Downloaded by CARLI CONSORTIUM on June 30, 2009 Published on February 6, 1996 on http://pubs.acs.org | doi: 10.1021/om950705n

Selenium-Bridged Clusters. Synthesis and Structural Characterization of the μ_4 -Se Twin Cluster [(μ -BuSe)Fe₂(CO)₆]₂(μ_4 -Se)

Pradeep Mathur* and Rajiv Trivedi

Department of Chemistry, Indian Institute of Technology, Powai, Bombay 400 076, India

C. V. V. Satyanarayana

Regional Sophisticated Instrumentation Center, Indian Institute of Technology, Powai, Bombay 400 076, India

Received September 6, 1995[®]

Summary: The unusual tetranuclear cluster $[(\mu -BuSe)$ - $Fe_2(CO)_6]_2(\mu_4$ -Se) (1) has been obtained from the reaction of a monoanion, derived from $Fe_2(\mu -Se_2)(CO)_6$ and n-BuLi, with 1,3-dibromopropane. Compound 1 has been characterized by IR and ¹H, ¹³C, and ⁷⁷Se NMR spectroscopy. It has been structurally characterized by single-crystal X-ray diffraction methods. The structure consists of two $[(\mu -BuSe)Fe_2(CO)_6]$ units bridged by a pseudotetrahedral Se atom.

Introduction

The use of chalcogen atoms as bridging ligands in transition-metal cluster compounds continues to attract attention.¹ While earlier work concentrated on the use of sulfur as a ligand for cluster growth and stabilization purposes, in recent times interest has been extended to the usage of selenium and tellurium.^{2,3} Seyferth has reported the formation of the monoanion and dianion of Fe₂(CO)₆(μ -Se₂) using organolithium reagents and lithium triethylborohydride, respectively, and their reactions with various types of electrophiles.⁴ Similarly, organolithium or Grignard reagents have been reported to cleave the S–S bond of Fe₂(CO)₆(μ -S₂) to give monoanionic intermediates that undergo alkylation, mercuration, protonation, acylation, and conjugated addition

with α , β -unsaturated substrates.⁵ At room temperature, the reaction also produced Fe–S cluster complexes in which a central sulfur atom bridges four Fe atoms. In this report we describe the formation of an analogous cluster complex in which a μ_4 -Se ligand serves to bridge two Fe₂ units.⁶

Experimental Section

General Procedures. All reactions were carried out under an atmosphere of prepurified nitrogen in well-dried glassware. Solvents were rigorously dried before use. Infrared spectra were obtained using Nicolet Impact-400 infrared FT spectrometer. NMR spectra were recorded on a Varian XL-300 NMR spectrometer. Chemical shifts are reported in δ units (ppm) downfield from internal tetramethylsilane for the ¹H NMR spectrum and for the ¹³C NMR spectrum. Me₂Se was used as an internal standard for the ⁷⁷Se NMR spectrum. Fe₂(μ -Se₂)-(CO)₆ was prepared as previously reported.⁷ *n*-Butyllithium was purchased from Aldrich Chemical Co.

Preparation of $[(\mu$ -**BuSe**)**Fe**₂(**CO**)₆]₂(μ ₄-**Se**) (1). In a 100 mL three-necked Schlenk flask equipped with a serum cap and a magnetic stirring bar was placed Fe₂(μ -Se₂)(CO)₆ (0.5 g, 1.14 mmol) in THF (50 mL), and the red solution was cooled to -78 °C. A 1.6 M hexane solution of *n*-butyllithium (1 mL, 2.28 mmol) was added by syringe over a period of 15 min with stirring, causing a color change of the solution from red to dark green. The mixture was stirred for 20 min, and then Br(CH₂)₃-Br (0.19 mL, 2.28 mmol) was added. The reaction mixture was warmed slowly to room temperature, and it was stirred for a further 6 h. The solution was filtered through Celite, and the solvent was evaporated. The residue was dissolved in petroleum ether and this solution subjected to chromatographic workup on a silica gel column using petroleum ether

[®] Abstract published in Advance ACS Abstracts, January 15, 1996. (1) (a) Flomer, W. A.; O'Neal, S. C.; Kolis, J. W.; Jeter, D.; Cordes, A. W. Inorg. Chem. 1988, 27, 969. (b) O'Neal, S. C.; Pennington, W. T.; Kolis, J. W. Can. J. Chem. 1989, 67, 1980. (c) O'Neal, S. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1990, 29, 3134. (d) Roof, L. C.; Pennington, W. T.; Kolis, J. W. J. Am. Chem. Soc. 1990, 112, 8172. (e) Kolis, J. W. Coord. Chem. Rev. 1990, 105, 195. (f) Roof, L. C.; Pennington, W. T.; Kolis, J. W. Angew. Chem., Int. Ed. Engl. 1992, 31, 913. (g) Draganjac, M.; Dhingra, S.; Huang, S.-P.; Kanatzidis, M. G. Inorg. Chem. 1990, 29, 590. (h) Mathur, P.; Chakrabarty, D.; Mavunkal, I. J. J. Cluster Sci. 1993, 4, 351.

^{(2) (}a) Linford, L.; Raubenheimer, H. G. Adv. Organomet. Chem.
(2) (a) Linford, L.; Raubenheimer, H. G. Adv. Organomet. Chem.
1991, 32, 1. (b) Roof, L. C.; Kolis, J. W. Chem. Rev. 1993, 93, 1037.
(3) (a) Adams, R. D. Polyhedron 1985, 4, 2003. (b) Adams, R. D.;
Babin, J. E.; Mathur, P.; Natarajan, K.; Wang, J. W. Inorg. Chem. 1989, 26, 1440. (c) Mathur, P.; Thimmappa, B. H. S.; Rheingold, A. L. Inorg. Chem. 1990, 29, 4658. (d) Mathur, P.; Mavunkal, I. J.; Rheingold, A. L. J. Chem. Soc., Chem. Commun. 1989, 382. (e) Bogan, L. E.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. Soc. 1985, 107, 3843. (f) Mathur, P.; Mavunkal, I. J.; Rugmini, V.; Mahon, M. F. Inorg. Chem. 1990, 29, 4838.

⁽⁴⁾ Seyferth, D.; Henderson, R. S. J. Organomet. Chem. 1981, 204, 333.

^{(5) (}a) Seyferth, D.; Henderson, R. S.; Song, L.-C. Organometallics
1982, I, 125. (b) Seyferth, D.; Henderson, R. S.; Song, L.-C. J. Organomet. Chem. 1980, 192, C1. (c) Seyferth, D.; Henderson, R. S.; Song, L.-C.; Womack, G. B. J. Organomet. Chem. 1985, 292, 9. (d) Seyferth, D.; Womack, G. B.; Henderson, R. S.; Cowie, M.; Hames, B. W. Organometallics 1986, 5, 1568. (e) Seyferth, D.; Womack, G. B. Organometallics 1986, 5, 2360. (f) Chieh, C.; Seyferth, D.; Song, L.-C. Organometallics 1982, 1, 473. (g) Seyferth, D.; Kiwan, A. G. J. Organomet. Chem. 1985, 286, 219.

^{(6) (}a) Song, L.-C.; Kadiata, M.; Wang, J.-T.; Wang, R.-J.; Wang, H.-G. *J. Organomet. Chem.* **1988**, *340*, 239. (b) Song, L.-C.; Hu, Q.-M.; Shang, L.-Y.; Wang, H.; Zhou, Z.-Y.; Liu, L. *J. Organomet. Chem.* **1991**, *412*, C19.

⁽⁷⁾ Mathur, P.; Chakrabarty, D.; Hossain, M. M.; Rashid, R. S.; Rugmini, V.; Rheingold, A. L. *Inorg. Chem.* **1992**, *31*, 1106.

 Table 1. Crystal Data and Structure Refinement

 for 1

compd	$C_{12}H_{18}O_{12}Fe_4Se_3$
mol wt	910.6
space group	Pbca
a, Å	16.014(3)
<i>b</i> , Å	19.137(4)
<i>c</i> , Å	39.244(9)
<i>V</i> , Å ³	12014(6)
molecules/unit cell	16
$\rho_{\text{calcd}}, \text{Mg/m}^3$	2.014
$\mu_{\rm calcd},{\rm mm}^{-1}$	5.583
radiation	Μο Κα
cryst size, mm	0.25 imes 0.15 imes 0.10
temp, K	220
scan type	ω
scan width, deg	1.20 plus K α separation
2θ range, deg	3.5-42.0
std rflns	3 measd every 260 rflns
decay of standards	no
no. of rflns collected	6122
no. of rflns obsd, $F > 6.0\sigma(F)$	1693
no. params varied	383
GOF	1.63
R	0.082
$R_{ m w}$	0.090

as eluant. A single orange band of **1** eluted (106 mg, 20% yield based on Fe₂(μ -Se₂)(CO)₆). **1**: IR (ν (CO), cm⁻¹) 2078 (w), 2051 (s), 2039 (vs), 2004 (w), 1990 (vs); ¹H NMR δ 0.96 (t, J = 7.2 Hz) (CH₃), 1.46 (m, J = 7.5 Hz) (CH₂), 1.73 (m, J = 7.5 Hz) (CH₂), 2.66 (t, J = 7.5 Hz) (Se–CH₂); ¹³C (¹H decoupled) NMR δ 13.6 (s) (CH₃), 22.9 (s) (CH₂), 31.4 (s) (CH₂), 34.4 (s) (CH₂), 208.6, 209.2 (CO); ⁷⁷Se NMR δ 316.2 (s) (μ -Se), 170.7 (m) (Se-CH₂). Mp: 94–96 °C. Anal. Calcd (found) for C₂₀H₁₈Fe₄O₁₂-Se₃: C, 26.4 (26.8); H, 1.99 (2.12).

Crystal Structure Determination of 1. An orange platelike crystal of the title compound was mounted on a Siemens R3m/V diffractometer under a low-temperature nitrogen stream. Crystal structure and refinement details are given in Table 1. The structure was solved by the heavy-atom method and subsequent difference Fourier syntheses using the SHELXTL-Plus package.⁸ Two discrete molecules were found in an independent unit. Scattering factors, as well as anomalous dispersion corrections for Fe and Se atoms, were taken from ref 9. Full-matrix refinements were performed. Fe and Se atoms were anisotropically refined, while C and O atoms were treated isotropically. H atoms were placed at geometrically idealized positions. The weight had the form w = $[\sigma^2(F_0) + 0.001(F_0)^2]^{-1}$. Final cycles of refinement converged at $R = \sum ||F_0| - |F_c|| / \sum |F_0| = 0.082$ and $R_w = \sum w(||F_0| - |F_c|)^2 / (|F_0| - |F_c|)^2 / (|F_0$ $\Sigma W(F_0)^2$ ^{1/2} = 0.090 for 1693 observed reflections ($F > 6.0 \sigma$ -(F)). The maximum and minimum residuals found on the final ΔF map were 1.45 and -1.01 e/Å³, respectively.

Results and Discussion

Adding 1,3-dibromopropane to a solution containing *n*-BuLi and Fe₂(μ -Se₂)(CO)₆ and stirring at room temperature yielded a single isolable product, identified as [(μ -BuSe)Fe₂(CO)₆]₂(μ ₄-Se) (**1**; Scheme 1). Trace amounts of at least two other compounds were also observed, but

Figure 1. ORTEP drawing of the molecular structure of **1** with thermal ellipsoids drawn at 50% probability. Selected bond distances (Å) and bond angles (deg) for one of the molecules of **1**: Fe(1)-Se(1), 2.373(10); Fe(3)-Se(1), 2.371(10); Fe(1)-Se(2), 2.410(10); Fe(3)-Se(3), 2.416(11); Fe(2)-Se(2), 2.386(11); Fe(2)-Se(1), 2.349(10); Fe(4)-Se(1), 2.322(11); Fe(4)-Se(3), 2.426(10); Fe(1)-Fe(2), 2.618-(12); Fe(3)-Fe(4), 2.616(12); Fe(1)-Se(1)-Fe(2), 67.3(3); Fe(3)-Se(1)-Fe(4), 67.7(3); Fe(1)-Se(2)-Fe(2), 66.2(3); Fe(3)-Se(3)-Fe(4), 65.4(3); Fe(1)-Se(1)-Fe(3), 138.6(4); Fe(2)-Se(1)-Fe(4), 135.8(4).

these could not be isolated in sufficient amounts for characterization. Compound **1** was characterized by IR and ¹H, ¹³C, and ⁷⁷Se NMR spectroscopy. The IR spectrum showed the presence of only terminally bonded carbonyl groups. ¹H and ¹³C NMR spectra confirmed the presence of an *n*-Bu group, and the proton-coupled ⁷⁷Se NMR spectrum showed two signals, a singlet at lower field assignable to the μ_4 -Se atom and a multiplet for the μ_3 -Se atoms which are bonded to the *n*-Bu groups. Elemental analysis confirmed the molecular formula of **1**.

Dark red, air-stable crystals of **1** were grown from CH_2Cl_2 /hexane solution at -4 °C, and an X-ray analysis was undertaken. An ORTEP diagram of the molecular structure of **1** is shown in Figure 1, together with the selected bond lengths and bond angles. The molecule consists of two identical [(μ -BuSe)Fe₂(CO)₆] moieties joined to a unique selenium atom. In the cluster core, the unique selenium is situated at the center of a distorted tetrahedron with four iron atoms at its apices. The coordination polyhedron around the iron is a distorted tetragonal bipyramid with two carbonyls and two selenium atoms occupying the equatorial positions and the other carbonyl and iron atom at the axial

⁽⁸⁾ Sheldrick, G. M. SHELXTL-Plus; Siemens Analytical X-Ray Instruments, Inc., Madison, WI, 1990.

⁽⁹⁾ International Tables for X-ray Crystallography, Birmingham: Kynoch Press: Birmingham, U.K., 1974; Vol. IV.

positions. The geometry of the μ_4 -Se ligand here can be compared with that of μ_4 -S found in [(μ -EtS)Fe₂-(CO)₆]₂(μ_4 -S),⁶ [(μ_2 -SMe)Fe₂(CO)₆]₂(μ_4 -S),¹⁰ μ_4 -Sn in [Fe₂-(CO)₈(μ_2 -Sn(CH₃)₂]₂(μ_4 -Sn),¹¹ μ_4 -As in [Co₄(η^5 -C₅H₅)₄-(CO)₄(μ_4 -As)]⁺,¹² μ_4 -CO in [Me₃NCH₂Ph][Fe₄(CO)₁₂H(μ_4 -CO)],¹³ and μ_4 -Sb in [Fe₂(CO)₈(μ_4 -Sb)]₂Fe₂(CO)₆.¹⁴

The formation of **1** is analogous to that of several tetranuclear complexes of general formula [RSFe₂-(CO)₆]₂S, obtained from the reaction of Grignard reagent/ Fe₂(CO)₆(μ -S₂)-derived monoanion with di-acid chlorides.⁶ Although several face-capping, μ_4 -Se complexes have been reported,¹⁵ the six-electron-donor, tetrahedrally coordinated μ_4 -Se in **1** is new. In Fe₂Ru₃Se₂-(CO)₁₇, one of the Se ligands is reported to adopt tetrahedral coordination, though its structure has not been established by crystallographic methods.¹⁶

Chem. 1907, 20, 405.
(15) (a) Mathur, P.; Chakrabarty, D.; Hossain, M. M. J. Organomet. Chem. 1991, 401, 167. (b) Mathur, P.; Hossain, M. M.; Rashid, R. S. J. Organomet. Chem. 1993, 448, 211. (c) Mathur, P.; Chakrabarty, D.; Hossain, M. M.; Rashid, R. S. J. Organomet. Chem. 1991, 420, 79.
(d) Mathur, P.; Chakrabarty, D.; Hossain, M. M. J. Organomet. Chem. 1991, 418, 415. (e) Mathur, P.; Hossain, M. M.; Rashid, R. S. J. Organomet. Chem. 1994, 467, 245. Assuming that the μ_4 -Se is a 6-electron-donor ligand, and that the μ_3 -Se is a 4-electron ligand, compound **1** is electron precise according to the 18-electron rule. Overall, the formation of **1** involves the abstraction of one Se atom by the dibromopropane. With 1,2-dibromoethane or with 1,4-dibromobutane, although the reaction produced numerous products, **1** was not observed.¹⁷ It is possible that 1,3-dibromopropane reacts in an intramolecular fashion to remove one Se atom. Further studies are currently in progress to establish whether a cyclic intermediate is necessary for the formation of **1**.

Acknowledgment. We are grateful to Dr. Hongming Zhang of Southern Methodist University for the single-crystal analysis. R.T. acknowledges the Department of Atomic Energy, Government of India, for the award of a Dr. K. S. Krishnan fellowship. We are grateful to one of the reviewers for helpful suggestions.

Supporting Information Available: Tables of all bond lengths and angles, fractional atomic coordinates, and isotropic and anisotropic thermal parameters (7 pages). Ordering information is given on any current masthead page.

OM950705N

⁽¹⁰⁾ Coleman, J. M.; Wojcicki, A.; Pollic, P. J.; Dahl, L. F. *Inorg. Chem.* **1967**, *6*, 1236. (11) Sweet, R. M.; Pritchie, C. J., Jr.; Schunn, R. A. *Inorg. Chem.*

⁽¹²⁾ Campana, C. F.; Dahl, L. F. *J. Organomet. Chem.* **1977**, *127*,

⁽¹³⁾ Manassero, M.; Sansoni, M.; Longoni, G. J. Chem. Soc., Chem.

Commun. 1976, 919. (14) Rheingold, A. L.; Geib, S. J.; Shieh, N.; Whitmire, K. H. Inorg.

Chem. **1987**, *26*, 463.

⁽¹⁶⁾ Mathur, P.; Hossain, M. M.; Rashid, R. S. J. Organomet. Chem. 1993, 460, 83.

⁽¹⁷⁾ Mathur, P.; Manimaran, B.; Trivedi, R.; Hossain, M. M.; Arabatti, M. Unpublished results.