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Summary: Treatment of the 4e-alkyne complex [Tp*Nb-
(CO)2(PhCCMe)] with the nitrile RCN (R ) Ph, Me, Et)
yields the first mixed 3e-alkyne-η2(3e)-nitrile complexes,
[Tp*Nb(CO)(PhCCMe)(RCN)], which have been spectro-
scopically and structurally characterized. Upon addi-
tion of HBF4, the protonated coupling product [Tp*Nb-
(F)(CPhCMeCPhNH)] (R ) Ph) is formed.

Although nitriles act as either η1 or η2 two-electron
(2e) donor ligands,1 their behavior as η2(4e) donors has
been recognized only recently.2 The involvement of both
π-systems of the CN triple bond parallels that now well-
established for alkynes.3 We report here the first
examples of mixed alkyne-nitrile complexes [Tp*Nb-
(CO)(PhCCMe)(RCN)] (Tp* ) hydridotris(3,5-dimeth-
ylpyrazolyl)borate, R ) Me, Et, Ph), where these η2-
bound ligands formally contribute three electrons each
to the total electron count at niobium(I). Protonation
with HBF4 induces intramolecular ligand coupling in
the benzonitrile complex, giving the niobacycle [Tp*Nb-
(F)(CPhCMeCPhNH)].
For some years, we have been developing the chem-

istry of niobium(III) Tp* alkyne complexes and we have
shown that the stereoelectronic properties of Tp* have
important structural and reactivity consequences.4 The
present study represents an unprecedented entry into
niobium(I) Tp* chemistry.
Treatment of the yellow-green symmetrical (4e-phe-

nylpropyne)dicarbonylniobium(I) complex [Tp*Nb(CO)2-
(PhCCMe)] (1; ν(CO) 1960, 1855 cm-1; 13C NMR δ 259.4,
212.2 (PhCCMe))5 with the nitrile RCN in refluxing
tetrahydrofuran proceeds smoothly to give, after CO
evolution, the unsymmetrical complexes [Tp*Nb(CO)-
(PhCCMe)(RCN)] (R ) Ph, 2a, 67%; R ) Me, 2b, 30%;
Et, 2c, 30%) (see Scheme 1). They are isolated as
orange crystals after washing the crude reaction residue
with diethyl ether. Chirality in 2a-c is evident by the
observation of three methine and six methyl resonances
in the 1H and 13C NMR spectra.6 Diastereotopic pro-
pionitrile methylene hydrogens are inequivalent in 2b.

Spectroscopic6 and crystallographic7 data are consistent
with an η2(3e)-nitrile description. In the three cases,
three quaternary carbon resonances (13C NMR) are
observed in the region δ 174-187. We ascribe two of
these signals to the contact carbons of a 3e-alkyne3 and
one to the nitrile carbon bound to niobium. 13C NMR
data have been reported for η1(2e)- or η2(4e)-nitriles2a,b
but, unfortunately, have not been detailed in the few
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(6) Data for 2a are as follows. Anal. Calcd for C32H35BN7NbO: C,
60.3; H, 5.5; N, 15.4. Found: C, 60.3; H, 5.6; N, 15.0. Infrared (KBr):
ν(CO) 1947, ν(CtC, CtN) 1737, 1725 cm-1. 1H NMR (C6D6): δ 1.66,
1.99, 2.06, 2.14, 2.31, 2.40 (all s, 3 H each, Tp*Me), 3.12 (s, 3 H,
PhCCMe), 5.19, 5.39, 5.90 (all s, 1 H each, Tp*CH), 6.70-7.03 (m, 5
H, PhCCMe), 7.29 (t, J 7 Hz, 2 H, m-PhCN), 8.53 (d, J 7 Hz, 2 H,
o-PhCN), p-PhCN obscured by solvent. 13C{1H} NMR (CDCl3, 243
K): δ 13.0, 13.3, 14.7, 15.0, 15.5 (Tp*Me), 18.8 (PhCtCMe), 106.3,
106.5, 107.5 (Tp*CH), 125.9, 127.0, 127.7, 129.0, 130.8, 132.3, 138.5
(PhCtCMe and PhCtN), 143.2, 143.4, 144.4, 149.8, 150.7, 153.4
(Tp*CMe), 176.5, 176.8, 186.7 (PhCCMe and PhCN), 230.1 (CO). Data
for 2b are as follows. Anal. Calcd for C27H33BN7NbO: C, 56.4; H,
5.8; N, 17.0. Found: C, 56.2; H, 5.6; N, 16.6. Infrared (KBr): ν(CO)
1920, ν(CtC, CtN) 1785, 1728 cm-1. 1H NMR (C6D6): δ 1.62, 1.98,
2.08, 2.15, 2.19, 2.38 (all s, 3 H, Tp*Me), 2.87 (s, 3 H, MeCN), 2.95 (s,
3 H, PhCCMe), 5.28, 5.37, 5.82 (all s, 1 H, Tp*CH), 6.72-7.02 (m, 5 H,
PhCCMe). 13C{1H} NMR (CDCl3, 233 K): δ 17.5, 17.8 (MeCN and
PhCCMe), 174.6, 177.3, 180.9 (PhCCMe and MeCN), 230.3 (CO). Data
for 2c are as follows. Infrared (KBr): ν(CO) 1894, ν(CtC, CtN) 1789,
1729 cm-1. 1H NMR (C6D6): δ 1.38 (t, J 7 Hz, 3 H, MeCH2CN), 3.21,
3.31 (both dq, J 14, 7 Hz, 1 H each, MeCH2CN), 2.98 (s, 3H, PhCCMe).
13C{1H} NMR (CDCl3, 233 K): δ 14.1 (MeCH2CN), 17.4 (PhCCMe), 26.6
(MeCH2CN), 174.6, 177.0, 183.8 (PhCCMe and EtCN), 230.4 (CO).

(7) Crystal data for 2a: C32H35BN7NbO, monoclinic, space group P21/
c, a ) 12.647(2) Å, b ) 16.468(3) Å, c ) 15.190(3) Å, â ) 96.28(1)°, V
) 3144.6(8) Å3, Z ) 4, F(000) ) 1320, λ(Mo KR) ) 0.710 73 Å, Fcalcd )
1.346 Mg m-3, µ ) 40.01 mm-1. The final residuals for 207 parameters
refined against 1546 unique data with I > 3σ(I) were R ) 0.0373 and
Rw ) 0.0414.
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cases of X-ray-characterized η2(2e) coordination.8,16 η2-
(4e)-Nitriles have low-field resonances comparable to
those of η2(4e)-alkynes.2a,b η1(2e)-Nitriles usually give
resonances at higher field, more comparable to those of
free nitriles. Except for a slight broadening, the 1H
NMR of 2b is temperature-independent (183-333 K,
C7D8). The solid-state infrared spectra reveal two
medium-intensity absorptions in the region 1725-1790
cm-1, which are readily ascribed to coordinated CtC
and CtN stretches. The X-ray crystal structure7 of 2a
confirms the η2-coordination mode for the nitrile (see
Figure 1). Both the coordinated CC and CN bonds are
parallel to the Nb-CO axis, leading to optimized orbital
interactions (see below).3 The alkyne methyl group and
the nitrile phenyl group are directed toward the CO.
The lengths of the Nb(1)-N(1) and Nb(1)-C(3) bonds
indicate multiple-bonding character (2.139(8) and 2.17-
(1) Å, respectively). The Nb-phenylpropyne bonding
exhibits similar parameters, which are longer than
those for the 4e-phenylpropyne complex [Tp*NbCl2-
(PhCCMe)] (Nb-C ) 2.050(9) and 2.093(9) Å).4 Re-
cently described η2(4e)-nitrile tungsten complexes have
virtually equal metal-nitrogen and metal-carbon bonds
around 2.00 Å.2b The η2(2e)-nitrile complex8a (C5H5)2-
Mo(MeCN) displays metal-nitrogen and metal-carbon
bond lengths of 2.22 and 2.11 Å, respectively. The C-N
bond length in 2a is 1.21(1) Å. For the η2(4e)-nitrile
complexes, it is in the range 1.27-1.22 Å,2b whereas in
the η2(2e) case, it is slightly shortened to 1.20 Å.8a To

our knowledge, complexes 2a-c are the first η2-nitrile
complexes of the group 5 transition metals.16 It is also
the first time that a nitrile behaves formally as a 3e
donor.
As analyzed previously for bis(alkyne) group 6 metal

complexes,3 the 3e-donor formulation is a formal one
and does not involve any odd-electron chemistry. It is
the involvement of two 3e-donor ligands, one alkyne and
one nitrile, for a total of six electrons donated to the
metal which leads to such a description. From a
molecular orbital standpoint, it is the absence of a
suitable metal orbital for interaction with the out-of-
phase combination of π⊥ ligand orbitals that rationalizes
the bonding situation. We note here that the isoelec-
tronic cationic mixed alkyne-nitrile group 6 carbonyl
complex [Tp*W(CO)(PhCCMe)(MeCN)][BF4] contains
4e-alkyne and η1(2e)-nitrile ligands.9 Undoubtedly, this
reflects the fact that the tungsten(II) center in the
cationic complex is harder than the niobium(I) center
in neutral 2a-c or, alternatively,2b that nitriles having
low-energy π*(CN) orbitals stabilize more efficiently the
relatively electron-rich niobium(I) in 2a-c.
Although stereoselective stepwise reduction of aceto-

nitrile has been realized in [Tp*W(CO)(PhCCMe)(η1-
MeCN)][BF4],10 η2-coordination has been suggested to
activate the nitrile toward methanol attack in [MCl-
(MeCN)(dmpe)][BPh4] (M ) Cr, Mo).2c,11 Protonation
of [Cp2Mo(η2-MeCN)] in MeCN yields [Cp2Mo(η1-MeCN)-
(η1-NHdCHMe)][BF4]2.12 Addition of HBF4 to [Tp*Nb-
(CO)(PhCCMe)(PhCN)] (2a) in dichloromethane at -20
°C gives a red-brown solution in which no CO stretch
may be observed by infrared spectroscopy. Extraction
with toluene and precipitation from hexane give the
neutral complex [Tp*Nb(F)(CPhCMeCPhNH)] (3a) in
65% yield (see Scheme 1).13 Evidence for the NH group
comes from (i) the 1H NMR spectrum, where a broad
singlet is observed at δ 8.31 which slowly disappears
upon addition of D2O, and (ii) the solid-state infrared
spectrum, which displays an NH stretch at 3382 cm-1.
The fluoride bound to niobium gives a 19F NMR signal
at δ 117.1 (w1/2 ) 30 Hz, external CF3CO2D) and a
strong Nb-F stretch at 554 cm-1. The five-membered
niobacycle is well-defined from the 13C NMR spectrum
of 3a. Quaternary signals are observed at δ 219.4 as a
niobium-broadened alkylidene-like signal, assigned to
the R-carbon, and at δ 93.6 and δ 121.8, ascribed to â-
and γ-carbons. Similar 13C NMR data have been
obtained for related oxa- or azametallacycles resulting
from either acyl-alkyne or iminoacyl-alkyne coupling
reactions in the coordination sphere of niobium or
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(13) Data for 3a are as follows. Anal. Calcd for C31H36BFN7Nb:

C, 59.2; H, 5.8; N, 15.6. Found: C, 58.7; H, 5.9; N, 15.3. 1H NMR
(C6D6): δ 1.30, 2.11, 2.20, 2.24, 2.29, 2.36, 2.38 (all s, 3 H, Tp*Me and
NbCPhCMe), 5.39, 5.55, 5.71 (all s, 1 H, Tp*CH), 6.69 (t, J 7 Hz, 1 H,
NbC p-Ph), 6.90 (d, J 7 Hz, 2 H, NbC-o-Ph), 7.04 (d, J 8 Hz, 2 H, NbC-
m-Ph), 7.19 (t, J 8 Hz, 1 H, p-PhCNH), 7.30 (t, J 8 Hz, 2 H,m-PhCNH),
7.92 (d, J 8 Hz, 2 H, o-PhCNH), 8.31 (br-s, 1 H, NbNH). 13C{1H} NMR
(C6D6): δ 12.2, 12.7, 13.0, 14.3 (d, JCF 5 Hz), 14.5 (d, JCF 5 Hz), 15.7,
16.6 (Tp*Me and NbCPhCMe), 93.6 (NbCPhCMe), 106.5, 106.9, 107.1
(Tp*CH), 121.7 (NbCPhCMeCPh), 124.3, 128.1, 128.2, 128.6, 129.2,
130.5, 140.0, 140.4 (NbCPh and NbCPhCMeCPh), 143.7, 143.8, 144.4,
149.9, 151.0, 151.6 (Tp*CMe), 219.4 (NbCPh). 19F{1H} NMR (C6D6,
external CF3CO2D): δ 117.1 (w1/2 30 Hz, NbF).

Figure 1. Plot of the molecular structure of [Tp*Nb(CO)-
(PhCCMe)(PhCN)] (2a). Selected bond lengths (Å) and
angles (deg): Nb(1)-N(1), 2.139(8); Nb(1)-N(2), 2.339(6);
Nb(1)-N(4), 2.312(7); Nb(1)-N(6), 2.335(7); Nb(1)-C(1),
2.166(9); Nb(1)-C(2), 2.118(8); Nb(1)-C(3), 2.17(1); Nb(1)-
C(4), 2.06(1); C(1)-C(2), 1.21(1); N(1)-C(3), 1.21(1); C(2)-
C(1)-C(14), 138.4(9); C(1)-C(2)-C(21), 139.1(9), N(1)-
C(3)-C(31), 135.2(10).

Communications Organometallics, Vol. 15, No. 4, 1996 1091

D
ow

nl
oa

de
d 

by
 C

A
R

L
I 

C
O

N
SO

R
T

IU
M

 o
n 

Ju
ne

 3
0,

 2
00

9
Pu

bl
is

he
d 

on
 F

eb
ru

ar
y 

20
, 1

99
6 

on
 h

ttp
://

pu
bs

.a
cs

.o
rg

 | 
do

i: 
10

.1
02

1/
om

95
08

95
2



tantalum.14 These species are heteroatom analogs of
η4-C4R4H butadienyl complexes formed via allyl-alkyne
coupling in Tp* niobium chemistry.15 As observed in
the X-ray structure of 2a, the alkyne and the nitrile are
well set up for this regioselective coupling. The first
step of a mechanism leading to 3a is presumably
protonation of the η2(3e)-nitrile lone pair, which is not
involved in the bonding. This gives a cationic iminoacyl
complex which would readily lose CO and undergo
iminoacyl-alkyne coupling via carbon-carbon bond
formation. Tetrafluoroborate is nucleophilic enough to

transfer a fluoride to this highly electrophilic unsatur-
ated niobium cation, leading to 3a. We are actively
attempting to trap one of these putative intermediates.
In conclusion, we have described the first examples

of formally η2(3e)-nitrile complexes. The second 3e
ligand in the metal coordination sphere, namely an
alkyne, readily couples to the nitrile upon protonation.
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