Unexpected Reactions of 2,5-Dimethylthiophene $(2,5-Me_2T)$ in Cp*Ir $(\eta^5-2,5-Me_2T)^{2+}$, Cp*Ir $(\eta^4-2,5-Me_2T)$, and Cp*Ir(C,S-2,5-Me₂T) with Cobaltocene

Jiabi Chen,[†] Lee M. Daniels,[‡] and Robert J. Angelici*

Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011

Received July 21, 1995[®]

The reaction of Cp*Ir(η^{5} -2,5-Me₂T)²⁺ (1) (Cp* = η^{5} -C₅Me₅) with the reducing agent Cp₂Co yields $Cp^*Ir(\eta^{4-2},5-Me_2T)$ (2) and $Cp^*Ir(C,S-2,5-Me_2T)$ (3), as well as the unexpected Cp^*Ir - $(\eta^{4}-2,5-Me_{2}T\cdot C_{5}H_{4})$ (4), which can also be prepared by reacting 1 with Cp⁻. An X-ray diffraction study of **4** shows the η^4 -2,5-Me₂T·C₅H₄ ligand to be a ring-opened 2,5-Me₂T allyl thiolate conjugated to a cyclopentadienylidene unit. The reduced products 2 and 3 react

with Cp_2Co to give a ferrole-type product $Cp^*[IrC(Me)=CHCH=C(Me)]CoCp$ in which the planar iridacyclopentadiene ring is π -bonded to the cobalt, as established by a structural investigation. The Cp*Co analog of 5 is prepared by the reaction of 2 or 3 with Cp*Co- $(CH_2=CH_2)_2$. These studies demonstrate that cobaltocene and $Cp^*Co(CH_2=CH_2)_2$ readily desulfurize the 2,5-dimethylthiophene ligand in 2 and 3, which supports a previously proposed mechanism for thiophene hydrodesulfurization.

Introduction

In previous studies of thiophene binding and reactivity in transition metal complexes, as part of a broader investigation of the catalytic hydrodesulfurization of thiophenes,^{1,2} we observed that the reduction of Cp*Ir- $(\eta^{5}-2,5-\text{Me}_{2}\text{T})^{2+}$ (1), where $\text{Cp}^{*} = \eta^{5}-\text{C}_{5}\text{Me}_{5}$ and 2,5-Me₂T = 2,5-dimethylthiophene, by Cp₂Co or Na[H₂Al(OCH₂- CH_2OMe_{2}] ("Red-Al") gave $Cp^*Ir(\eta^4-2,5-Me_2T)$ (2) and $Cp*Ir(C,S-2,5-Me_2T)$ (3) (eq 1).^{3,4} Isomer 3 is more

stable than 2 since bases (Et₃N and basic Al₂O₃)^{3,4} and ultraviolet light⁵ catalyze the isomerization of 2 to 3. When Cp₂Co was used as the reducing agent, we observed upon closer inspection that a minor product 4 was also formed. Characterization of 4 and reactions designed to elucidate its mode of formation led to the studies described in this paper.

Experimental Section

General Procedures. All manipulations were carried out under an N2 atmosphere in reagent grade solvents. Tetrahy-

(1) Angelici, R. J. in Encylopedia of Inorganic Chemistry, King, R.

B., Ed.; John Wiley & Sons: New York, 1994; Vol. 3, pp 1433-1443.

- (2) Angelici, R. J. Bull. Soc. Chim. Belg. 1995, 104, 265-282. (3) Chen, J.; Angelici, R. J. Organometallics 1989, 8, 2277.
- (4) Chen, J.; Daniels, L. M.; Angelici, R. J. J. Am. Chem. Soc. 1990
- 112. 199.
 - (5) Chen, J.; Angelici, R. J. Appl. Organomet. Chem. 1992, 6, 479.

drofuran (THF) and diethyl ether (Et₂O) were distilled from Na/benzophenone; hexanes and CH2Cl2 were distilled from CaH₂. The solvents were stored over 4 Å molecular sieves under N2. The neutral alumina (Brockmann, activity I) used in the chromatography columns ($1.5 \times 10-20$ cm) was deoxygenated at room temperature in high vacuum for 16 h, deactivated with 5% w/w N2-saturated water, and stored under N₂. Dicyclopentadiene, (Cp₂Co)PF₆, and CH₂=CHCH₂MgBr (1.0 M solution in Et₂O) were purchased from Aldrich. [Cp*Ir- $(\eta^{5}-2,5-Me_{2}T)](BF_{4})_{2}$ (1), 2, and 3 were prepared as described previously.^{3,4} Cp*Co(CH₂=CH₂)₂,^{6a} (H₂C=CH₂)Pt(PPh₃)₂,^{6b} and sodium/potassium alloy NaK2.87 were prepared by literature methods.

Elemental analyses were performed by Galbraith Laboratories, Inc. The ¹H NMR spectra were obtained on a Nicolet NT-300 spectrometer using deuteriated solvents as internal locks and referenced to TMS; these spectra of compounds 2-7are given in Table 1. Electron ionization mass spectra (EIMS) were run on a Finnigan 4000 spectrometer. The melting points were determined in sealed nitrogen-filled capillaries and were not corrected.

Reaction of $[Cp*Ir(\eta^5-2,5-Me_2T)](BF_4)_2$ (1) with Cp₂Co: Preparation of Cp*Ir(η^4 -2,5-Me₂T) (2), Cp*Ir(C,S-2,5-Me₂T) (3), and Cp*Ir(η^4 -2,5-Me₂T·C₅H₄) (4). (a) Reaction of 1 with 2 equiv of Cp₂Co. Compound 1 (0.300 g, 0.489 mmol) was dissolved in 30 mL of THF at room temperature. To this solution was added fresh Cp₂Co⁸ prepared by reaction of (Cp₂Co)PF₆ (0.324 g, 0.970 mmol) with NaK_{2.8} (0.035 g, 1.00 mmol) in THF solution. The pink-purple reaction solution was stirred for 8 h at room temperature. The solvent was evaporated under vacuum, and the purple-red residue was chromatographed on Al₂O₃ (neutral) with hexanes as the eluant. After removal of the purple band (Cp₂Co) from the column, a yellow and then a red band were eluted with hexanes/CH₂Cl₂ (10:1). Thereafter, a small bright-red band was eluted with hexanes/CH2Cl2/Et2O (10:1:1). After removal

© 1996 American Chemical Society

[†] Permanent address: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PRC.

[‡] Iowa State Molecular Structure Laboratory. Current address: Texas A&M University, College Station, TX 77843. [®] Abstract published in *Advance ACS Abstracts*, January 1, 1996.

^{(6) (}a) Frith, S. A.; Spencer, J. L. Inorg. Synth. 1985, 23, 19. (b) Blake, D. M.; Roundhill, D. M. *Inorg. Synth.* **1978**, *18*, 121. (7) Ellis, J. E.; Flom, E. A. *J. Organomet. Chem.* **1975**, *99*, 263

⁽⁸⁾ The Cp₂Co was prepared by reduction of (Cp₂Co)PF₆ with NaK_{2.8} alloy in THF (20-30 min at room temperature). The THF solution was filtered and the filtrate evaporated in vacuo to give a pink-purple residue of Cp₂Co.

compd	δ (2,5-Me ₂ T)	$\delta(C_5Me_5)$	δ (olefin)	δ (other)
2	4.53 (s, 2H), 1.11 (s, 6H)	1.92 (s, 15H)		
3	7.47 (d, 1H), 7.34 (d, 1H),	1.93 (s, 15H)		
	3.10 (s, 3H), 2.79 (s, 3H)			
4	5.47 (d, 1H), 3.80 (d, 1H),	1.73 (s, 15H)		6.53 (m, 1H), 6.48 (m, 1H),
	2.35 (s, 3H), 2.01 (s, 3H)			6.41 (m, 2H), (C ₅ H ₄)
5		2.08 (s, 15H)	4.71 (s, 2H), 2.07 (s, 6H)	4.54 (s, 5H) (Cp)
6		1.97 (s, 15H)	4.03 (s, 2H)	
		1.78 (s, 15H)	1.97 (s, 6H)	
7		1.85 (s, 15H)	3.99 (m, 1H), 3.28 (tt,	
			2H), 2.78 (tt, 2H)	

of solvents from the three eluates under vacuum, the residue from the first band was recrystallized from hexanes at -80 °C, and the second and third bands were recrystallized from hexanes/CH₂Cl₂ solution at -80 °C. From the first fraction separated 0.086 g (33%, based on **1**) of **2** as yellow crystals; mp 117–118 °C (dec). MS: *m/e* 440 (M⁺). Anal. Calcd for C₁₆H₂₃SIr: C, 43.71; H, 5.27. Found: C, 43.68; H, 5.40. From the second fraction precipitated 0.017 g (7.9%) of dark-red crystals of **3**; mp 146–147 °C (dec). MS: *m/e* 440 (M⁺). Anal. Calcd for C₁₆H₂₃SIr: C, 43.71; H, 5.27. Found: C, 43.80; H, 5.18. From the third fraction was obtained 0.009 g (4%) of **4** as deep-red crystals; mp 132–134 °C (dec). MS: *m/e* 504 (M⁺). Anal. Calcd for C₂₁H₂₇SIr: C, 50.07; H, 5.40. Found: C, 50.21; H, 5.59.

(b) Reaction of 1 with 4 equiv of Cp₂Co. To a solution of 1 (0.250 g, 0.408 mmol) dissolved in 30 mL of THF at room temperature was added fresh Cp₂Co prepared by reaction of (Cp₂Co)PF₆ (0.540 g, 1.62 mmol) with NaK_{2.8} (0.058 g, 1.63 mmol) in THF solution. The pink-purple reaction solution was stirred at room temperature for 8 h. Further treatment of the resulting mixture as described above for the reaction of 1 with 2 equiv of Cp₂Co gave 0.029 g (16%, based on 1) of yellow crystalline 2, 0.015 g (8.5%) of dark-red crystalline 3, and 0.078 g (38%) of 4 as deep-red crystals, which were identified by their melting point and ¹H NMR and mass spectra.

Reaction of 2 with Cp₂Co: Preparation of Cp*[IrC-

(Me)=CHCH=C(Me)]CoCp (5). A solution was prepared by dissolving 0.030 g (0.068 mmol) of 2 in 15 mL of THF at room temperature. To this solution was added fresh Cp₂Co prepared by reduction of (Cp₂Co)PF₆ (0.044 g, 0.132 mmol) with NaK_{2.8} (0.007 g, 0.200 mmol) in THF. The solution was stirred for 13 h at room temperature. After evaporation of the solution under vacuum, the dark-purple residue was chromatographed on Al₂O₃ (neutral) with hexanes as the eluant. After removal of unreacted Cp₂Co from the column, a red band eluted with hexanes/ CH_2Cl_2 (10:1) first; then a dark-purple band was eluted with hexanes/CH₂Cl₂/Et₂O (10:1:1). After vacuum removal of the solvents from the above two eluates, the residues were recrystallized from hexanes at -80 °C. From the first fraction, 0.005 g (16%, based on 2) of 3 as dark-red crystals was obtained; mp 146-147 °C (dec). MS: m/e 440 (M^+) . From the second fraction, 0.013 g (36%) of **5** as darkpurple crystals was isolated; mp 189–190 °C (dec). MS: m/e 532 (M⁺), 408 (M⁺ - CoCp). Anal. Calcd for C₂₁H₂₈IrCo: C, 47.45; H, 5.31. Found: C, 47.39; H, 5.29.

Reaction of 3 with Cp₂Co: Preparation of 5. To a solution of **3** (0.020 g, 0.045 mmol) in 15 mL of THF was added fresh Cp₂Co prepared by reduction of (Cp₂Co)PF₆ (0.030 g, 0.090 mmol) with NaK_{2.8} (0.005 g, 0.14 mmol). After being stirred for 8 h at room temperature, the solution was evaporated in vacuo, and the residue was chromatographed on Al₂O₃ (neutral) with hexanes as the eluant. After removal of unreacted Cp₂Co from the column, a dark-purple band was eluted with hexanes/CH₂Cl₂/Et₂O (10:1:1). The solvent was removed from the eluate under vacuum, and the residue was recrystallized from hexanes at -80 °C to give 0.010 g (42%, based on **3**) of **5** as dark-purple crystals, which were identified by their melting point and ¹H NMR and mass spectra.

Reaction of 2 with Cp*Co(CH₂=CH₂)₂: Preparation of

Cp*[IrC(CH₃)=CHCH=C(CH₃)]CoCp* (6). A solution containing 0.023 g (0.052 mmol) of **2** and 0.016 g (0.064 mmol) of Cp*Co(CH₂=CH₂)₂ in 20 mL of THF was refluxed under N₂ for 2 h. The resulting mixture was allowed to cool to room temperature, and the solvent was removed in vacuo. The residue was chromatographed on Al₂O₃ (neutral) with hexanes first and then hexanes/CH₂Cl₂ (10:1) as the eluant. A purple band was eluted and evaporated to dryness under vacuum; the crude product was recrystallized from hexanes at -80 °C to afford 0.011 g (35%, based on **2**) of dark-purple crystals of **6**; mp 185–186 °C (dec). MS: *m*/*e* 602 (M⁺), 467 (M⁺ – CoCp*). Anal. Calcd for C₂₆H₃₈IrCo: C, 51.90; H, 6.37. Found: C, 51.90; H, 6.33.

Reaction of 3 with Cp*Co(CH₂=CH₂)₂: Preparation of 6. A solution containing **3** (0.017 g, 0.039 mmol) and Cp*Co-(CH₂=CH₂)₂ (0.015 g, 0.060 mmol) in 20 mL of THF was refluxed under N₂ for 2 h. After cooling of the solution to room temperature, further treatment of the resulting mixture as described above for the reaction of **2** gave 0.009 g (39%, based on **3**) of **6** as dark-purple crystals, which were identified by their melting point and, ¹H NMR and mass spectra.

Reaction of 2 with (CH₂=CH₂)Pt(PPh₃)₂ To Give 3. To a solution of **2** (0.020 g, 0.045 mmol) in 30 mL of THF was added 0.034 g (0.045 mmol) of (CH₂=CH₂)Pt(PPh₃)₂. The solution was stirred at room temperature for 70 h. The light yellow solution gradually turned orange. After vacuum removal of the solvent, the red residue was chromatographed on Al₂O₃ (neutral) with hexanes/CH₂Cl₂ (10:1) as the eluant. A red band was eluted, and the eluate was evaporated in vacuo; the residue was recrystallized from hexanes at -80 °C to give 0.014 g (70%, based on **2**) of dark-red crystals of **3**, which were identified by their melting point and ¹H NMR spectrum.

Reaction of 1 with K⁺Cp⁻: Preparation of 4. To a suspension of potassium (0.060 g, 1.53 mmol) cut into pieces in THF was added dropwise 0.110 g (1.67 mmol) of fresh cyclopentadiene⁹ obtained by refluxing dicyclopentadiene for 10 min and then distilling. The light yellow solution was refluxed for 3 h, during which time the potassium metal dissolved; the resulting solution of KCp was allowed to cool to room temperature. To this solution was added 0.400 g (0.652 mmol) of 1. The mixture was stirred for 8 h at room temperature. After vacuum removal of the solvent, the darkred residue was chromatographed on Al₂O₃ (neutral) with hexanes/CH₂Cl₂ (10:1) as the eluant. The red eluate was evaporated in vacuo to dryness. Recrystallization of the crude product from hexanes/CH2Cl2 solution gave 0.150 g (45%, based on 1) of 4 as deep-red crystals; mp 132-134 °C (dec). MS: m/e 504 (M⁺). Anal. Calcd for C₂₁H₂₇SIr: C, 50.07; H, 5.40. Found: C, 49.77; H, 5.46.

Reaction of 1 with CH₂=CHCH₂MgBr: Preparation of Cp*Ir(\eta^3-C₃H₅)Br (7). To a solution of 0.300 g (0.489 mmol) of 1 dissolved in 50 mL of THF at room temperature was added 1.20 mL (1.17 mmol) of CH₂=CHCH₂MgBr solution (1.0 M in Et₂O) with stirring. The reaction solution was stirred for 18

⁽⁹⁾ Wilkinson, G. Org. Synth. 1956, 36, 33.

⁽¹⁰⁾ Birmingham, J. M. J. Organomet. Chem. 1964, 2, 265.

Table 2. Crystal Data and Details of the Structure Determination for Complexes 4 and 5

	4	5
formula	$IrSC_{21}H_{29}$	IrCoC ₂₁ H ₂₈
fw	503.71	531.59
space group	$P2_1/m$	$P2_1/m$
a, Å	7.648(1)	7.217(1)
b, Å	13.258(1)	14.314(1)
<i>c</i> , Å	9.534(1)	9.344(1)
β , deg	92.03(2)	103.167(7)
$V, Å^3$	966.1(6)	939.8(2)
Ζ	2	2
d_{calc} , g/cm ³	1.728	1.878
cryst size, mm	0.17 imes 0.07 imes 0.14	0.48 imes 0.15 imes 0.15
μ (Mo K α), cm ⁻¹	69.85	79.255
data collcn instrument	Enraf-Nonius CAD4	Enraf-Nonius CAD4
radiation (monochromated in incident beam)	Mo Kα($\lambda = 0.710$ 73 Å)	Mo K α ($\lambda = 0.710$ 73 Å)
orientation reflcns: no.; range (2 θ), deg	25; 18.6-35.1	25; 21.2-32.3
temp, °C	22 ± 1	-80 ± 1
scan method	$\theta - 2\theta$	$\theta - 2\theta$
data collen range, 2θ , deg	4 - 45	4 - 50
no. of unique data: tot.; with $F_0^2 > 3\sigma(F_0^2)$:	1332; 1178	1719; 1400
no. of params refined	152	109
transm factors (ψ -scans): max; min	1.00; 0.716	0.9987; 0.6570
R^{a}	0.0370	0.0470
$R_{\rm w}{}^b$	0.0524	0.0609
quality-of-fit indicator ^c	1.56	2.27
largest shift/esd, final cycle	0.01	0.01
largest peak, e/ų	1.3(2), 1.1 Å from Ir	5.0(2), 0.8 Å from Ir

 ${}^{a}R = \Sigma ||F_{0}| - |F_{c}||/\Sigma|F_{0}| {}^{b}R_{w} = [\Sigma w(|F_{0}| - |F_{c}|)^{2}/\Sigma w|F_{0}|^{2}]^{1/2}; w = 1/\sigma^{2}(|F_{0}|). {}^{c}\text{Quality-of-fit} = [\Sigma w(|F_{0}| - |F_{c}|)^{2}/(N_{obs} - N_{params})]^{1/2}.$

h at room temperature, during which time the solution turned from light yellow to orange-yellow. After vacuum evaporation of the solvent, the residue was chromatographed on Al_2O_3 (neutral) with hexanes as the eluant. A yellow band was eluted, and the eluate was evaporated to dryness in vacuum; the yellow residue was recrystallized from hexanes at -80 °C to give 0.068 g (31%, based on 1) of 7 as yellow crystals; mp 155–156 °C (dec). MS: m/e 448 (M⁺), 407 (M⁺ – C₃H₅). Anal. Calcd for C₁₃H₂₀BrIr: C, 34.82; H, 4.50. Found: C, 35.12; H, 4.63.

X-ray Structure Determinations of Cp*Ir(η^4 -2,5-

Me₂T·C₅H₄) (4) and Cp*[IrC(Me)=CHCH=C(Me)]CoCp (5). Deep-red crystals of **4** and dark-purple crystals of **5** suitable for X-ray diffraction study were obtained by recrystallization from hexanes/CH₂Cl₂ solution at -80 °C. Complexes **4** and **5** crystallize in the monoclinic crystal system. The cell constants of both complexes were determined from a list of reflections found by an automated search routine. Lorentz and polarization corrections were applied, and an absorption correction was also made on the basis of a series of ψ -scans for both complexes.

For 4, since the absences indicated either of the space groups $P2_1$ or $P2_1/m$, solutions were tried in both space groups. $P2_1/m$ was used initially. The position of the Ir atom was taken from a Patterson map. A subsequent difference Fourier map clearly revealed the Cp* ligand, perpendicular to and bisected by the mirror plane, and a set of peaks corresponding to the sulfur ligand disordered about the mirror plane. A solution was then tried in the alternate space group, $P2_1$, but the disorder and the mirror symmetry persisted, so the switch back to $P2_1/m$ was made. Atoms C(1) and C(2) lie on the mirror plane and are therefore shared by both orientations of the disordered ligand. The other atoms (S, C(3)-C(6), and C(14)-C(18)) lie on general positions and were refined with occupancies fixed at 0.5. In the final model, all but atom C(3) were refined with anisotropic thermal parameters. Atom C(3) could not be refined anisotropically, possibly because of a high degree of correlation with the S atom due to the proximity of the two atoms in the disordered model (0.566 Å apart). Hydrogen atoms were not included in the model.

For **5**, the space group $P2_1/m$ was assigned on the basis of the systematic absences. The choice of the centric space group was suggested by intensity statistics and confirmed by the

successful refinement of the structure. The position of the Ir and Co atoms were taken from a Patterson map, and the remainder of the atoms were located from a difference Fourier synthesis. The molecule has crystallographic mirror symmetry, so that the metal atoms, one carbon of the Cp ring, and two carbon atoms of the Cp* ring lie on a mirror plane. In the final steps of refinement, all atoms but one were given anisotropic temperature factors. The atom labeled C(11) could not be refined anisotropically and so was left with an isotropic temperature factor. Hydrogen atoms were not included in the model.

Pertinent data collection and structure solution information for **4** and **5** are given in Table 2. The final positional and thermal parameters are listed in Table 3. Bond lengths and major bond angles are presented in Tables 4 and 5, and ORTEP drawings of **4** and **5** are given in Figures 1 and 2, respectively. The data reduction and structure refinement were carried out with the SDP crystallographic programs.¹¹

Results and Discussion

Reactions of Cp*Ir(η^{5} -**2**,**5**-**Me**₂**T**)²⁺ (1) with Cp₂Co and KCp. As described in the Introduction, the reaction of **1** with 2 mol of Cp₂Co gives (eq 1) primarily complexes **2** and **3**, but we now find that a small amount (4%) of deep red Cp*Ir(η^{4} -2,5-Me₂T·C₅H₄) (**4**) (eq 2) is also produced. Elemental analyses and the mass spec-

$$1 + 2 Cp_2 Co$$
 $\xrightarrow{\text{THF}}_{25 \circ \text{C}, 8 \text{ h}}$ $2 + 3 + \text{S}$ $\stackrel{\text{Me}}{\underset{\text{IrCp}^*}{}}$ (2)

trum confirm the composition of **4**, and an X-ray diffraction study establishes its structure as that shown in eq 2. The structure (Figure 1) is related to those of $Cp^*Ir(\eta^4-SC_3H_2MeC(=O)Me)$ (**A**)¹² and $Cp^*Rh(\eta^4-SC_3-H_2MeC(=O)Me)$

⁽¹¹⁾ Enraf-Nonius Structure Determination Package, Enraf-Nonius, Delft, The Netherlands.

⁽¹²⁾ Chen, J.; Angelici, R. J. Inorg. Chim. Acta, in press.

Table 3. Positional Parameters and *B* Values (Å²) and Their Estimated Standard Deviations for 4 and 5

		4			5 x y z			
atom	X	у	Z	Bb	X	У	Z	Bb
Ir	0.18432(7)	0.250	0.18553(5)	3.00(1)	0.23299(6)	0.250	0.21496(4)	1.48(1)
Со					0.1411(3)	0.250	-0.0689(2)	1.78(3)
S	0.3636(8)	0.3770(5)	0.0805(7)	4.4(1)				
C(1)	0.258(3)	0.250	-0.150(2)	6.4(5)	0.298(2)	0.4429(7)	0.086(1)	3.6(2)
C(2)	0.329(2)	0.250	-0.005(2)	4.3(4)	0.325(2)	0.3384(7)	0.0789(9)	2.8(2)
C(3)	0.374(2)	0.165(1)	0.071(2)	2.3(3) ^a	0.409(1)	0.3012(7)	-0.0281(8)	2.6(2)
C(4)	0.444(2)	0.186(2)	0.217(2)	3.3(4)				
C(5)	0.464(3)	0.103(2)	0.319(3)	4.1(5)				
C(6)	0.421(5)	-0.007(2)	0.271(3)	7.6(8)				
C(11)	-0.102(2)	0.250	0.143(2)	4.7(4)	0.319(2)	0.250	0.446(1)	1.8(2) ^a
C(12)	-0.053(1)	0.163(1)	0.224(1)	4.8(2)	0.200(2)	0.3313(6)	0.4108(9)	2.7(2)
C(13)	0.018(1)	0.1988(8)	0.350(1)	3.4(2)	0.018(1)	0.3008(6)	0.3372(9)	2.3(2)
C(14)	0.540(3)	0.119(2)	0.448(2)	4.4(5)				
C(15)	0.556(3)	0.047(2)	0.569(3)	6.7(6)				
C(16)	0.623(4)	0.102(2)	0.676(3)	6.5(7)				
C(17)	0.646(3)	0.209(2)	0.636(3)	5.2(6)				
C(18)	0.598(2)	0.217(1)	0.505(2)	3.8(5)				
C(21)	-0.182(3)	0.250	-0.004(2)	8.9(7)	0.513(3)	0.250	0.548(2)	6.1(6)
C(22)	-0.091(2)	0.052(1)	0.183(2)	7.9(4)	0.262(2)	0.4294(8)	0.450(1)	5.5(3)
C(23)	0.074(2)	0.131(1)	0.481(1)	6.1(3)	-0.151(2)	0.3638(8)	0.283(1)	4.2(2)
C(31)					-0.004(3)	0.250	-0.286(2)	8.1(8)
C(32)					-0.049(2)	0.3278(9)	-0.214(2)	6.9(3)
C(33)					-0.122(2)	0.299(1)	-0.115(1)	9.5(4)

^{*a*} Atom refined isotropically. ^{*b*} Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter as $(4/3)[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)]$.

Table 4. Bond Distances $(\text{\AA})^a$ for 4 and 5						
	4	5		4	5	
Ir-S	2.411(6)		C(3)-C(4)	1.50(3)		
Ir-Co		2.584(1)	C(3) - C(3')		1.46(1)	
Ir-C(2)	2.16(1)	2.011(7)	C(4) - C(5)	1.48(3)		
Ir-C(3)	2.17(2)		C(5)-C(6)	1.56(3)		
Ir-C(4)	2.16(2)		C(5)-C(14)	1.37(3)		
Co-C(2)		2.107(6)	C(14) - C(15)	1.50(3)		
Co-C(3)		2.019(7)	C(14)-C(18)	1.46(3)		
S-C(2)	1.885(9)		C(15)-C(16)	1.34(4)		
C(1) - C(2)	1.47(2)	1.51(1)	C(16) - C(17)	1.49(4)		
C(2)-C(3)	1.38(2)	1.39(1)	C(17)-C(18)	1.30(3)		

 $^a\,\rm Numbers$ in parentheses are estimated standard deviations in the least significant digits.

 $Me_3C(=O)Me$) (**B**).^{13,14} Although there is disorder in the

 $\eta^{4-2,5-\text{Me}_2\text{T}\cdot\text{C}_5\text{H}_4}$ ligand, the C–C bond distances suggest that double bonds are located at C(5)–C(14) (1.37(3) Å), C(15)–C(16) (1.34(4)), and C(17)–C(18) (1.30(3)), and single bonds are at C(4)–C(5) (1.48(3) Å), C(14)–C(15) (1.50(3)), C(16)–C(17) (1.49(4)), and C(14)–C(18) (1.46(3)).^{15} The conjugated triene system is conjugated with the allyl portion of the ligand. The C(2)–C(3) distance (1.38(2) Å) appears to be shorter than that of C(3)–C(4) (1.50(3)), although they may be the same within experimental error. In the rhodium analog (**B**), the C(2)–C(3) distance (1.39(2) Å) also appears, as in **4**, to be shorter than C(3)–C(4) (1.45(2) Å). The errors in all of these bond lengths are sufficiently large that it

is not possible to state unequivocally the relative lengths of these bonds. The C(2)–S distance (1.885(9) Å) appears to be unusually long as compared with normal $C(sp^2)-S$ (1.75 Å) and $C(sp^3)-S$ (1.81 Å) single-bond distances.¹⁵ However, the C(2)–S and C(2)–C(3) distances in **4** are less reliable than indicated by the esd's due to high correlation between these disordered atoms.

When the molar ratio of Cp_2Co to **1** in reaction 2 is increased from 2 to 4, the yield of the ring-opened product **4** increases from 4% to 38%, while the yield of **2** decreases from 33% to 16%. This result suggests that **4** may form from **2** or possibly from **3**. However, this is not the case since **2** and **3** react with Cp_2Co to give a totally different product (**5**); this reaction is discussed in the next section. Although the mechanism for the formation of **4** from **1** in reaction 2 is not obvious, it presumably results from the transfer of Cp^- from Cp_2 -Co to **1**. Indeed, compound **4** can also be prepared in relatively high yield (45%) from the reaction of **1** with 2 mol of KCp (eq 3). This reaction presumably occurs

1 + 2 Cp⁻
$$\xrightarrow{\text{THF}}$$
 4 + C₅H₆ (3)
8 h

by nucleophilic addition of Cp^- on C(2) of **1** to give **C** (eq 4), in which the C(2)-S bond is cleaved, as shown

in eq 4 and observed in the addition of nucleophiles at C(2) in CpRu(η^5 -thiophene)⁺,¹⁶ or the C(2)–S bond may

⁽¹³⁾ Skaugset, A. E.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 1992, 114, 8521.

⁽¹⁴⁾ Skaugset, A. E.; Rauchfuss, T. B.; Wilson, S. R. Organometallics 1990, 9, 2875.

⁽¹⁵⁾ Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1.

 ^{(16) (}a) Spies, G. H.; Angelici, R. J. Organometallics 1987, 6, 1897.
 (b) Hachgenei, J. W.; Angelici, R. J. Organomet. Chem. 1988, 355, 359.

			0 0		
	4	5		4	5
S-C(2)-C(1)	116.7(4)		C(4)-C(5)-C(6)	120(2)	
S - C(2) - C(3)	118(1)		C(4) - C(5) - C(14)	121(2)	
C(2) - Ir - C(2')		78.0(4)	C(6)-C(5)-C(14)	119(2)	
Ir-C(2)-Co		77.7(2)	C(5)-C(14)-C(15)	128(2)	
Ir - C(2) - C(1)		122.1(6)	C(5)-C(14)-C(18)	126(2)	
Ir - C(2) - C(3)		118.4(5)	C(15)-C(14)-C(18)	105(2)	
C(1)-C(2)-C(3)	124.9(9)	119.5(7)	C(14) - C(15) - C(16)	105(2)	
C(2)-C(3)-(4)	114(2)		C(15)-C(16)-C(17)	112(2)	
C(2)-C(3)-C(3')		112.6(4)	C(16) - C(17) - C(18)	106(2)	
C(3) - C(4) - C(5)	119(2)		C(14) - C(18) - C(17)	111(2)	

 Table 5.
 Selected Bond Angles (deg)^a for 4 and 5

^a Numbers in parentheses are estimated standard deviations in the least significant digits.

Figure 1. ORTEP drawing of $Cp^*(\eta^4-2,5-Me_2T\cdot C_5H_4)$ (4).

still be intact as observed in products obtained from nucleophilic attack on C(2) of $(CO)_3Mn(\eta^5-\text{thiophene})^{+,17,18}$ or the C(2)–S bond may be relatively long and weak as established for the product Cp*Rh $(\eta^4-\text{Me}_4\text{T}-2-\text{OH})^+$ resulting from OH⁻ addition at C(2) of Cp*Rh $(\eta^5-\text{Me}_4\text{T})^{2+}$, where Me₄T is tetramethylthiophene.¹³ Deprotonation of the relatively acidic cyclopentadiene hydrogen in **C** by another Cp⁻ gives intermediate **D**, which isomerizes to the final product **4**. The reaction of Cp*Rh $(\eta^5-\text{Me}_4\text{T})^{2+}$ with OH⁻ to give **B** has been proposed to follow a similar mechanism.¹³

The formation of **4** by the reaction (eq 3) of **1** with Cp⁻ raises the possibility that in reaction 2 Cp⁻ is produced in the formation of Cp₂Co from Cp₂Co⁺PF₆⁻ (0.970 mmol) and NaK_{2.8} (1.00 mmol) and that this Cp⁻ reacts (eq 3) with **1** to give **4**. This seems unlikely, however, since Cp₂Co that is purified by extraction into hexanes/THF (~5:1) away from other products of the reaction gives products **2**–**4** in essentially the same yields as are obtained in reactions using unextracted Cp₂Co. Also, there is no evidence¹⁸ for the formation of Cp⁻ in the electrochemical reduction of Cp₂Co⁺ in THF to Cp₂Co (-0.90 V) and even to Cp₂Co⁻ (-2.04 V); both of these reductions are reversible.

Unlike KCp (eq 4), the allyl Grignard reagent CH_2 =CHCH₂MgBr does not add at C(2) of **1** to give an intermediate which undergoes deprotonation to give a 1,3-diene product analogous to **4**. Instead (eq 5) the

$$1 + 2 CH_2 = CH - CH_2 MgBr \qquad \xrightarrow{THF} Br \qquad \swarrow \\ 18 h \qquad Cp^* \qquad (5)$$

entire η^{5} -2,5-Me₂T ligand is displaced by the allyl group

to give yellow $Cp^*Ir(\eta^3-C_3H_5)Br$, analogs of which have been prepared by other methods previously.^{19–21} Complex **7** is readily soluble in both polar and nonpolar organic solvents, and the solid is air-stable for several days. Elemental analyses and the mass spectrum are consistent with the $Cp^*Ir(\eta^3-C_3H_5)Br$ composition. Its ¹H NMR spectrum (Table 1) shows resonances for the three types of protons characteristic of allyl groups.^{19–21}

Reactions of Cp*Ir(η^{4} -2,5-Me₂T) (2) and Cp*Ir-(*C*,*S*-2,5-Me₂T) (3) with Cp₂Co and Cp*Co(C₂H₄)₂. Both 2 and 3 react at room temperature with 2 mol of

Cp₂Co to give (eq 6) dark red Cp*[IrC(Me)=CHCH=C-

(Me)]CoCp (5). The reaction of **3** occurs somewhat more rapidly (8 h) than that of **2** (13 h) and gives a slightly higher yield (42% vs 36%). Also, in the reaction of **2** with Cp₂Co, a small amount of **3** was produced. These results suggest that the reaction of **2** with Cp₂Co occurs by initial isomerization to the more stable **3**, which reacts with Cp₂Co to give **5**. Other reactions of **2** and **3**, e.g., with Lewis acids,^{4,22,23} bases,²⁴ and oxidizing agents,¹² also give the same products. Complex **5** is soluble in both polar and nonpolar organic solvents. Although its solutions are air-sensitive, the solid is stable for short periods in air.

The η^5 -C₅Me₅ analog of **5** is prepared in reactions of **2** and **3** with Cp*Co(CH₂=CH₂)₂ (eq 7). Dark-purple **6**

was obtained in approximately the same yield (35-39%) from either **2** or **3**. Attempts to prepare the diiridium

 ^{(17) (}a) Lesch, D. A.; Richardson, J. W., Jr.; Jacobson, R. A.; Angelici,
 R. J. J. Am. Chem. Soc. 1984, 106, 2901. (b) Huckett, S. C.; Sauer, N.
 N.; Angelici, R. J. Organometallics 1987, 6, 591.

⁽¹⁸⁾ Bard, A. J.; Garcia, E.; Kukharenko, S.; Strelets, V. V. Inorg. Chem. 1993, 32, 3528.

⁽¹⁹⁾ Nesmeyanov, A. N.; Rubezhov, A. Z. J. Organomet. Chem. 1979, 164, 259.

⁽²⁰⁾ Rubezhov, A. Z.; Ivanov, A. S.; Gubin, S. P. *Izv. Akad. Nauk* SSSR, Ser. Khim. **1974**, 2651.

⁽²¹⁾ Leigh, G. J.; Richards, R. L. in *Comprehensive Organometallic Chemistry*; Wilkinson, G., Ed.; Pergamon Press: London, 1982; Vol. 5, p 609.

analog of **6** by reacting **2** and **3** with $Cp^*Ir(CH_2=CH_2)_2$ under the conditions in eq 7 were unsuccessful; the $Cp^*Ir(CH_2=CH_2)_2$ did not react. Likewise, $Pt(PPh_3)_2$ - $(CH_2=CH_2)$ did not react with **2** or **3**.

Mechanisms for reactions 6 and 7 must account for the removal of sulfur from **2** and **3**; however, a specific sulfur-containing product was not identified in either reaction. Reaction 7 may occur by a pathway (Scheme 1; $L = C_2H_4$) similar to one proposed for the reaction of **3** with Fe(CO)₅, Fe₂(CO)₉, and Fe₃(CO)₁₂.²⁵ As applied to reaction 7, this mechanism begins with coordination of the Cp*Co(L) fragment to the sulfur in **3** which promotes the migration of C(2) from sulfur to Ir giving an intermediate with a metallacyclopentadiene ring and a bridging sulfur. As shown in Scheme 1, this sulfur then coordinates to another Cp*Co(L) fragment to form an intermediate that has a structure similar to that of

Cp*[IrC(Me)=CHCH=C(Me)](μ -SFe(CO)₄)Fe(CO)₂ (**8** in ref 25), whose structure was established by X-ray diffraction studies. Product **6** is then produced from this intermediate by loss of Cp*Co(=S)(C₂H₄). This latter complex is a cobalt analog of Cp*Ir(=S)(PMe₃) which is a proposed intermediate in the formation of sulfide-bridged iridium dimers.²⁶ While speculative, the mechanism in Scheme 1 provides a basis for understanding reaction 7. Reactions 6 and 7 demonstrate that cobalt complexes, like iron carbonyls,^{25,27} can promote the desulfurization of the thiophene in **2** and **3**. This general type of desulfurization reactivity of **2** and **3** is consistent with the involvement of η^4 or ring-opened thiophenes in HDS, as proposed previously.²⁵

Although Cp*Co(C₂H₄)₂ reacts (eq 7) with 2,5-dimethylthiophene in **2** and **3** to give the desulfurized product **6**, Cp*Co(C₂H₄)₂ reacts with thiophene itself to give [Cp*Co]₂(μ - η^2 , η^3 -C₄H₄S) in which a C–S bond of the thiophene is cleaved.²⁷ The ring-opened thiophene bridges the two Co atoms which are bonded to each other. The rhodium analog Cp*Rh(C₂H₄)₂ reacts with thiophene to give a product [Cp*Rh]₂(μ -1,2,3,4- η^4 :5,6,7,10- η^4 -S(CH)₈S], in which two ring-opened thiophenes bridge

- Skaugset, A. E.; Rauchfuss, T. B. Organometallics 1989, 8, 2739.
 (28) (a) Jones, W. D.; Chin, R. M. Organometallics 1992, 11, 2698.
- (b) Jones, W. D.; Chin, R. M. J. Organomet. Chem. 1994, 472, 311.

Figure 2. ORTEP drawing of Cp*[IrC(Me)=CHCH=C-(Me)]CoCp (5).

two Rh atoms that are not bonded to each other.²⁹ Clearly, $Cp*Co(C_2H_4)_2$ and $Cp*Rh(C_2H_4)_2$ are highly reactive toward thiophene to give unusual products.

The structure of **5** consists of a planar $(\pm 0.02 \text{ Å})$ iridacyclopentadiene (IrC₄) unit π -bonded to the cobalt. The dihedral angle between the IrC₄ and Cp planes is only 0.8(2)°, demonstrating that these planes are essentially parallel. The dihedral angle between the IrC₄ and Cp* (C(11), C(12), C(13), C(12'), (C(13')) planes is 78.8(2)°. Within the iridacyclopentadiene ring, the Ir-C(2) distance (2.011(7) Å) is somewhat shorter than that of an $Ir-C(sp^2)$ single bond (2.054(4) Å), as occurs in the vinyl complex Cp*(H)(PMe₃)IrCH=CH₂,³⁰ but is significantly longer than the Ir=C double bonds (1.868(9) and 1.872(7) Å) in $[N(SiMe_2CH_2PPh_2)_2]Ir=CH_2^{31}$ and $(PPh_3)_2Cl_3Ir = CCl_2$.³² This suggests that there is some π -bonding between Ir and C(2) but not as much as there is in **3** for which the Ir-C distance is 1.986(6) Å. The C(2)-C(3) distance (1.39(1) Å) in **5** is shorter than C(3)-C(3') (1.46(1) Å), which indicates that the IrC₄ ligand has primarily diene character.

The dicobalt analog, Cp[CoCH=CHCH=CH]CoCp, of **5** and **6** is known³³ and presumably has the same structure as **5**. At high temperatures (>90 °C), the Cp resonances of the dicobalt complex broaden and then coalesce (142 °C), which indicates that the two CpCo units exchange positions in and out of the cobaltacyclopentadiene ring. In **5**, it is the iridium rather than the cobalt that is incorporated into the metallacyclopentadiene unit, and there is no evidence for exchange of the Cp*Ir and CpCo groups.

Complex **6** presumably has the same structure as **5** on the basis of their ¹H NMR spectra (Table 1), which are similar except that the Cp*Ir and diene resonances are at higher field in **6** due to the greater electron density provided by the Cp* ligand on the cobalt. There

⁽²²⁾ Chen, J.; Angelici, R. J. Organometallics 1990, 9, 879.

⁽²³⁾ Chen, J.; Angelici, R. J. Organometallics 1990, 9, 849.

⁽²⁴⁾ Chen, J.; Daniels, L. M.; Angelici, R. J. Polyhedron 1990, 9, 1883.

⁽²⁵⁾ Chen, J.; Daniels, L. M.; Angelici, R. J. J. Am. Chem. Soc. 1991, 113, 2544.

⁽²⁶⁾ Dobbs, D. A.; Bergman, R. G. Inorg. Chem. 1994, 33, 5329.

^{(27) (}a) Luo, S.; Ogilvy, A. E.; Rauchfuss, T. B.; Rheingold, A. L.; Wilson, S. R. *Organometallics* **1991**, *10*, 1002. (b) Ogilvy, A. E.;

⁽²⁹⁾ Chin, R. M.; Jones, W. D. Angew. Chem., Int. Ed. Engl. 1992, 31, 357.

^{(30) (}a) Stoutland, P. O.; Bergman, R. G. J. Am. Chem. Soc. **1985**, 107, 4580. (b) Stoutland, P. O.; Bergman, R. G. J. Am. Chem. Soc. **1988**, 110, 5732.

⁽³¹⁾ Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J. J. Am. Chem. Soc. 1985, 107, 6708.

⁽³²⁾ Clark, G. R.; Roper, W. R.; Wright, A. H. J. Organomet. Chem. 1982, 236, C7.

⁽³³⁾ Rosenblum, M.; North, B.; Wells, D.; Giering, W. P. J. Am. Chem. Soc. **1972**, *94*, 1239.

are numerous other metallacyclopentadiene complexes, prepared by a variety of routes.³⁴⁻³⁶ A few are formed by the desulfurization of thiophenes.^{25,27,37}

Conclusion

The reduction of Cp*Ir(η^{5} -2,5-Me₂T)(BF₄)₂ (1) with 2 mol of Cp₂Co gives (eq 2) Cp*Ir(η^{4} -2,5-Me₂T) (2) (33% yield) as the major product with smaller yields of Cp*Ir-(*C*,*S*-2,5-Me₂T) (3) (7.9%) and Cp*Ir(η^{4} -2,5-Me₂T·C₅H₄) (4) (4%). However, the reduction of 1 with 4 mol of Cp₂-Co yields 4 (38%) as the major product together with smaller amounts of 1 (16%) and 2 (8.5%). The formation of 4 apparently occurs by transfer of Cp⁻ from Cp₂Co

(36) (a) Bruce, M. I.; Low, P. J.; Skelton, B. W.; White, A. H. J. Organomet. Chem. **1994**, 464, 191. (b) Kraatz, H. B.; Went, M. J.; Jeffrey, J. C. J. Organomet. Chem. **1990**, 394, 167. (c) Müller, J.; Akhnoukh, T.; Pickardt, J.; Siewing, M.; Westphal, B. J. Organomet. Chem. **1993**, 459, 325.

(37) (a) Ogilvy, A. E.; Draganjac, M.; Rauchfuss, T. B.; Wilson, S.
 R. Organometallics 1988, 7, 1171. (b) Hübener, P.; Weiss, E. J.
 Organomet. Chem. 1977, 129, 105.

to C(2) of **1**. Compound **4** does not result from the reaction of **2** or **3** with the excess Cp_2Co , because these reactions lead (eq 6) to a quite different product Cp^* -

[IrC(Me)=CHCH=C(Me)]CoCp (5), which is formed by the desulfurization of the 2,5-Me₂T ligand in **2** and **3**. The formation of **5** is related to reactions of **2** and **3**²⁵ and Cp*Rh(η^4 -Me₄T)²⁷ with iron carbonyls which also

give metallacyclopentadiene compounds, Cp*[IrC-(Me)=CHCH=C(Me)](μ -CO)Fe(CO)₂ and Cp*Rh[FeC-(Me)=C(Me)C(Me)=C(Me)](CO)₃. These reactions demonstrate that η^4 - and *C*,*S*-thiophene ligands are readily desulfurized to give metallacyclopentadiene complexes.

Acknowledgment. This research was supported by the Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under contract W-7045-Eng-82 to Iowa State University. We appreciate the loan of IrCl₃ by Johnson Matthey, Inc.

Supporting Information Available: Tables of bond distances, bond angles, displacement parameters, and least-squares planes for **4** and **5** (10 pages). Ordering information is given on any current masthead page.

OM9505625

⁽³⁴⁾ Fehlhammer, W. P.; Stolzenberg, H. in *Comprehensive Organometallic Chemistry*; Wilkinson, G., Ed.; Pergamon Press: London, 1982; Vol. 4, p 550.

 ^{(35) (}a) Yamazaki, H.; Yasufuku, K.; Wakatsuki, Y. Organometallics
 1983, *2*, 726. (b) King, M.; Holt, E. M.; Radnia, P.; McKennis, J. S. Organometallics
 1982, *1*, 1718. (c) Astier, A.; Daran, J.-C.; Jeannin, Y.; Rigault, C. J. Organomet. Chem. **1983**, 241, 53. (d) Müller, J.; Qiao, K.; Schubert, R. Tschampel, M. Z. Naturforsch., B: Chem. Sci. **1993**, 48, 1558.