 (d, $J_{\rm PC}$ = 41.3 Hz, *C*Ph), 94.2 (m, CH₂C), 50.9 (d, $J_{PC} = 41$ Hz, CH₂; ³¹P{¹H} NMR (CD₂Cl₂) δ 29.1 (d, $J_{PP} = 46.6$ Hz), 27.9 (d, $J_{PP} = 46.6$ Hz); MS (FAB), ¹⁰⁶Pd isotope, m/z 745 (M⁺).

Preparation of [(PPh₃)₂Pd(η³-CH₂CCMe)]BF₄ (2b(BF₄)) from *trans***-(PPh₃**)₂PdBr(η¹-CH₂C≡CMe)/*trans*-(**PPh₃**)₂-**PdBr(η¹-C(Me)=C=CH₂) and AgBF₄**. This complex was prepared as above from *trans*-(**PPh₃**)₂PdBr(η¹-CH₂C≡CMe)/ *trans*(**PPh₃**)₂PdBr(η¹-C(Me)=C=CH₂) (0.50 g, 0.65 mmol) and AgBF₄ (0.126 g, 0.65 mmol) and isolated as a pale yellow solid: Yield 0.464 g (92%); ¹H NMR (CD₂Cl₂) δ 7.5–7.1 (m, Ph), 3.22 (m, CH₂), 1.33 (m, Me); ¹³C{¹H} NMR (CD₂Cl₂) δ 134–128 (m, Ph), 103.0 (d, J_{PC} = 43.9 Hz, *C*Ph), 91.2 (m, CH₂*C*), 53.1 (m, CH₂), 6.4 (s, Me); ³¹P{¹H} NMR (CD₂Cl₂) δ 30.2 (d, J_{PP} = 43.9 Hz), 27.8 (d, J_{PP} = 43.9 Hz); MS (FAB), ¹⁰⁶Pd isotope, *m*/*z* 683 (M⁺).

Preparation of $[(PPh_3)_2Pd(\eta^3-CH_2CCPh)]O_3SC_6H_4-Me-p$ (2a(OTs)) from Pd₂(dba)₃·CHCl₃, PPh₃, and PhC=

CCH₂**OS**(**O**)₂**C**₆**H**₄**Me**-*p*. A solution of Pd₂(dba)₃·CHCl₃ (0.250 g, 0.483 mmol of Pd) and PPh₃ (0.254 g, 0.968 mmol) in 20 mL of CH₂Cl₂ was stirred at room temperature for 5 min and then treated with PhC≡CCH₂OS(O)₂C₆H₄Me-*p* (0.138 g, 0.483 mmol). Almost immediately the color of the solution changed from red-purple to orange. The reaction solution was stirred for 15 min at room temperature, concentrated to ca. 2 mL, and filtered through Celite. Addition of 20 mL of diethyl ether to the filtrate induced the precipitation of **2a**(OTs) as a pale yellow solid. The product was collected on a filter frit, washed with 20 mL of diethyl ether, and dried overnight under vacuum: Yield 0.334 g (81%). Characterization was effected by comparison of its ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR and FAB mass spectra with those of **2a**(BF₄). Anal. Calcd for C₅₂H₄₄O₃P₂PdS: C, 68.09; H, 4.83. Found: C, 67.79; H, 4.98.

Preparation of [(PPh₃)₂Pd(\eta^3-CH₂CCMe)]O₃SC₆H₄Me*p* **(2b(OTs)) from Pd₂(dba)₃·CHCl₃, PPh₃, and MeC= CCH₂OS(O)₂C₆H₄Me-***p***. This complex was prepared similarly to 2a(OTs) from Pd₂(dba)₃·CHCl₃ (0.250 g, 0.483 mmol of Pd), PPh₃ (0.254 g, 0.968 mmol), and MeC=CCH₂OS(O)₂C₆H₄Me (0.108 g, 0.483 mmol) to give 2b(OTs) as a white solid: Yield 0.343 g (83%). Characterization was effected by comparison of its ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR and FAB mass spectra with those of 2b(BF₄). Anal. Calcd for C₄₇H₄₂O₃P₂PdS: C, 66.01; H, 4.95. Found: C, 65.78; H, 5.03.**

Reaction of $[(PPh_3)_2Pt(\eta^3-CH_2CCPh)]^+$ (1a) with MeOH. Methanol (1.5 mL, 3.7 mmol) was added to a stirred solution of 2a(OTf) (0.200 g, 0.203 mmol) in 3 mL of CH₂Cl₂. After 5 min all solvent was removed under vacuum, and the residue was dissolved in 3 mL of CH₂Cl₂. A 30-mL portion of hexane was added to induce the precipitation of a beige product. After the volume of the solution had been reduced to 15 mL, the solid was collected on a filter frit and washed with 5 mL of hexane. The product [(PPh₃)₂Pt(η^3 -CH₂C(OMe)CHPh)]O₃SCF₃ (3a(OTf)) was dried under vacuum at 60 °C for 2 days: Yield 0.180 g (87%); ¹H NMR (CDCl₃) δ 7.5–6.6 (m, Ph), 4.41 (d, $J_{\rm PH} = 10.5$ Hz, $J_{\rm PtH} = 39.8$ Hz, CHPh), 3.50 (s, OMe), 3.21 (dd, $J_{PH} = 9.7$ Hz, ${}^{2}J_{HH} = 6.6$ Hz, $J_{PtH} = 35$ Hz, H_{anti} of CH₂), 2.86 (m, H_{syn} of CH₂); ¹³C{¹H} NMR (CDCl₃) δ 148.6 (s, CCH₂), 135–123 (m, Ph), 68.7 (d, $J_{PC} = 36.8$ Hz, $J_{PtC} = 74.1$ Hz, *C*HPh), 53.9 (s, OMe), 48.9 (d, $J_{PC} = 34.7$ Hz, $J_{PtC} = 127$ Hz, CH₂); ³¹P{¹H} NMR (CDCl₃) δ 18.1 (d, $J_{PP} = 9.5$ Hz, $J_{PtP} =$ 3824 Hz), δ 13.6 (d, J_{PP} = 9.5 Hz, J_{PtP} = 3783 Hz); ¹⁹F{¹H} NMR (CDCl₃) δ -79.0 (s). Anal. Calcd for C₄₇H₄₁F₃O₄P₂PtS: C, 55.57; H, 4.07. Found: C, 55.36; H, 4.30.

Reaction of $[(PPh_3)_2Pt(\eta^3-CH_2CCPh)]^+$ (1a) with Et₂NH. Diethylamine (0.10 mL, 0.97 mmol) was added to a stirred solution of 1a(OTf) (0.219 g, 0.223 mmol) in 3 mL of CH₂Cl₂. After 5 min, 30 mL of hexane was introduced to induce precipitation of the product. The volume of the solution was reduced to 15 mL, and the beige solid was collected on a filter frit and washed with 5 mL of hexane. The product [(PPh₃)₂- $Pt(\eta^3-CH_2C(NEt_2)CHPh)]O_3SCF_3$ (**4a**(OTf)) was dried under vacuum at 60 °C for 2 days: Yield 0.203 g (86%); ¹H NMR (CDCl₃) & 7.7-6.8 (m, Ph), 4.38 (m, CHPh), 3.27 (m, NCH₂), 2.62 (m, H_{syn} of CH₂), 2.33 (dd, $J_{PH} = 11.4$ Hz, ${}^{2}J_{HH} = 7.7$ Hz, $J_{\text{PtH}} = 60 \text{ Hz}, \text{ H}_{\text{anti}} \text{ of CH}_2$, 1.07 (br, Me); ¹³C{¹H} NMR (CDCl₃) δ 152.5 (s, J_{PtC} = 123 Hz, CCH₂), 136–124 (m, Ph), 57.0 (d, J_{PC} = 51.7 Hz, J_{PtC} = 236 Hz, CHPh), 41.7 (s, NCH₂), 35.0 (d, $J_{PC} = 47.4$ Hz, $J_{PtC} = 184$ Hz, CCH₂), 10.7 (s, Me); ³¹P{¹H} NMR (CDCl₃) δ 17.2 (d, $J_{PP} = 8.5$ Hz, $J_{PtP} = 3359$ Hz), δ 14.5 (d, J_{PP} = 8.5 Hz, J_{PtP} = 3025 Hz); ¹⁹F{¹H} NMR (CDCl₃) δ -79.1 (s). Anal. Calcd for C₅₀H₄₈F₃NO₃P₂PtS: C, 56.82; H, 4.58. Found: C, 56.57; H, 4.81.

4a was also obtained, as **4a**(OTs), by generating **1a**(OTs) *in situ*, from (PPh₃)₂Pt(η^2 -C₂H₄) (0.050 g, 0.067 mmol) and PhC=CCH₂OS(O)₂C₆H₄Me-*p* (0.020 g, 1 equiv), in the presence of Et₂NH (0.030 mL, 0.020 g, 4 equiv) in CH₂Cl₂ at -78 °C. The temperature of the mixture was allowed to rise over 6 h, and the completion of the reaction was ascertained by ³¹P{¹H} NMR spectroscopy. After evaporation of the solvent, the residue was dissolved in 2 mL of CH₂Cl₂. An off-white solid

precipitated upon addition of 15 mL of hexane and was isolated by filtration and washed with 5-mL portions of hexane: Yield 0.045 g (61%). The product was characterized by comparison of its 1 H, 13 C{ 1 H}, and 31 P{ 1 H} NMR data with those of **4a**(OTf).

Reaction of $[(PPh_3)_2Pt(\eta^3-CH_2CCMe)]^+$ (1b) with MeOH. The procedure was analogous to that described above for the synthesis of **4a**(OTs). A solution of $(PPh_3)_2Pt(\eta^2-C_2H_4)$ (0.050 g, 0.067 mmol) in 5 mL of CH₂Cl₂ at -78 °C was treated with MeOH (2.0 mL, 1.59 g, 49.0 mmol) and MeC=CCH₂OS(O)₂- C_6H_4Me-p (0.015 g, 1 equiv) in 1 mL of CH_2Cl_2 . The mixture was allowed to warm to room temperature and was workedup as in the immediately preceding reaction. $[(PPh_3)_2Pt(\eta^3 CH_2C(OMe)CHMe]O_3SC_6H_4Me-p~(\textbf{3b}(OTs))$ was isolated in 61% yield (0.040 g) as an off-white solid: ¹H NMR (CDCl₃) δ 7.5-7.0 (m, Ph, C₆H₄), 3.49 (s, OMe), 3.48 (m, CHMe), 3.02 (dd, $J_{PH} = 10.7$ Hz, ${}^{2}J_{HH} = 9.6$ Hz, $J_{PtH} = 33$ Hz, H_{anti} of CH₂), 2.71 (br m, H_{syn} of CH₂), 2.28 (s, C₆H₄Me), 0.88 (m, CHMe); ¹³C{¹H} NMR (CDCl₃) δ 152.6 (t, CCH₂), 145-126 (m, Ph, C₆H₄), 66.6 (d, $J_{PC} = 37$ Hz, $J_{PtC} = 178$ Hz, CHMe), 55.4 (s, OMe), 51.5 (d, $J_{PC} = 35$ Hz, $J_{PtC} = 122$ Hz, CH₂), 21.9 (s, C_6H_4Me), 10.0 (s, CHMe); ³¹P{¹H} NMR (CDCl₃) δ 20.6 (d, J_{PP} = 9.6 Hz, J_{PtP} = 3753 Hz), 15.2 (d, J_{PP} = 9.6 Hz, J_{PtP} = 3126 Hz).

Reaction of $[(PPh_3)_2Pt(\eta^3-CH_2CCMe)]^+$ (1b) with Et₂NH. A solution of $(PPh_3)_2Pt(\eta^2-C_2H_4)$ (0.050 g, 0.067 mmol) in 5 mL of CH₂Cl₂ at 0 °C was treated with Et₂NH (0.015 mL, 0.011 g, 2.2 equiv) and MeC=CCH₂OS(O)₂C₆H₄Me-p (0.015 g, 1 equiv) in 1 mL of CH₂Cl₂ to generate **1b**(OTs) in the presence of the amine. The mixture was stirred at 0 °C for 1 h, solvent was removed under reduced pressure, and CH₂Cl₂ (5 mL) and Et₂O (5 mL) were added with stirring. The resulting clear solution was separated from a yellow oil and pumped to dryness. The residue was recrystallized from benzene/hexane to yield 0.030 g (45%) of $[(PPh_3)_2Pt(\eta^3-CH_2C(NEt_2)CHMe]O_3SC_6H_4Me-p$ (4b(OTs)) as an off-white solid: ¹H NMR (CDCl₃) δ 7.9–7.1 (m, Ph, C₆H₄), 3.15 (m, NCH₂), 2.92 (m, CHMe), 2.66 (m, H_{syn} of CH₂), 2.35 (m, H_{anti} of CH₂), 2.27 (s, C₆H₄Me), 1.14 (m, CH*Me*), 1.01 (t, ${}^{3}J_{HH} = 7.1$ Hz, CH₂*Me*); ${}^{13}C{}^{1}H$ NMR (CDCl₃) δ 156.3 (t, $J_{PC} = 8$ Hz, $J_{PtC} = 120$ Hz, CCH_2), 145–126 (m, Ph, C_6H_4), 50.1 (d, $J_{PC} = 52$ Hz, $J_{PtC} = 230$ Hz, CHMe), 44.1 (s, NCH₂), 36.2 (d, $J_{PC} = 47$ Hz, $J_{PtC} = 186$ Hz, CCH_2), 21.2 (s, C_6H_4Me), 16.6 (d, $J_{PC} = 6$ Hz, $J_{PtC} = 48$ Hz, CHMe), 13.4 (br s, CH₂Me); ³¹P{¹H} NMR (CDCl₃) δ 18.2 (d, $J_{PP} = 7$ Hz, $J_{PtP} =$ 3420 Hz), 15.4 (d, $J_{PP} = 7$ Hz, $J_{PtP} = 2910$ Hz).

Reaction of $[(PPh_3)_2Pd(\eta^3-CH_2CCPh)]^+$ (2a) with MeOH and Base. A solution of NaOMe (0.002 g, 0.037 mmol) in MeOH (1 mL, 27 mmol) was added to 2a(BF₄) (0.250 g, 0.300 mmol) dissolved in 10 mL of CH₂Cl₂, and the resulting mixture was stirred at room temperature for 30 min. The volatiles were removed under reduced pressure, the yellow residue was dissolved in a minimum amount of CH₂Cl₂, and 1 mL of THF was added. The solution was filtered through Celite and treated with 5 mL of Et₂O to induce the precipitation of a pale yellow solid. The product $[(PPh_3)_2Pd(\eta^3-CH_2C(OMe)CHPh)]$ -BF₄ (5a(BF₄)) was collected on a filter frit, washed with 5 mL of Et₂O, and dried under vacuum: Yield 0.240 g (92%); ¹H NMR (CD₂Cl₂) & 7.6-6.6 (m, Ph), 4.51 (m, CHPh), 3.55 (OMe), 3.20 (m, CH₂); ¹³C{¹H} NMR (CD₂Cl₂) δ 151.2 (t, $J_{PC} = 5$ Hz, CCH_2 , 133–127 (m, Ph), 81.1 (dd, $J_{PC} = 26$, 10 Hz, CHPh), 58.9 (dd, $J_{PC} = 24$, 9 Hz, CH₂), 56.4 (s, OMe); ³¹P{¹H} NMR (CD₂Cl₂) δ 25.8 (br); MS (FAB), ¹⁰⁶Pd isotope, m/z 777 (M⁺).

When this reaction was conducted without added base (NaOMe or NEt₃ (1 drop)), no formation of $5a(BF_4)$ was observed by ${}^{31}P{}^{1}H{}$ NMR spectroscopy.

5a was also obtained, in comparable yield, as the pale yellow **5a**(OTs), by reaction of **2a**(OTs) with MeOH and NaOMe under similar conditions and with a similar workup. Alternatively, **5a**(OTs) can be prepared by treatment of a solution of Pd₂-(dba)₃·CHCl₃ (0.225 g, 0.435 mmol of Pd) and PPh₃ (0.228 g, 0.870 mmol) in 20 mL of CH₂Cl₂ with PhC=CCH₂OS(O)₂C₆H₄-Me-*p* (0.125 g, 0.436 mmol), followed by addition of NaOMe

(0.002 g, 0.037 mmol) in 1 mL of MeOH (27 mmol). Similar reaction time and workup led to the isolation of the product in 70% yield (0.291 g). Its spectroscopic properties agreed with those of **5a**(BF₄). Anal. Calcd for $C_{53}H_{48}O_4P_2PdS$: C, 67.05; H, 5.10. Found: C, 66.70; H, 5.34.

Reaction of [(PPh₃)₂Pd(\eta^3-CH₂CCMe)]⁺ (2b) with MeOH and Base. All procedures were strictly analogous to those for the corresponding reactions of **2a**. By use of **2b**(BF₄) (0.250 g, 0.324 mmol), MeOH (1 mL), and NaOMe (0.002 g, 0.037 mmol) or NEt₃ (1 drop), 0.245 g (94% yield) of [(PPh₃)₂Pd(η^3 -CH₂C(OMe)CHMe]BF₄ (**5b**(BF₄)), a beige solid, was isolated: ¹H NMR (CD₂Cl₂) δ 7.6–7.0 (m, Ph), 3.55 (m, CHMe), 3.50 (s, OMe), 3.04 (m, CH₂), 0.81 (m, Me); ¹³C{¹H} NMR (CD₂Cl₂) δ 153.8 (t, $J_{PC} = 6$ Hz, CCH₂), 134–128 (m, Ph), 76.5 (d, $J_{PC} =$ 37 Hz, CHMe), 58.6 (d, $J_{PC} = 33$ Hz, CH₂), 56.2 (s, OMe), 11.0 (s, Me); ³¹P{¹H} NMR (CD₂Cl₂) δ 27.2 (d, $J_{PP} = 38$ Hz), 24.2 (d, $J_{PP} = 38$ Hz); MS (FAB), ¹⁰⁶Pd isotope, m/z 715 (M⁺). Anal. Calcd for C₄₁H₃₉BF₄OP₂Pd: C, 61.33; H, 4.90. Found: C, 61.37; H, 4.97.

5b(OTs) was prepared similarly to **5a**(OTs) either from **2b**(OTs), MeOH, and NaOMe (or NEt₃) or from Pd₂(dba)₃·CHCl₃, PPh₃, MeC=CCH₂OS(O)₂C₆H₄Me-*p*, MeOH, and NaOMe (or NEt₃). Comparable yields were obtained, and spectroscopic properties of the product agreed with those of **5b**(BF₄).

No formation of $\mathbf{5b}(\text{OTs})$ was observed in the absence of added base.

Reaction of $[(PPh_3)_2Pd(\eta^3-CH_2CCPh)]^+$ (2a) with Et₂NH. Excess Et₂NH (0.10 mL, 0.97 mmol) was added to a solution of $2a(BF_4)$ (0.250 g, 0.300 mmol) in 10 mL of CH₂Cl₂, the resulting mixture was stirred for 10 min at room temperature, and the volatiles were removed under reduced pressure. The yellow residue was dissolved in minimum CH2Cl2, and 1 mL of THF was added. Slow addition of 10 mL of Et₂O induced the precipitation of a pale yellow solid, which was collected by filtration, washed with 10 mL of Et₂O, and dried under vacuum: Yield 0.251 g (92%) of [(PPh₃)₂Pd(η³-CH₂C-(NEt₂)CHPh)]BF₄ (**6a**(BF₄)); ¹H NMR (CD₂Cl₂) δ 7.7-6.9 (m, Ph), 4.98 (m, CHPh), 3.16 (m, NCH2), 2.80 (m, CH2), 1.09 (t, Me); ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂) δ 151.2 (t, $J_{PC} = 5$ Hz, CCH₂), 138–127 (m, Ph), 71.1 (d, $J_{PC} = 44$ Hz, CHPh), 47.8 (d, $J_{PC} =$ 40 Hz, CCH2), 44.6 (s, NCH2), 13.4 (s, Me); ³¹P{¹H} NMR (CD2-Cl₂) δ 24.4 (d, $J_{PP} = 32$ Hz), 23.5 (d, $J_{PP} = 32$ Hz); MS (FAB), ¹⁰⁶Pd isotope, m/z 818 (M⁺).

6a was also prepared and isolated as **6a**(OTs) either from **2a**(OTs) and Et₂NH or from Pd₂(dba)₃·CHCl₃, PPh₃, PhC=CCH₂-OS(O)₂C₆H₄Me-*p*, and Et₂NH. The procedures were similar to those already described. The yields were ca. 92 and 72%, respectively. Spectroscopic properties of the product agreed with those of **6a**(BF₄). Anal. Calcd for C₅₆H₅₅NO₃P₂PdS: C, 67.91; H, 5.60; N, 1.41. Found: C, 67.34; H, 5.85; N, 1.52.

Reaction of [(**PPh**₃)₂**Pd**(η^3 -**CH**₂**CCMe**)]⁺ (**2b**) with **Et**₂**NH**. By using procedures strictly analogous to those for the preparation of **6a**, [(**PPh**₃)₂)**Pd**(η^3 -**CH**₂**C**(**NEt**₂)**CHMe**)]⁺ (**6b**) was isolated as the beige **6b**(**BF**₄) and the white **6b**(**OTs**) in similar yields. **6b**(**BF**₄): ¹NMR (**CD**₂**Cl**₂) δ 7.6–7.0 (m, **Ph**), 3.35 (m, *CH*Me), 3.02 (m, NCH₂), 2.80 (m, CCH₂), 1.16 (m, CH*Me*), 0.97 (t, **CH**₂*Me*); ¹³**C**{¹H} NMR (**CD**₂**Cl**₂) δ 152.3 (t, *J*_{PC} = 5 Hz, *C***CH**₂), 134–128 (m, **Ph**), 62.7 (d, *J*_{PC} = 46 Hz, *C***HMe**), 45.9 (d, *J*_{PC} = 41 Hz, **C***C***H**₂), 44.0 (s, NCH₂), 16.3 (CH*Me*), 13.3 (CH₂*Me*); ³¹**P**{¹H} NMR (**CD**₂**Cl**₂) δ 24.4 (d, *J*_{PP} = 29 Hz), 22.6 (d, *J*_{PP} = 29 Hz); MS (FAB), ¹⁰⁶Pd isotope, *m*/*z* 756 (M⁺). **6b**(OTs): Anal. Calcd for C₅₁H₅₃NO₃P₂PdS: C, 65.98; H, 5.75; N, 1.51. Found: C, 65.74; H, 5.80; N, 1.49.

Crystallographic Analysis of $[(PPh_3)_2Pt(\eta^3-CH_2CCPh)]$ -O₃SCF₃·CH₂Cl₂ (1a(OTf)·CH₂Cl₂) and $[(PPh_3)_2Pd(\eta^3-CH_2CCPh)]BF_4$ (2a(BF₄)). Crystals of 1a(OTf)·CH₂Cl₂, pale gold rods, were grown from CH₂Cl₂/hexane, and those of 2a(BF₄), pale yellow rods, from CH₂Cl₂/diethyl ether. Both data sets were measured on a Rigaku AFC5S diffractometer with graphite-monochromated Mo K α radiation. The unit cell constants were obtained by a least-squares fit of the diffractometer setting angles using 25 reflections in the 2 θ range 24

Table 1.	Crystal	Data	and	Data	Collection	ı and
Refine	ment for	1a(O	Tf)·(CH ₂ Cl	and 2a(B	F₄)

	Crystal Data	
cmpd	$1a(OTf) \cdot CH_2Cl_2$	2a (BF ₄)
chem formula	$C_{47}H_{39}Cl_2F_3O_3P_2PtS$	$C_{45}H_{37}BF_4P_2Pd$
fw	1068.82	832.90
cryst syst	monoclinic	triclinic
space group	$P2_1/n$	$P\bar{1}$
a, Å	10.678(3)	10.547(1)
<i>b</i> , Å	19.633(4)	12.031(2)
<i>c</i> , Å	21.428(2)	16.125(1)
α, deg		101.570(7)
β , deg	92.68(1)	105.493(8)
γ , deg		92.355(7)
V, Å ³	4487(1)	1922.1(3)
Z	4	2
D_{calcd} , g cm ⁻³	1.58	1.44
μ (Mo K̃ α), cm ⁻¹	34.44	6.07
cryst size, mm	$0.17 \times 0.21 \times 0.38$	$0.15 \times 0.19 \times 0.19$

Dat	a Collection and Refin	ement
temp, °C	ambient	ambient
radiation	Mo Ka with graph	nite monochromator
transm factors	0.75-1.0	0.890 - 0.920
2θ limits, deg	4-55	4 - 55
scan speed, deg	4 with up to 3	4 with up to 3
min^{-1} (in $\omega)$	rescans	rescans
scan type	ω	$\omega - 2\theta$
scan range,	$1.20 \pm 0.35 an heta$	$1.30 \pm 0.35 an heta$
deg (in ω)		
data collcd	$+h,+k,\pm l$	$+h,\pm k,\pm l$
unique data	10 613	8881
unique data used	5797 ^a	8881
in refinement		
final no. of	484	483
variables		
$R(F)^{b}$	0.047	0.102
$R_{\rm w}(F)^c$	0.056	
$R_{\rm w}(F^2)^d$		0.129
error in obsn of	1.79	1.02
unit wt. e		

^a With $F_0^2 > 3\sigma(F_0^2)$. ^b $R(F) = \sum ||F_0| - |F_c||/\sum |F_0|$. ^c $R_w(F) = \sum w(|F_0| - |F_c|)^2 / \sum w F_0^2]^{1/2}$ with $w = 1/\sigma^2(F_0)$. ^d $R_w(F^2) = \sum w (F_0^2 - P_0)^2 / \sum w F_0^2]^{1/2}$ with $w = 1/\sigma^2(F_0)$. $F_c^{(2)} \sum WF_0^{(4)} = 1/[\sigma^2(F_0^{(2)}) + (0.0521P)^2 + 1.5355P]$ and $P = \frac{1}{3}$ (maximum of (0 or F_0^2)) + $\frac{2}{3}(F_c)^2$.

to 30° for $1a(OTf) \cdot CH_2Cl_2$ and 25 reflections in the 2θ range 21 to 30° for **2a**(BF₄). The crystal data are given in Table 1.

Six standard reflections were measured after every 150 reflections during data collection and indicated some crystal decay for both structures. On the average the standards decreased in intensity by 10.9% for 1a(OTf)·CH₂Cl₂ and 3.3% for 2a(BF₄). Data reduction was done with the TEXSAN package,27 and a linear decay correction was applied to both data sets. The data set for 1a(OTf)·CH2Cl2 was corrected for absorption by the ψ scan method,²⁸ and an analytical absorption correction was applied to the data set for **2a**(BF₄).²⁹

For 1a(OTf)·CH₂Cl₂, the Pt atom was located by the Patterson method. The rest of the structure was elucidated by means of the DIRDIF procedure³⁰ and standard Fourier methods. There is a solvent molecule of CH₂Cl₂ in the asymmetric unit. Full-matrix least-squares refinements were performed in TEXSAN;²⁷ the function minimized was $\sum w(|F_0| - |F_c|)^2$ with $w = 1/\sigma^2(F_0)$. The triflate group was not well behaved. It was necessary to treat the CF3 half as a rigid group, with each atom having its own isotropic thermal parameter. In the SO₃ portion, the oxygen atoms were refined isotropically and acquired large *B* values, which is an indication of disorder. The CH₂Cl₂ molecule also seemed to suffer from disorder and

so was restricted to isotropic refinement too. Hydrogen atoms were included in the model as fixed contributions based on calculated positions at C-H = 0.98 Å and $B(H) = 1.2B_{eq}$ (attached carbon atom). The two hydrogen atoms bonded to C(1) were refined isotropically. The final refinement cycle was based on the 5797 intensities with $I > 3\sigma(I)$ and 484 variables and resulted in agreement factors of R = 0.047 and $R_w = 0.056$. The final difference electron density map contains two large peaks of 1.86 and 1.45 $e/Å^3$ in the immediate vicinity of Cl(2). The next largest peak is 0.98 e/Å³, and the minimum peak is -1.08 e/Å³. Neutral atom scattering factors are used and include terms for anomalous scattering.³¹

The structure of **2a**(BF₄) was solved for the positions of the Pd and two P atoms by the Patterson method using SHELXS-86³² in *P*1. Phasing on these three atoms revealed the rest of the complex on an electron density map. However, the position of the BF₄⁻ anion was not evident at this point. Full-matrix least-squares refinements on F² were performed in SHELXL-93;³³ the function minimized was $\sum w (F_0^2 - F_c^2)^2$. The BF₄ group is disordered, and it was modeled in terms of two orientations sharing a common boron atom. The set of fluorine atoms belonging to one orientation is labeled as F(1), F(2), F(3), and F(4), while the set belonging to the second orientation is labeled F(1A), F(2A), F(3A), and F(4A). The occupancy factor for F(1) was refined, and the others were constrained accordingly. Its final value was 0.54(1). The fluorines were kept isotropic while the boron was refined anisotropically. The hydrogen atoms for the phenyl rings are included in the structure using a riding model with C-H = 0.98 Å and U(H) = $1.2 U_{eq}$ (attached carbon atom). The two hydrogen atoms bonded to C(1) were located on a difference electron density map and refined isotropically. The final refinement cycle was based on all the 8881 unique intensities and 483 variables and resulted in agreement indices of R(F) = 0.102 and $R_w(F^2) =$ 0.129. For the subset of intensities with $F_0^2 > 2\sigma(F_0^2)$ (6016 reflections) the R(F) value is 0.048. The final difference electron density map contains maximum and minimum peak heights of 0.75 and -0.51 e/Å³. Neutral atom scattering factors were used and included terms for anomalous dispersion.³⁴

Final positional and equivalent thermal parameters for $1a(OTf) \cdot CH_2Cl_2$ and $2a(BF_4)$ are given in Tables 2 and 3, respectively. Other data are provided as Supporting Information; see the paragraph at the end of this paper.

Results and Discussion

Synthesis of $[(PPh_3)_2M(\eta^3-CH_2CCR)]^+$ (1, M = **Pt; 2, M = Pd).** Cationic platinum and palladium η^3 propargyl/allenyl complexes of general formula $[(PPh_3)_2M(\eta^3-CH_2CCR)]^+$ have been prepared by several methods. Thus, complex **1a** results upon treatment of *trans*-(PPh₃)₂Pt(Br)(η^1 -CH₂C=CPh) with 1 equiv of AgO₃- SCF_3 in THF at room temperature (eq 1) and was

⁽³¹⁾ Scattering factors for the non-hydrogen atoms, including terms for anomalous dispersion, are from: International Tables for X-ray *Crystallography*; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 71, 148. The scattering factor for the hydrogen atom is from: Stewart, R. F.; Davidson, E. R.; Simpson, W. T. *J. Chem. Phys.* **1965**, 42, 3175

(34) International Tables for Crystallography, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; Vol. C.

⁽²⁷⁾ TEXSAN, Single Crystal Structure Analysis Software, Version Molecular Structure Corp., The Woodlands, TX 77381, 1989.
 North, A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr

^{1968,} A24, 351

⁽²⁹⁾ De Meulenaer, J.; Tompa, H. Acta Crystallogr. 1965, 19, 1014. (30) Parthasarathi, V.; Beurskens, P. T.; Slot, H. J. B. Acta Crystallogr. 1983, A39, 860.

 ⁽³²⁾ Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467.
 (33) Sheldrick, G. M. SHELXL-93, Program for the Refinement of Crystal Structures; Universität Göttingen: Göttingen, Germany, 1993.

Table 2. Positional and Equivalent Isotropic Thermal Parameters for 1a(OTf)·CH₂Cl₂

$\begin{array}{llllllllllllllllllllllllllllllllllll$	atom	X	У	Z	$B_{ m eq}{}^a$ or B , Å 2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pt	0.23893(3)	0.05495(2)	0.23600(2)	3.21(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1)	0.2528(2)	-0.0546(1)	0.2733(1)	3.4(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(2)	0.1605(2)	0.0349(1)	0.1378(1)	3.4(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(1)	0.228(1)	0.1655(5)	0.2246(5)	5.1(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(2)	0.276(1)	0.1493(5)	0.2844(5)	5.3(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(3)	0.308(1)	0.1082(5)	0.3252(5)	4.6(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	0.360(1)	0.0967(4)	0.3885(5)	4.4(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	0.488(1)	0.0986(5)	0.4011(5)	5.2(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(6)	0.534(1)	0.0914(6)	0.4617(7)	6.4(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(7)	0.457(2)	0.0845(7)	0.5098(6)	7.1(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(8)	0.335(2)	0.0816(8)	0.4977(6)	8.4(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(9)	0.281(1)	0.0885(6)	0.4371(5)	6.3(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(10)	0.4136(9)	-0.0830(5)	0.2901(4)	3.7(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(11)	0.446(1)	-0.1512(5)	0.2985(5)	5.6(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(12)	0.565(1)	-0.1720(7)	0.3151(6)	7.3(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(13)	0.655(1)	-0.1222(8)	0.3242(5)	6.9(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(14)	0.626(1)	-0.0538(6)	0.3170(5)	5.6(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(15)	0.508(1)	-0.0351(5)	0.2983(4)	4.2(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(16)	0.1740(9)	-0.0597(5)	0.3463(4)	3.9(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(17)	0.211(1)	-0.1054(5)	0.3940(5)	5.0(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(18)	0.142(1)	-0.1112(6)	0.4463(5)	6.5(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(19)	0.032(1)	-0.0734(7)	0.4521(5)	6.4(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(20)	-0.006(1)	-0.0278(6)	0.4053(5)	6.0(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(21)	0.066(1)	-0.0212(5)	0.3530(5)	4.8(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(22)	0.180(1)	-0.1239(4)	0.2282(4)	3.7(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(23)	0.060(1)	-0.1457(5)	0.2392(5)	5.5(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(24)	0.003(1)	-0.1958(7)	0.2024(6)	7.6(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(25)	0.064(2)	-0.2257(6)	0.1551(7)	7.5(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(26)	0.182(2)	-0.2060(6)	0.1434(5)	7.2(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(27)	0.242(1)	-0.1551(5)	0.1803(5)	5.4(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(28)	0.2603(9)	-0.0115(4)	0.0871(4)	3.5(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(29)	0.222(1)	-0.0237(6)	0.0232(4)	5.0(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(30)	0.299(1)	-0.0392(0)	-0.0137(3)	0.0(0)
$\begin{array}{cccccc} C(32) & 0.434(1) & -0.0073(0) & 0.0093(0) & 0.10100000000000000000000000000000000$	C(31)	0.414(1) 0.454(1)	-0.0813(0) -0.0678(6)	0.0003(0)	0.2(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32)	0.434(1) 0.378(1)	-0.0078(0) -0.0325(5)	0.0099(0) 0.1081(5)	0.4(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33)	0.378(1)	-0.0323(3)	0.1001(3) 0.1400(4)	3.0(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(35)	-0.032(1)	-0.0618(5)	0.1400(4) 0.1038(5)	4 7(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(36)	-0.148(1)	-0.0894(7)	0.1115(6)	6.8(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(37)	-0.224(1)	-0.0640(9)	0.1552(8)	8(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(38)	-0.188(1)	-0.0087(8)	0.1906(6)	6.8(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(39)	-0.071(1)	0.0205(6)	0.1844(5)	5.2(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(40)	0.130(1)	0.1122(5)	0.0918(4)	4.1(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(41)	0.232(1)	0.1463(6)	0.0690(5)	6.0(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(42)	0.215(2)	0.2047(7)	0.0338(6)	8(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(43)	0.095(2)	0.2299(7)	0.0230(7)	10(1)
$\begin{array}{ccccccc} C(45) & 0.012(1) & 0.1375(6) & 0.0802(6) & 6.6(7) \\ S & 0.8395(5) & 0.1615(2) & 0.3223(3) & 11.1(3) \\ O(1) & 0.724(2) & 0.1926(8) & 0.3118(8) & 18.4(6)^* \\ O(2) & 0.923(2) & 0.162(1) & 0.2715(9) & 20.8(7)^* \\ O(3) & 0.837(2) & 0.101(1) & 0.3479(9) & 20.0(6)^* \\ Cl(1) & 0.5484(5) & 0.1172(3) & 0.1698(2) & 12.1(1)^* \\ Cl(2) & 0.5945(8) & 0.2419(4) & 0.1105(4) & 20.3(3)^* \\ C(47) & 0.635(2) & 0.191(1) & 0.169(1) & 13.5(6)^* \\ C(46) & 0.922(1) & 0.2191(5) & 0.3728(5) & 18.7(9)^{**} \\ F(1) & 0.937(1) & 0.2786(7) & 0.3465(6) & 20.0(5)^{**} \\ F(2) & 0.847(1) & 0.225(1) & 0.4189(8) & 28.3(8)^{**} \\ F(3) & 1.031(1) & 0.1962(7) & 0.3943(8) & 26.2(7)^{**} \\ \end{array}$	C(44)	-0.002(2)	0.1963(8)	0.0445(8)	9(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(45)	0.012(1)	0.1375(6)	0.0802(6)	6.6(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S	0.8395(5)	0.1615(2)	0.3223(3)	11.1(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(1)	0.724(2)	0.1926(8)	0.3118(8)	18.4(6)*
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(2)	0.923(2)	0.162(1)	0.2715(9)	20.8(7)*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U(3)	0.837(2)	0.101(1)	0.3479(9)	20.0(6)*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CI(1)	0.5484(5)	0.1172(3)	0.1698(2)	12.1(1)*
$\begin{array}{ccccc} C(4\ell) & 0.635(2) & 0.191(1) & 0.169(1) & 13.5(6)^{*} \\ C(46) & 0.922(1) & 0.2191(5) & 0.3728(5) & 18.7(9)^{**} \\ F(1) & 0.937(1) & 0.2786(7) & 0.3465(6) & 20.0(5)^{**} \\ F(2) & 0.847(1) & 0.225(1) & 0.4189(8) & 28.3(8)^{**} \\ F(3) & 1.031(1) & 0.1962(7) & 0.3943(8) & 26.2(7)^{**} \end{array}$	CI(2)	0.5945(8)	0.2419(4)	0.1105(4)	20.3(3)*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(47)	0.635(2)	0.191(1)	0.169(1)	13.5(6)*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(40) E(1)	0.922(1)	0.2191(3)	0.3728(3)	10.7(9)**
F(3) = 1.031(1) = 0.1962(7) = 0.3943(8) = 26.2(7)**	r(1) F(2)	0.937(1)	0.2700(7) 0.225(1)	0.3403(0)	20.0(3)** 28 3(8)**
	F(3)	1.031(1)	0.223(1) 0.1962(7)	0.3943(8)	26.2(7)**

^{*a*} The form of the equivalent isotropic displacement parameter is $B_{eq} = (8\pi^2/3)\sum_i \sum_j U_{ij}a^*_{,i}a^*_{,j}a_{,i}$. Asterisks designate *B* values for atoms refined isotropically. Double asterisks designate *B* values for atoms refined as part of a rigid group.

isolated as the triflate salt **1a**(OTf) in 96% yield. Similarly, **1c**(BF₄) was obtained from *trans*-(PPh₃)₂PtBr-(η^{1} -CH=C=CH₂) and AgBF₄ in CH₂Cl₂ at -30 °C by Chen and co-workers.⁸ This methodology has the advantage of simplicity and high yield of the product; however, it does require the availability of the appropriate halogeno- η^{1} -propargyl or $-\eta^{1}$ -allenyl complex of platinum(II) as the immediate precursor. The latter are generally accessible from platinum(0) phosphine complexes and propargyl or allenyl halides.³⁵ An alternative preparation of **1a** entails acid cleavage of a phenylpropargyl ether complex of platinum(0). The reaction presented in eq 2 also affords **1a** in excellent

yield and is simple to carry out. The precursor (PPh₃)₂-Pt(η^2 -PhC=CCH₂OMe) can be obtained by treatment of (PPh₃)₂Pt(η^2 -C₂H₄) with PhC=CCH₂OMe.

In an attempt to develop a "one-pot" synthesis of **1** from a non-propargyl or -allenyl compound of platinum, $(PPh_3)_2Pt(\eta^2-C_2H_4)$ was treated with each of PhC=CCH₂-OS(O)_2C_6H_4Me-*p* and MeC=CCH₂OS(O)_2C_6H_4Me-*p*. It was thought that the presence of a relatively poor coordinating ligand, tosylate (OTs), may lead to the formation of **1** by oxidative addition of RC=CCH₂OS-(O)_2C_6H_4Me-*p* at the platinum center (eq 3). Examina-

tion of solutions of $(PPh_3)_2Pt(\eta^2-C_2H_4)$ and $RC \equiv CCH_2$ -OS(O)₂C₆H₄Me-p in CH₂Cl₂ by NMR spectroscopy revealed that the expected η^3 -propargyl/allenyl product had indeed formed. This was further corroborated by addition to these solutions of MeOH or Et₂NH, which resulted in the formation of the appropriate η^3 -allyl complexes with the OMe or NEt₂ substituents at C(2) (3 or 4, respectively; vide infra). However, attempts at isolation of the η^3 -propargyl/allenyl complexes **1a**(OTs) and 1b(OTs) invariably led to the formation of unidentified decomposition products. It would appear that the decomposition is caused by the presence of the tosylate counterion, but we do not know whether this anion triggers it by coordinating to platinum or to the η^3 propargyl/allenyl ligand or by reacting in some other manner.

Finally, a rather unusual method of synthesis of methyl-substituted derivatives of **1**, $[(PPh_3)_2Pt(\eta^3 - MeCHCCR)]^+$, was recently reported by Stang and co-workers.⁹ These complexes were obtained by reaction of $(PPh_3)_2Pt(\eta^2-C_2H_4)$ with $[RC \equiv CIPh]O_3SCF_3$ where R = *t*-Bu, *n*-Bu, SiMe_3, or Me (eq 4). Generally, *trans*- $(PPh_3)_2Pt(OS(O)_2CF_3)(C \equiv CR)$ was a coproduct.

The palladium complexes **2a,b** were synthesized similarly to the platinum complexes **1a,c**^{10,11} (cf. eq 1).

⁽³⁵⁾ Wouters, J. M. A.; Klein, R. A.; Elsevier, C. J.; Häming, L.; Stam, C. H. Organometallics **1994**, *13*, 4586.

Table 3. Positional and Equivalent Isotropic Displacement Parameters for 2a(BF₄)

atom	X	У	Z	$U_{ m eq}$, a Å 2
Pd	0.20997(3)	0.35147(3)	0.32506(2)	0.0316(1)
P(1)	0.09152(10)	0.40833(9)	0.19872(7)	0.0324(2)
P(2)	0.06406(10)	0.21964(9)	0.34484(7)	0.0335(2)
C(1)	0.3642(5)	0.3271(5)	0.4370(4)	0.052(1)
C(2)	0.0012(0)	0.0271(0) 0.4097(4)	0.4005(3)	0.002(1)
C(3)	0.4019(4)	0.1007(1) 0.4700(4)	0.3462(3)	0.046(1)
C(4)	0.4558(5)	0.5462(4)	0.3028(3)	0.010(1)
C(5)	0.5452(5)	0.540 (4)	0.0020(0)	0.000(1) 0.061(1)
C(6)	0.6004(6)	0.5812(7)	0.2000(0) 0.2166(4)	0.001(1) 0.079(2)
C(7)	0.5665(7)	0.6894(7)	0.2202(4)	0.070(2)
C(8)	0.0000(7) 0.4768(7)	0.7286(6)	0.2651(5)	0.000(2) 0.087(2)
C(0)	0.4700(7)	$0.7 \pm 00(0)$ 0.6570(5)	0.2001(0)	0.007(2)
C(10)	0.4223(0)	0.0370(3) 0.4048(4)	0.3000(4)	0.000(2) 0.035(1)
C(10)	0.2639(4)	0.4040(4)	0.1270(3) 0.1133(3)	0.033(1) 0.043(1)
C(12)	0.2000(4)	0.3077(4) 0.2965(5)	0.0588(3)	0.043(1) 0.051(1)
C(12)	0.3400(3)	0.2303(3) 0.3854(5)	0.0300(3)	0.051(1) 0.054(1)
C(13)	0.3034(3)	0.3034(3) 0.4842(5)	0.0271(3)	0.054(1)
C(14)	0.3100(3) 0.2255(4)	0.4042(3) 0.4052(4)	0.0371(3) 0.0808(3)	0.030(1)
C(10)	0.2233(4) 0.0476(4)	0.4332(4) 0.5541(2)	0.0030(3)	0.044(1) 0.025(1)
C(10)	0.0470(4) 0.0026(5)	0.3341(3) 0.6215(4)	0.2223(3) 0.2072(2)	0.033(1)
C(17)	0.0930(3)	0.0213(4) 0.7227(4)	0.3072(3)	0.043(1)
C(10)	-0.0020(0)	0.7337(4) 0.7760(4)	0.3242(4) 0.9570(4)	0.039(1)
C(19)	-0.0107(0) -0.0650(5)	0.7709(4) 0.7088(4)	0.2370(4) 0.1742(4)	0.000(1) 0.058(1)
C(20)	-0.0030(3) -0.0244(5)	0.7088(4) 0.5082(4)	0.1743(4) 0.1566(2)	0.038(1) 0.047(1)
C(21)	-0.0344(3)	0.3363(4) 0.2210(4)	0.1300(3) 0.1945(2)	0.047(1)
C(22)	-0.0039(4)	0.3319(4)	0.1243(3) 0.0270(2)	0.030(1)
C(23)	-0.0783(3)	0.2004(4)	0.0379(3)	0.052(1)
C(24)	-0.1994(6)	0.2240(3)	-0.0153(4)	0.007(2)
C(20)	-0.3003(3)	0.2212(3)	0.0178(4) 0.1027(4)	0.008(2)
C(26)	-0.2933(5)	0.2731(5)	0.1037(4) 0.1565(2)	0.066(2)
C(27)	-0.1731(3)	0.3292(3)	0.1303(3)	0.034(1)
C(20)	-0.0646(4)	0.2844(4)	0.3873(3)	0.038(1)
C(29)	-0.1542(5)	0.2203(4)	0.4129(3)	0.052(1)
C(30)	-0.2343(3)	0.2729(5)	0.4424(4)	0.062(2)
C(31)	-0.2615(5)	0.3869(5)	0.4501(3)	0.059(1)
C(32)	-0.1723(5)	0.4503(5)	0.4264(3)	0.055(1)
C(33)	-0.0737(4)	0.4004(4)	0.3952(3)	0.043(1)
C(34)	-0.0130(4)	0.1139(3)	0.2439(3)	0.036(1)
C(35)	0.0665(5)	0.0755(4)	0.1906(3)	0.046(1)
C(36)	0.0149(6)	-0.0024(4)	0.1123(3)	0.058(1)
C(37)	-0.1107(7)	-0.0404(4)	0.0849(4)	0.000(2)
C(38)	-0.1979(6)	-0.0030(5)	0.1362(4)	0.064(2)
C(39)	-0.1464(5)	0.0748(4)	0.2167(3)	0.051(1)
C(40)	0.1436(4)	0.13/3(4)	0.4250(3)	0.042(1)
C(41)	0.2169(5)	0.0501(4)	0.4004(4)	0.058(1)
C(42)	0.2974(6)	0.0005(5)	0.4640(4)	0.070(2)
C(43)	0.3005(6)	0.0366(6)	0.5513(4)	0.076(2)
C(44)	0.2249(6)	0.1205(6)	0.5761(4)	0.073(2)
C(45)	0.1487(5)	0.1/25(5)	0.5134(3)	0.059(1)
Б Б(1)	0.4629(9)	0.0664(10)	0.2243(7)	0.094(3)
F(1)	0.5454(12)	-0.0218(11)	0.2152(9)	0.138(4)*
F(Z)	0.3606(10)	0.0487(8)	0.1512(6)	$0.113(4)^{*}$
F(3)	0.5370(10)	0.1678(9)	0.2242(7)	$0.131(4)^*$
F(4)	0.4418(13)	0.0814(12)	0.3047(9)	0.156(5)*
F(IA)	0.3584(14)	-0.0220(12)	0.2176(9)	0.152(6)**
F(ZA)	0.4142(14)	0.1533(13)	0.2711(10)	0.153(6)**
F(3A)	0.452(2)	0.076(2)	0.1410(13)	0.201(8)**
F(4A)	0.5710(11)	0.0222(10)	0.2588(8)	0.097(3)**

^{*a*} The form of the equivalent isotropic displacement parameter is $U_{eq} = \frac{1}{3} \sum_j \sum_j U_{jj} a^*_i a^*_j a_i \cdot a_j$. Asterisks designate isotropic refinement with occupancy factor of 0.54(1). Double asterisks designate isotropic refinement with occupancy factor of 0.46(1).

Treatment of the isomeric mixtures of *trans*-(PPh₃)₂-PdBr(η^{1} -CH₂C≡CR) and *trans*-(PPh₃)₂PdBr(η^{1} -C(R)= C=CH₂) (R = Ph, Me), prepared by the general method of Boersma,³⁶ with AgBF₄ in CH₂Cl₂ solution led to the isolation of **2a,b** in 90–92% yield. **2a,b** were also prepared by addition of RC≡CCH₂OS(O)₂C₆H₄Me-*p* to a solution of Pd₂(dba)₃·CHCl₃ and PPh₃ in CH₂Cl₂ followed by stirring at room temperature (eq 5). This

method afforded the η^3 -propargyl/allenyl complexes in 81–83% yield. It is noteworthy that the use of RC=CCH₂OS(O)₂C₆H₄Me-*p* with Pd₂(dba)₃·CHCl₃ and PPH₃ gives the tosylate salts of **2** that are stable toward isolation. In contrast, as mentioned earlier, use of RC=CCH₂OS(O)₂C₆H₄Me-*p* with (PPh₃)₂Pt(η^2 -C₂H₄) yields the corresponding platinum complexes that decompose during workup. The difference in behavior may be a result of the observed greater tendency of **1** than of **2** to undergo reaction with nucleophilic reagents. This aspect of the relative chemistry of **1** and **2** will be considered later in the paper.

Spectroscopic Properties of Platinum and Palladium η^3 **-Propargyl/Allenyl Complexes.** The palladium complexes **2a,b** are pale yellow solids when isolated as **2**(BF₄) and off-white solids when obtained as the tosylates. The platinum complex **1a** is a beige to pale yellow solid with the various counterions used. All are stable to air in the solid. **2a,b** do not appear to be affected by moisture, whereas **1a** slowly reacts with water in the air.³⁷

NMR spectroscopic properties of 1 and 2 (cf. Experimental Section) serve to characterize these products as η^3 -propargyl/allenyl complexes and rule out possible η^1 propargyl and -allenyl modes of attachment of the organic ligand to the metal. Thus, the ¹H NMR spectra of **1a** and **2a**,**b** show that the CH₂ protons are equivalent and coupled differently to the two phosphorus nuclei. The different coupling is in agreement with the two PPh₃ ligands appearing inequivalent in the ${}^{31}P{}^{1}H$ NMR spectra. The chemical shift of the CH₂ protons is comparable to that for metal η^1 -allenyl complexes but is appreciably downfield (0.6-1.9 ppm) from that for analogous metal η^1 -propargyl complexes.¹ In the ¹³C-{H} NMR spectra, signals of the η^3 -propargyl/allenyl ligand are observed at δ 105.4–102.1, 97.3–91.2, and 53.1–48.3. All of them show coupling to the phosphorus nuclei, with additional coupling to ¹⁹⁵Pt for **1a**. Those of the terminal carbon atoms CH_2 at δ 53.1–48.3 and CR at δ 105.4–102.1 display much stronger coupling to one phosphorus (37-47 Hz) than to the other (<1.5 Hz), in agreement with a distorted square-planar disposition of the CH₂, CR, and two P atoms around the metal (vide infra). The central carbon atom is only weakly coupled to the phosphorus nuclei. The resonance of the CH₂ carbon atom for **1** and **2** at δ 53.1– 48.3 appears downfield from that for metal η^1 -propargyl complexes at $\delta \leq 8$, whereas the resonance of the central carbon atom of 1 and 2 at δ 97.3–91.2 occurs much farther upfield than that for metal η^1 -allenyl complexes at $\delta \ge 194.^{1,14,35,38}$ Furthermore, for **1a**, each of the CH₂ and CR carbon atoms is quite strongly coupled to ¹⁹⁵Pt $(J_{PtC} = 126 \text{ and } 93 \text{ Hz}, \text{ respectively})$, as expected for an η^3 mode of attachment of the propargyl/allenyl ligand.

⁽³⁶⁾ Elsevier, C. J.; Kleijn, H.; Boersma, J.; Vermeer, P. Organometallics 1986, 5, 716.

⁽³⁷⁾ Baize, M. W.; Furilla, J. L.; Wojcicki, A. Inorg. Chim. Acta 1994, 223, 1.

⁽³⁸⁾ Shuchart, C. E.; Willis, R. R.; Wojcicki, A. J. Organomet. Chem. **1992**, 424, 185.

Figure 1. ORTEP drawing of **1a** in **1a**(OTf)·CH₂Cl₂ showing the atom-numbering scheme. Only the ipso carbon atoms have been numbered for the phenyl rings. The non-hydrogen atoms are represented by 50% probability thermal ellipsoids. The CH₂ hydrogen atoms are drawn with artificial radii, and the phenyl hydrogen atoms are omitted.

In the proton-coupled ¹³C NMR spectrum of **1a**, the coupling constant ¹*J*_{CH} = 170 Hz for the CH₂ moiety shows sp² hybridization at carbon,³⁹ also consistent with this type of ligation. In contrast, the corresponding ¹*J*_{CH} = 140 Hz for *trans*-(PPh₃)₂PtBr(η^{1} -CH₂C≡CPh) indicates sp³ hybridization.³⁹

Structural Characterization of $[(PPh_3)_2M(\eta^3 - CH_2CCPh)]^+$ (**1a**, M = Pt; **2a**, M = Pd). The structure of the cationic platinum complex **1a** (in **1a**(OTf)·CH₂-Cl₂) is shown in Figure 1; that of the palladium analogue **2a** (in **2a**(BF₄)) is virtually identical and was given the same atom-numbering scheme. Selected bond distances, bond angles, and dihedral angles for both complexes are presented in Table 4.

The CH₂CCPh ligand is bent and attached to the metal in an η^3 mode. The degree of bending (152.2(9)° for 1a, $154.7(5)^{\circ}$ for 2a) is comparable to that found in other transition-metal η^3 -propargyl/allenyl and related η^3 -butenynyl complexes.^{2,3,6,9} Interestingly, the value of this angle is approximately halfway between that for an unperturbed allenyl or propargyl fragment (180°) and the η^3 -allyl ligand in metal complexes (120°).⁴⁰ For both cations 1a and 2a, the M-C bond distances follow the order $M-C(2) \leq M-C(1) \leq M-C(3)$. The M-C(1)distance is essentially identical for the two complexes, as is also the M-C(2) distance. However, the M-C(3)distance is somewhat longer for 2a than for 1a. These relative bond distances are consistent with the angle C(1)-C(2)-C(3) being slightly more obtuse for the Pd complex compared to the Pt complex. The C(1)-C(2)and C(2)-C(3) bond lengths are respectively 1.395(14) and 1.227(13) Å for **1a** and 1.385(7) and 1.233(7) Å for **2a**. They indicate substantial contributions of both η^3 allenyl and η^3 -propargyl resonance structures to the bonding description of these complexes.

Rotation of the cationic complex by 90° about the M-C(2) axis generates a structure which is shown in Figure 2 for **2a**. The atoms C(1), C(2), C(3), Pd (or Pt, for 1a), P(1), and P(2) essentially lie in one plane, as evidenced by the dihedral angles listed in Table 4. (The respective displacements of the atoms M, P(1), and P(2) from the C(1)C(2)C(3) plane are -0.0362, 0.1129, and -0.0514 Å for **1a** and -0.0908, -0.0742, and -0.1788 Å for **2a**.) The coordination environments of C(1), C(3), P(1), and P(2) around the metal center in 1a and 2a are thus planar but appreciably distorted from squareplanar because of the differences in the bond angles as depicted in Figure 3A,B. The observed distortion is similar to that recently reported for the η^3 -trimethylenemethane complex $(PPh_3)_2Pt(\eta^3-CH_2C(C(CO_2Me)_2)-$ CHPh)⁴¹ (Figure 3C). In contrast, the platinacyclobutane complex (PEt₃)₂Pt(η^2 -CH₂CMe₂CH₂) shows a much more regular square-planar coordination environment⁴² (Figure 3D).

Reactions of Platinum and Palladium η^3 -**Propargyl/Allenyl Complexes.** The platinum complexes **1a,b** react with nucleophilic reagents of the type NuH (NuH = MeOH, Et₂NH) to afford the corresponding η^3 -allyl complexes **3a,b** and **4a,b**, respectively, with the nucleophile Nu⁻ adding to the central carbon atom (eq 6). The palladium complexes **2a,b** react similarly with Et₂NH to give **6a,b**, but they add MeOH only in the presence of trace amounts of OMe⁻ or NEt₃ to yield **5a,b**.

This orientation has been determined with the aid of the ¹H NMR spectra. The spectra show three equalintensity η^3 -allyl proton signals at δ 4.38–2.92, 2.66– 2.62, and 2.35–2.33, which are assigned respectively to *CHR* and the inequivalent protons of CH₂. Selective proton decoupling experiments for **4a** showed that the hydrogens resonating at δ 4.38 and 2.62 are weakly coupled. Such small long-range coupling (⁴*J*_{HH})—the socalled W-effect—is known to occur between syn protons in metal η^3 -allyl complexes.⁴³ The similar appearance of the three resonances in the spectra of **4a,b** (cf. Experimental Section) indicates that these products have the same orientation of R and NEt₂.

(43) Feng, S. G.; Templeton, J. L. Organometallics 1992, 11, 2168.

⁽³⁹⁾ Cooper, J. W. Spectroscopic Techniques for Organic Chemists; Wiley-Interscience: New York, 1980; p 87.

⁽⁴⁰⁾ Hartley, R. F. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., eds.; Pergamon: Oxford, U.K., 1982; Chapter 39.

⁽⁴¹⁾ Plantevin, V.; Blosser, P. W.; Gallucci, J. C.; Wojcicki, A. Organometallics **1994**, *13*, 3651.

⁽⁴²⁾ Ibers, J. A.; DiCosimo, R.; Whitesides, G. M. Organometallics 1982, 1, 13.

Table 4. Selected Bond Distances (Å), Bond Angles (deg), and Dihedral Angles (deg) for 1a(OTf)·CH₂Cl₂ and 2a(BF₄)

	$1a(OTf) \cdot CH_2Cl_2$	2a (BF ₄)		
Bond	l Distances			
M-P(1)	2.297(2)	2.3342(11)		
M-P(2)	2.262(2)	2.2913(11)		
M-C(1)	2.186(11)	2.162(5)		
M-C(2)	2.150(8)	2.143(4)		
M-C(3)	2.273(9)	2.334(5)		
C(1)-C(2)	1.395(14)	1.385(7)		
C(2)-C(3)	1.227(13)	1.233(7)		
C(3)-C(4)	1.46(1)	1.442(7)		
Bo	nd Angles			
P(1)-M-P(2)	100.16(8)	103.77(4)		
C(1) - M - P(2)	93.0(3)	92.1(1)		
C(3)-M-P(1)	97.2(3)	95.0(1)		
C(1) - M - P(1)	166.0(3)	164.0(1)		
C(3) - M - P(2)	162.6(3)	161.2(1)		
C(1) - M - C(3)	69.6(4)	69.1(2)		
C(1) - C(2) - C(3)	152.2(9)	154.7(5)		
C(2)-C(3)-C(4)	148(1)	153.7(5)		
Dihedral Angles				
C(1)C(2)C(3), MC(1)C(3)	1.Ĭ	2.8		
MC(1)C(3), MP(1)P(2)	4.6	2.3		
C(1)C(2)C(3), MP(1)P(2)	3.7	2.2		

In contrast, similar decoupling experiments for the methoxy analogue of **4a**, **3a**, revealed the absence of long-range coupling (${}^{4}J_{\text{HH}}$) in the ${}^{1}\text{H}$ NMR spectrum. The three allylic proton signals of **3a**,**b** are also similar in appearance but differ from those of **4a**,**b**. The complexes **3a**,**b** are assigned structures in which the substituents R and OMe adopt a syn orientation (**IV**). This same orientation was also inferred from the ${}^{1}\text{H}$ NMR spectra for the groups Ph and C(CO₂Me)₂ in (PPh_3)₂Pt(η^{3} -CH₂C(C(CO₂Me)₂)CHPh)⁷ and was later corroborated by an X-ray diffraction analysis.⁴¹

The palladium complexes **5a,b** and **6a,b** appear to have the same stereochemistry of the η^3 -allyl ligand as their platinum counterparts, **3a,b** and **4a,b**, respectively. However, a detailed analysis of their ¹H NMR spectra is complicated by the overlap of the signals of the syn and anti CH₂ protons.⁴⁴

The different stereochemistry of the addition of MeOH and Et₂NH to the η^3 -propargyl/allenyl ligand of **1** is intriguing. The addition of NEt₂ anti to R suggests that this reaction may proceed by nucleophilic attack of Et₂NH at the central carbon atom of η^3 -CH₂CCR, with an essentially synchronous proton transfer to the *C*R carbon (Scheme 1). The source of this proton would be either the attacking Et₂NH molecule or one attached to it by hydrogen-bonding. Methanol probably also attacks the central carbon atom of 1 but may give an uncharged methoxy-substituted metallacyclobutene intermediate. Protonation at metal and transfer of the proton to the CR carbon atom away from the OMe group would then afford the syn orientation of OMe and R in the product. Steric effects associated with the nucleophile apparently do not influence the stereochemistry of the product, since other alcohols (R'OH), including Me₃CCH₂OH, also give platinum η^3 -allyl complexes in which the OR' and R groups are syn.¹⁴

Figure 2. ORTEP drawing of **2a** in **2a**(BF₄) showing the atom-numbering scheme. Only the ipso carbon atoms have been numbered for the phenyl rings. The non-hydrogen atoms are represented by 50% probability thermal ellipsoids. The CH₂ hydrogen atoms are drawn with artificial radii, and the phenyl hydrogen atoms are omitted. The atoms C(2) and P(2) are hidden behind C(3) and P(1), respectively.

The ¹H NMR spectra of **3** and **4** display a large geminal coupling constant of 6.6-9.6 Hz for the CH₂ group. This value of ²J_{HH} suggests a considerable contribution from the metallacyclic resonance form **B**

to the overall bonding description of **3** and **4**. The ¹³C- $\{^{1}H\}$ NMR spectra of **3–6** reveal two resonances at δ 81.1-50.1 and 58.9-35.0 which show substantial coupling to one phosphorus nucleus (24-52 Hz) and small, usually indiscernible, coupling to the other. These signals are assigned to the CHR and CH₂ carbon atoms, respectively. In addition, there is a resonance at δ 156.3–148.6, assigned to the central carbon atom, which appears as a singlet or a narrow triplet, with weak coupling (≤ 8 Hz) to both phosphorus nuclei. For the platinum complexes 3 and 4, the former two signals show large J_{PtC} coupling constants (up to 236 Hz), and the latter signal shows a smaller coupling constant (up to 123 Hz). These ¹³C NMR chemical shifts and coupling constants suggest a major contribution to the bonding of the η^3 -allyl resonance form **A**.⁴⁵

Finally, the regiochemistry of the addition of nucleophilic reagents to the central carbon atom of the η^3 -CH₂-

⁽⁴⁴⁾ The other possible explanation, viz., that these protons are involved in a fluxional process, appears unlikely, since the NMe₂ analogue of **6a** shows separate signals for the syn and anti CH₂ protons. These signals do not approach coalescence with decrease in temperature.

Figure 3. Coordination environment including the bond angles (deg) around the metal center: A, in **1a**; B, in **2a**; C, in the η^3 -trimethylenemethane complex (PPh₃)₂Pt(η^3 -CH₂C(C(CO₂Me)₂)CHPh); D, in the platinacyclobutane complex (PEt₃)₂Pt(η^2 -CH₂CMe₂CH₂). The bond angles in C are average values.

CCR ligand merits brief comment. According to the rules of Green, Davies, and Mingos,⁴⁶ open π -polyenyl ligands undergo attack by nucleophiles at one of the terminal carbon atoms, unless the ML_x fragment is electron-donating. Thus, η^3 -allyl complexes of palladium add nucleophiles in terminal position.¹² Complexes **1** and **2** represent the only open π -systems where nucleophilic addition to the organic ligand is exclusively nonterminal.⁴⁷ Recent calculations suggest that such reactions of **1** and **2** are charge controlled,⁴⁸ and that

(47) However, Br⁻, CO, and PMe₃ add to the metal in 1a; see ref 7.
(48) Graham, J. P.; Wojcicki, A.; Bursten, B. E. *Abstracts of Papers*;
210th ACS National Meeting; Chicago, IL, Aug 20–24, 1995; American Chemical Society: Washington, DC, 1995; INOR77.

Scheme 1

study will be reported later together with our further synthetic and mechanistic investigations.¹⁴

Acknowledgment. This study was supported by The Ohio State University. Mass spectra were obtained at The Ohio State University Chemical Instrument Center (funded in part by National Science Foundation Grant 79-10019). V.P. and P.W.B. thank the Lubrizol Co. and the Procter and Gamble Co., respectively, for graduate fellowships.

Supporting Information Available: Tables of hydrogen atom positional and thermal parameters, anisotropic thermal parameters, and bond distances and angles for complexes **1a**(OTf)·CH₂Cl₂ and **2a**(BF₄) (16 pages). Ordering information is given on any current masthead page.

OM9506678

^{(45) (}a) Jolly, P. W.; Mynott, R. Adv. Organomet. Chem. 1981, 19, 257.
(b) Gregg, M. R.; Powell, J.; Sawyer, J. F. J. Organomet. Chem. 1988, 352, 357.

⁽⁴⁶⁾ Davies, S. G.; Green, M. L. H.; Mingos, D. M. P. *Tetrahedron* **1978**, *34*, 3047.