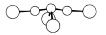
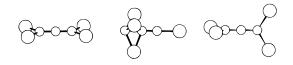
Downloaded by CARLI CONSORTIUM on June 30, 2009 Published on January 23, 1996 on http://pubs.acs.org | doi: 10.1021/om950563x

C₃Li₄ Revisited: A Theoretical Study


Dennis S. Marynick* and Cheryl Hawkins

Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065


Received July 21, 1995[®]

Summary: Extensive searches of the C₃Li₄ potential surface culminated in the location of eight stationary points at the MP2/6-311G* level. Reevaluation of the energetics at the MP4/6-311G(df) level leads to the following conclusions. First, the closed-shell singlet ground state of C_3Li_4 is of C_{2v} symmetry, as predicted earlier. Second, two other remarkable structures, with triple lithium bridges and naked carbon atoms, lie very close (2-4 kcal/mol) to the ground state. Third, all stable structures have one of two structural features: either multiple bridging lithiums or clusters of lithium atoms bound to the carbon moiety.

It is well-known¹ that the geometries of many lithium compounds do not follow classical bonding patterns. One of the best examples of this phenomenon is the structure of C₃Li₄, for which early theoretical work² indicated an unusual ground-state structure of C_{2v} symmetry.

In this early work, several other structures were found to be energetically competitive at the Hartree-Fock level with a 4-31G basis set. For instance, the following structures were all calculated to lie within 19 kcal/mol of the C_{2v} minimum:

Given the renewed theoretical interest in polylithiated species,³⁻¹⁰ it seems appropriate to reinvestigate¹¹ the structure of C₃Li₄. We describe here the location of eight minima on the closed-shell C₃Li₄ potential surface, and we conclude that the minimum energy structure is

(9) Bolton, E. E.; Laidig, W. D.; Schleyer, P. v. R.; Schaefer, H. F. J. Am. Chem. Soc. **1994**, *116*, 9602.

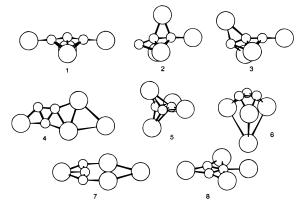


Figure 1. The eight local minima on the C₃Li₄ potential energy surface at the MP2/6-311G* level.

Table 1. Energetics

8							
	energy ^a		rel energy ^b				
isomer	$MP2^d$	MP4 ^e	$MP2^d$	MP4 ^e	\mathbf{ZPE}^{c}		
1	-143.7739	-143.8632	0.0	0.0	11.0		
2	-143.7706	-143.8604	2.1	1.8	10.8		
3	-143.7681	-143.8572	3.6	3.8	10.8		
4	-143.7501	-143.8448	14.9	11.5	10.4		
5	-143.7395	-143.8302	21.6	20.7	11.1		
6	-143.7327	-143.8282	25.9	21.9	10.2		
7	-143.7166	-143.8178	36.0	28.4	9.8		
8	-143.7096	-143.8164	40.3	29.4	10.3		

^a au. ^b kcal/mol. ^c Zero-point energy, MP2/6-311G*. ^d MP2/6-311G*//MP2/6-311G*. ^e MP4/6-311G(df)//MP2/6-311G*.

indeed of C_{2v} symmetry. Two other remarkable structures (Figure 1), with triple lithium bridges and naked carbon atoms, lie very close (2-4 kcal/mol) to the ground state. All stable structures have one of two structural features: either multiple bridging lithiums or clusters of lithium atoms bound to the carbon moiety.

Computational Details

All calculations were done with the Gaussian 92 suite of programs.¹² Initially, we searched for minima on the potential surface at the STO-3G level. This proved to be an efficient strategy, since the STO-3G surface seems to exhibit more minima than are present at higher correlated levels. Initial starting geometries included the following: (1) the classical structures (analogous to methylacetylene, allene, and cyclopropene); (2) nonclassical structures considered previously;² (3) a wide variety of polyhedral structures based on pentagonal bipyramids, hexagonal pyramids, and body- or face-centered octahedrons. Eleven minima were located. These structures were subsequently reoptimized at the HF/6-311G* level and ultimately at the MP2/6-311G* level. Analytic frequency

[®] Abstract published in Advance ACS Abstracts, December 1, 1995. (1) (a) Schleyer, P. v. R. *Pure Appl. Chem.* **1984**, *56*, 151. (b) *Lithium Chemistry*, Space, A.-M., Schleyer, P. v. R., Eds.; Wiley: New York, 1995. (c) Setzer, W. N.; Schleyer, P. v. R. Adv. Organomet. Chem. 1985, 24.353

⁽²⁾ Jemmis, E. D.; Poppinger, D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1977, 99, 5796. Jemmis, E. D.; Chandrasekhar, J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1979, 101, 2848

⁽³⁾ Schleyer, P. v. R.; Würthwein, E.-U.; Pople, J. A. J. Am. Chem. Soc. 1983, 104, 5839.

⁽⁴⁾ Schleyer, P. v. R.; Reed, A. E. J. Am. Chem. Soc. 1988, 110, 4453. (5) Ivanic, J.; Marsden, C. J. J. Chem. Soc., Chem. Commun. 1993, 822

⁽⁶⁾ Dorigo, A. E.; van Eikema Hommes, N. J. R.; Krogh-Jesperson, K.; Schleyer, P. v. R. Angew. Chem., Int. Ed. Engl. 1992, 31, 1602.
(7) Ivanic, J.; Marsden, C. J. J. Am. Chem. Soc. 1993, 115, 7503.
(8) Ivanic, J.; Marsden, C. J. Organometallics 1994, 13, 5142.

⁽¹⁰⁾ Röthlisberger, U.; Klein, M. L. J. Am. Chem. Soc. 1995, 117, 42

⁽¹¹⁾ Another theoretical update of the structure of C₃Li₄ has recently appeared in Chapter 1, p 36 of ref 1b.

⁽¹²⁾ Frisch, M. J.; Head-Gordon, H. B.; Schlegel, H. B.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Martin, R. L.; Kahn, L. R.; Stewart, J. J. P.; Fludder, E. M.; Topiol, S.; Pople, J. A. Guassian 92; Gaussian Inc.: Pittsburgh, PA, 1992.

	1			2			
	X	У	Ζ		X	У	Ζ
С	0.000 000	0.000 000	0.365 984	С	0.000 000	0.537 678	0.000 000
С	0.000 000	1.320 321	0.171 280	С	$-0.351\ 649$	$-0.839\ 317$	0.000 000
С	0.000 000	$-1.320\ 321$	0.171 280	С	0.707 543	1.625 468	0.000 00
Li	-1.502897	0.000 000	-0.801 531	Li	-0.696~705	-2.638993	0.000 00
Li	1.502 897	0.000 000	-0.801 531	Li	1.007 744	-0.107638	1.497 96
Li	0.000 000	3.170 565	0.092 987	Li	1.007 744	-0.107638	-1.49796
Li	0.000 000	-3.170565	0.092 987	Li	-2.030570	0.206 610	0.000 00
		3				4	
	X	У	Ζ		X	У	Ζ
С	0.000 000	0.278 637	0.000 000	С	$-0.770\ 987$	-0.653543	$-0.000\ 00$
С	$-1.165\ 110$	0.954 135	0.000 000	С	$-1.445\ 050$	0.637 251	$-0.000\ 00$
С	0.891 137	$-0.741\ 247$	0.000 000	С	$-0.036\ 030$	0.590 275	$-0.000\ 00$
Li	-0.773781	$-0.662\ 920$	1.462 500	Li	$-2.763\ 927$	$-0.767\ 882$	0.000 00
Li	0.006 093	2.482 909	0.000 000	Li	1.181 257	-1.179875	$-0.000\ 00$
Li	-0.773781	$-0.662\ 920$	$-1.462\ 500$	Li	4.213 043	-0.577 419	$-0.000\ 00$
Li	2.089 415	-2.140 119	0.000 000	Li	1.873 763	1.377 209	-0.000 00
		5				6	
	X	У	Z		X	У	Ζ
С	0.000 000	0.000 000	0.658 562	С	$-0.718\ 195$	0.414 650	-0.77326
С	0.000 000	-0.967 910	$-0.413\ 878$	С	0.718 195	0.414 650	-0.773 26
С	0.000 000	0.967 910	-0.413878	С	0.000 000	$-0.829\ 300$	-0.773 26
Li	1.559 900	0.000 000	-1.120903	Li	0.000 000	0.000 000	3.286 42
Li	$-1.559\ 900$	0.000 000	-1.120 903	Li	0.000 000	1.863 341	0.451 05
Li	0.000 000	1.828 940	1.290 097	Li	-1.613 701	$-0.931\ 670$	0.451 05
Li	0.000 000	$-1.828\ 940$	1.290 097	Li	1.613 701	-0.931 670	0.451 05
		7				8	
	X	У	Ζ		X	У	Ζ
С	0.000 000	0.000 000	0.577 058	С	0.000 000	0.000 000	0.578 74
С	0.000 000	1.316 340	0.745 877	С	0.000 000	0.721 548	-0.65875
С	0.000 000	$-1.316\ 340$	0.745 877	С	0.000 000	-0.721 548	-0.658~75
Li	0.000 000	0.000 000	$-3.978\ 267$	Li	0.000 000	0.000 000	2.650 34
Li	0.000 000	1.505 400	-1.330 123	Li	0.000 000	0.000 000	-2.52095
Li	0.000 000	0.000 000	2.500 890	Li	0.000 000	2.293 584	0.674 06
Li	0.000 000	$-1.505\ 400$	-1.330 123	Li	0.000 000	-2.293584	0.674 06
Å.							

calculations were performed in all cases, and structures which were not true minima were distorted along the imaginary frequency until a true minimum was found. Eight structures resulted (Figure 1), and the lowest frequencies at the MP2/6-311G* level for each isomer were as follows (in cm⁻¹): 89 (1), 115 (2), 73 (3), 67 (4), 97 (5), 147 (6), 66 (7), and 106 (8). Energetics were then reevaluated at the MP4/6-311G(df)//MP2/ 6-311G* level. The energetics, including MP2/6-311G* zeropoint energies, are presented in Table 1, while the optimized geometries are presented in Table 2.

Discussion

With one exception (5) the stable structures can be described as having a near-linear arrangement of the carbons (1-3 and 7) or as having a C₃ ring (4, 6, and8). Structure 5 represents an intermediate case with one long C–C distance (1.94 Å, C–C–C = 84°). The most stable structure is **1**, as originally proposed many years ago.² The next two most stable structures are closely related to 1 by the conversion of one terminal lithium to a bridging lithium. Structure 2 is best described as acetylenic, with a short C-C distance between the naked carbon and the central carbon (1.298 A). This structure lies only 1.8 kcal/mol higher than 1

at the MP4/6-311G(df)//MP2/6-311G* level and possesses a remarkably stabilized "lone pair" orbital, which corresponds to the third highest occupied molecular orbital in spite of being fairly well-localized on the naked carbon atom $(1.41e^{-}$ at the 6-31G level). Structure **3**, which is 3.8 kcal/mol higher in energy than 1, is best described as possessing an allyl-like backbone, with C-C distances of 1.347 and 1.354 Å. The ability of lithium to stabilize π systems has been noted previously, and similar effects are clearly operative in structures 2 and 3.

These structures can conceptually be divided in another way. In most (1-3, 5, and 8) bonding is primarily between carbon and lithium, while in some (4, 6, and 7) there is direct lithium–lithium bonding. These same trends were recently noted⁸ for C_2Li_x systems and may represent a general trend for these systems.^{6,13} Some of the structures of the latter type can be surprisingly stable. For instance, structure 4, which can be considered an adduct of Li3 and C3Li, is only 11.5 kcal/mol less stable than 1.

Acknowledgment. This work was supported by the Robert A. Welch Foundation (Grant Y-743) and the U-T Center for High Performance Computing.

OM950563X

⁽¹³⁾ Kos, A.; Poppinger, D.; Schleyer, P. v. R.; Thiel, W. Tetrahedron Lett. 1980. 21. 2151.