Synthesis and Properties of the Transition Metal Complexes of a Tritertiary Stibine, 1,1,1-Tris((diphenylstibino)methyl)ethane. Structure of *fac*-[Mo(CO)₃{MeC(CH₂SbPh₂)₃}]

Andrew F. Chiffey, John Evans, William Levason,* and Michael Webster

Department of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.

Received October 17, 1995[®]

The tritertiary stibine $MeC(CH_2SbPh_2)_3$ (tts) reacted with $[M(CO)_6]$ (M = Cr, Mo, W) in ethanol in the presence of NaBH₄ to form *fac*- $[M(CO)_3(tts)]$, which were characterized by analysis, IR spectroscopy, and ¹H and ¹³C{¹H} NMR spectroscopy. The crystal structure of the Mo derivative has been determined by single-crystal X-ray diffraction and shown to be the *fac* isomer (Sb-Mo = 2.7263(5)-2.7462(5) Å). The complexes $[Pd(tts)Cl_2]$ and $[Pt(tts)-Cl_2]$ in which the tts coordinates as a bidentate ligand, and *fac*- $[Rh(tts)Cl_3]$ and $[Cu(tts)-(MeCN)]PF_6$ in which it is tridentate, were also prepared and characterized spectroscopically. These complexes are the first examples reported containing a tritertiary stibine ligand.

Introduction

Many polydentate phosphine and arsine ligands have been prepared, and their coordination chemistry has been studied in considerable detail.^{1–3} Several of the phosphine ligands are commercially available. In marked contrast the transition metal compounds of stibine ligands mostly contain monodentate SbR₃ ligands.⁴ Bidentate ditertiary stibines have received limited study, and only two complexes have been structurally characterized: $[Co{\{o-C_6H_4(SbMe_2)_2\}_2Cl_2]_2[CoCl_4]^5}$ and $[Pd_2(Ph_2SbCH_2SbPh_2)_2Ph_2Cl_2].^6$ Here we report the synthesis and characterization of the first complexes containing a tritertiary stibine ligand, 1,1,1-tris(diphenylstibinomethyl)ethane, MeC(CH_2SbPh_2)_3.

Results and Discussion

The ligand MeC(CH₂SbPh₂)₃ (tts) was first prepared by Ellermann and Veit,⁷ who obtained it along with tetraphenyldistibane (Ph₄Sb₂) by reaction of NaSbPh₂ with MeC(CH₂Br)₃ in liquid ammonia and subsequently converted it into MeC(CH₂SbCl₂)₃ and the tristibane MeC(CH₂Sb)₃. No complexes of tts have been reported. We obtained tts as a white air-stable powder in poor yields (12–15%) by Ellermann's route, the poor yields in part resulting from the fractional crystallizations necessary to separate tts from Ph₄Sb₂. The ¹H and ¹³C-{¹H} NMR spectra (Experimental Section) confirm the structure of the ligand, and the FAB mass spectrum (3NOBA matrix) exhibits a very weak parent ion multiplet $(m/z = 896, C_{41}H_{39}^{121}Sb_2^{123}Sb^+)$ and stronger peaks due to cleavage of C_6H_6 $(m/z = 818, C_{35}H_{33}^{121}Sb_2^{123}Sb^+)$ and SbPh₂ $(m/z = 621, C_{29}H_{29}^{121}Sb_2^+)$ groups from the molecular ion.

fac-[M(CO)₃(tts)] (M=Cr, Mo, W). The reaction of tts with $Mo(CO)_6$ in refluxing ethanol containing NaBH₄ resulted in high yields of white $[Mo(CO)_3(tts)]$. The pale yellow chromium and white tungsten analogues were obtained similarly, and under the conditions used even with different M(CO)₆:tts ratios, the tricarbonyl complexes were the only significant products, neither the IR nor ¹H NMR spectra showing evidence for the presence of other complexes. $[Mo(CO)_3(tts)]$ was also produced although in an impure form, by reaction of $[Mo(CO)_3(MeCN)_3]$ with the ligand. The reactions of MeC(CH₂PPh₂)₃ with M(CO)₆ in the presence of NaBH₄ were reported by Chatt *et al.*,⁸ but interestingly in this case the tetracarbonyls *cis*-[M(CO)₄{MeC(CH₂PPh₂)₃}] in which the triphosphine is bound as a bidentate were produced. fac- $[M(CO)_3 \{MeC(CH_2PPh_2)_3\}]^{9,10}$ were obtained either by displacement of the arene from $[M(\pi$ arene)(CO)₃] or by direct thermal reaction with $M(CO)_6$, and complexes of the related arsine MeC(CH₂AsMe₂)₃ have been described.¹¹ The IR spectra of [M(CO)₃(tts)] (Table 1) 12,13 contain two carbonyl stretches, and the $^1\mathrm{H}$ NMR spectra show single δ (CH₂) resonances consistent with a *fac* geometry; this was confirmed by the X-ray crystal structure determination of the molybdenum complex. The carbonyl stretching frequencies of the tts complexes may be compared with those of related complexes (Table 1). The ν (CO) frequencies are generally higher in the stibine complexes than those of the corresponding phosphine, consistent with the lower σ -donor power of the stibine. The ¹³C{¹H} NMR spectra

[®] Abstract published in *Advance ACS Abstracts*, February 1, 1996. (1) Stelzer, O.; Langhans, K. P. In *The Chemistry of Organophosphorus Compounds*; Hartley, F. R., Ed.; Wiley: New York, 1990; Vol. 1, p 191.

⁽²⁾ Levason, W. In *The Chemistry of Organophosphorus Compounds*, Hartley, F. R., Ed.; Wiley: New York, 1990; Vol. 1, p 567.
(3) McAuliffe, C. A. In *Comprehensive Coordination Chemistry*,

⁽³⁾ McAuliffe, C. A. In *Comprehensive Coordination Chemistry*, Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: London, **1987**, *2*, 989.

⁽⁴⁾ Champness, N. R; Levason, W. Coord. Chem. Rev. 1994, 133, 115.

⁽⁵⁾ Jewiss, H. C.; Levason, W.; Spicer, M. D.; Webster, M. Inorg. Chem. 1987, 26, 2102.

⁽⁶⁾ Chiffey, A. F.; Evans, J.; Levason, W.; Webster, M. Organometallics 1995, 14, 1522.

⁽⁷⁾ Ellermann, J.; Veit, A. J. Organomet. Chem. 1985, 290, 307.

⁽⁸⁾ Chatt, J.; Leigh, G. J.; Thankarajan, N. *J. Organomet. Chem.* **1971**, *29*, 105.

⁽⁹⁾ Chatt, J.; Watson, H. R. J. Chem. Soc. 1961, 4980.
(10) Ismail, A. A.; Butler, I. S. J. Organomet. Chem. 1988, 346, 185.

⁽¹⁰⁾ Ismail, A. A.; Butler, I. S. J. Organomet. Chem. **1988**, 346, 185.
(11) Nyholm, R. S.; Snow, M. R.; Stiddard, M. H. B. J. Chem. Soc. **1965**, 6564.

⁽¹²⁾ Benlian, D.; Bigorgne, M. Bull. Soc. Chim. Fr. **1963**, 1583.

⁽¹³⁾ Abel, E. W.; Bennett, M. A.; Wilkinson, G. J. Chem. Soc. 1959, 2323.

Table 1. IR Spectroscopic Data on [M(CO)₃L₃] Complexes

complex	ν (CO)/cm ⁻¹ ^a	ν (CO)/cm ⁻¹
[Cr(CO) ₃ (tts)]	1925, 1844	1922, 1838 ^b
$[Mo(CO)_3(tts)]$	1942, 1854	1934, 1850 ^b
$[W(CO)_3(tts)]$	1934, 1844	1928, 1838 ^b
$[Cr(CO)_{3}{MeC(CH_{2}PPh_{2})_{3}}]^{c}$	1930, 1834	
$[Mo(CO)_3 \{MeC(CH_2PPh_2)_3\}]^c$	1930, 1834	
$[W(CO)_3 \{MeC(CH_2PPh_2)_3\}]^c$	1905, 1830	
$[Cr(CO)_{3}{MeC(CH_{2}AsMe_{2})_{3}}]^{d}$		1923, 1825 ^e
$[Mo(CO)_3 \{MeC(CH_2AsMe_2)_3\}]^d$		1935, 1835 ^e
$[W(CO)_3 \{MeC(CH_2AsMe_2)_3\}]^d$		1930, 1835 ^e
[Mo(CO) ₃ (SbEt ₃) ₃] ^f		1994, 1859 ^e
[Mo(CO) ₃ (SbPh ₃) ₃] ^g		1972, 1875 ^e

 a 1,2-Dichloroethane solution. b KBr disk. c Data from ref 9. d Data from ref 11. e Nujol mulls. f Data from ref 12. g Data from ref 13.

Figure 1. Molecular structure of $[Mo(CO)_3{MeC(CH_2-SbPh_2)_3}]$ showing the atom-labeling scheme. H atoms have been omitted for clarity, and the thermal ellipsoids are drawn at the 50% probability level.

revealed single carbonyl resonances at δ 235.0 (Cr), 222.2 (Mo), and 212.3 (W), which show the expected shift^{14,15} to low frequency as group 6 is descended.

Structure of *fac*-**[Mo(CO)₃(tts)].** The structure consists of discrete molecules with the expected *fac* stereochemistry which are shown in Figures 1 and 2. Complexes of the phosphine ligand corresponding to tts have been reported many times, and in particular *fac*- $[Mo(CO)_3\{MeC(CH_2PPh_2)_3\}]$ is known.¹⁶ A number of closely related phosphine complexes with phenyl replaced by other aryl/alkyl groups have also been reported. The arsenic analogue of tts has been characterized by X-ray analysis in a binuclear cobalt complex¹⁷ $[Co_2H_3\{MeC(CH_2ASPh_2)_3\}_2]^+$ and the corresponding phosphorus compound is also known. The geometry of the present compound is detailed in Table 2 and provides the first characterization of this ligand. The Sb–Mo distances (2.7263(5)–2.7462(5) Å) may be compared

Figure 2. Molecular structure of $[Mo(CO)_3{MeC(CH_2-SbPh_2)_3}]$ with phenyl C atoms and H atoms omitted. Thermal ellipsoids are drawn at the 50% level.

Table 2.	Selected Bond Distances (Å) and			
Angles (deg)				

	0	× θ [,]	
Sb(1)-Mo(1)	2.7341(5)	Sb(3)-C(61)	2.148(5)
Sb(1) - C(4)	2.174(4)	Mo(1) - C(1)	1.979(5)
Sb(1) - C(11)	2.146(4)	Mo(1) - C(2)	1.965(5)
Sb(1)-C(21)	2.132(5)	Mo(1)-C(3)	1.971(5)
Sb(2)-Mo(1)	2.7263(5)	O(1) - C(1)	1.152(5)
Sb(2) - C(5)	2.163(5)	O(2) - C(2)	1.162(5)
Sb(2)-C(31)	2.137(5)	O(3)-C(3)	1.160(5)
Sb(2)-C(41)	2.145(5)	C(4) - C(7)	1.548(6)
Sb(3)-Mo(1)	2.7462(5)	C(5) - C(7)	1.547(6)
Sb(3)-C(6)	2.168(5)	C(6)-C(7)	1.546(6)
Sb(3)-C(51)	2.138(5)	C(7)-C(8)	1.543(6)
C-	C(nhenvl) 1 '	358(8) - 1399(7)	
$M_{0}(1) = Sh(1) = C(4)$	112 Q(1)	Sb(0) = 1.000(1) - Sb(2)	82 01(1)
$M_0(1) = Sb(1) = C(11)$	128 A(1)	Sb(2) = Mo(1) = C(1)	80 3(1)
$M_0(1) = Sb(1) = C(11)$ $M_0(1) = Sb(1) = C(21)$	120.4(1) 119 8(1)	Sb(2) = Mo(1) = C(1)	03.3(1) 01 5(1)
C(4) = Sb(1) = C(11)	071(2)	Sb(2) - Mo(1) - C(2)	178 A(1)
C(4) = Sb(1) = C(11) C(4) = Sb(1) = C(21)	1038(2)	Sb(2) = Mo(1) = C(3) Sb(3) = Mo(1) = C(1)	060(1)
C(4) = SD(1) = C(21)	97 3(2)	Sb(3) = Mo(1) = C(2)	170.9(1)
$M_0(1) - Sh(2) - C(5)$	114 9(1)	Sb(3) - Mo(1) - C(2) Sb(3) - Mo(1) - C(3)	96 1(1)
$M_0(1) - Sb(2) - C(31)$	125 2(1)	$C(1) - M_0(1) - C(2)$	90 2(2)
$M_0(1) - Sb(2) - C(41)$	120.2(1) 112.9(1)	C(1) - Mo(1) - C(3)	89 6(2)
C(5)-Sb(2)-C(31)	97.5(2)	C(2) - Mo(1) - C(3)	89 7(2)
C(5)-Sb(2)-C(41)	102.7(2)	$M_0(1) - C(1) - O(1)$	179.0(4)
C(31) - Sb(2) - C(41)	100.3(2)	$M_0(1) - C(2) - O(2)$	179.0(4)
$M_0(1) - Sb(3) - C(6)$	113.3(1)	$M_0(1) - C(3) - O(3)$	176.2(4)
$M_0(1) - Sb(3) - C(51)$	124.1(1)	Sb(1)-C(4)-C(7)	121.9(3)
Mo(1)-Sb(3)-C(61)	117.9(1)	Sb(2)-C(5)-C(7)	120.3(3)
C(6) - Sb(3) - C(51)	102.3(2)	Sb(3)-C(6)-C(7)	121.4(3)
C(6) - Sb(3) - C(61)	100.8(2)	C(4) - C(7) - C(5)	112.9(4)
C(51)-Sb(3)-C(61)	94.6(2)	C(4) - C(7) - C(6)	112.3(4)
Sb(1)-Mo(1)-Sb(2)	83.88(2)	C(4) - C(7) - C(8)	106.4(4)
Sb(1)-Mo(1)-Sb(3)	80.20(1)	C(5) - C(7) - C(6)	112.7(4)
Sb(1) - Mo(1) - C(1)	172.9(1)	C(5) - C(7) - C(8)	105.9(4)
Sb(1) - Mo(1) - C(2)	92.2(1)	C(6) - C(7) - C(8)	106.0(4)
Sb(1)-Mo(1)-C(3)	97.1(1)		

with $[Mo(CO)_3{SbPh_2(SPh)}_3]$ (2.74 Å (av)).¹⁸ The remaining distances seem unexceptional, and Mo–C and C–O agree well with the phosphine analogue¹⁶ (1.969(3) and 1.155(3) Å, respectively). Inspection of Figure 2 and Table 2 shows the approximate (noncrystallographic) 3-fold symmetry along Mo(1)···C(7). There is a small twist of Sb(*n*) (*n* = 1–3) relative to C(*n* + 3) with a mean

⁽¹⁴⁾ Bodner, G. M.; May, M. P; McKinney, L. E. *Inorg. Chem.* **1980**, *19*, 1951. Buchner, W.; Schenk, W. A. *Inorg. Chem.* **1984**, *23*, 132.

⁽¹⁵⁾ Mann, B. E. In *Multinuclear NMR*; Mason, J., Ed.; Plenum: New York, **1987**; Chapter 10.

⁽¹⁶⁾ Walter, O.; Klein, T.; Huttner, G.; Zsolnai, L. J. Organomet. Chem. 1993, 458, 63.

⁽¹⁷⁾ Dapporto, P.; Midollini, S.; Sacconi, L. Inorg. Chem. 1975, 14, 1643.

⁽¹⁸⁾ Wieber, M.; Höhl, H.; Burschka, C. Z. Anorg. Allg. Chem. 1990, 583, 113.

torsion angle Mo(1)–Sb(n)–C(n + 3)–C(7) of 15°. A similar twist (35.6°) was noted in the phosphine analogue.¹⁶

Metal Halide Complexes. No complexes were formed by reaction of anhydrous cobalt(II) bromide or nickel(II) iodide with tts in *n*-butanol $-CH_2Cl_2$. Nor did a mixture of CoBr₂, NaBPh₄, and tts in nitromethane with free access of dry air show any tendency to form a cobalt(III) complex, a route succesful in forming complexes of alkyl-substituted distibines.⁵

The reaction of $[M'(MeCN)_2Cl_2]$ (M' = Pd, Pt) with tts in CH₂Cl₂ yielded orange [Pd(tts)Cl₂] and pale yellow [Pt(tts)Cl₂]. The UV-visible spectra of these two complexes are typical of planar d⁸ species, for example [M'{Ph₂Sb(CH₂)₃SbPh₂}Cl₂],¹⁹ indicating that the tts is bound as a bidentate ligand (I). This was confirmed by

the ¹H NMR spectra which showed a sharp singlet overlaying a complex multiplet in the $\delta(CH_2)$ region assignable to the pendant arm and ring methylene protons, respectively. The ¹H NMR spectra did not change on cooling the samples to ca - 50 °C, showing no evidence for exchange processes in this temperature range. For [Pt(tts)Cl₂] the δ (¹⁹⁵Pt) resonance of -4617 may be compared with a value of -4556 in [Pt{Ph₂Sb- $(CH_2)_3SbPh_2$ Cl_2 .²⁰ The coordination of tts to these two metals is analogous to the behavior of MeC(CH₂PPh₂)₃ and MeC(CH₂AsPh₂)₃ (L₃), which also function as bidentate chelates.²¹ For the latter complexes, it proved possible to coordinate the "free" -PPh2 or -AsPh2 groups to a second metal. For example reaction with $[Au(SMe_2)Cl]$ produced bimetallic complexes $[M'(L_3)-$ AuCl₃] (II); however, $[M'(tts)Cl_2]$ did not react with [Au(SMe₂)Cl] in CH₂Cl₂ at ambient temperatures, presumably due to the weaker donor power of the -SbPh₂ group.

Rhodium trichloride and tts in ethanol readily generated the orange [Rh(tts)Cl₃], assigned a *fac* geometry, since only a single δ (CH₂) resonance was present in the ¹H NMR spectrum, showing the three methylene groups are equivalent.

The reaction of $[Cu(MeCN)_4]PF_6$ with tts in MeCN solution formed white $[Cu(tts)(MeCN)]PF_6$, the MeCN being retained on recrystallization from cold CH_2Cl_2 , indicating it is coordinated to the copper, producing tetrahedral (Sb₃N) coordination. The MeCN ligand was identified by the ν (CN) stretch at 2273 cm⁻¹ in the IR spectrum, and by a singlet at $\delta = 1.8$ in the ¹H NMR spectrum, in addition to the usual ligand resonances. An attempt to prepare an Au(I) complex of tts by reaction of the ligand with [Au(tetrahydrothiophen)Cl] failed with production of a metallic mirror.

Conclusions

The first complexes of a tritertiary stibine ligand have been prepared and examples of tri- and bidentate coordination characterized.

Experimental Section

Physical Measurements. ¹H NMR spectra were recorded from CDCl₃ or CD₂Cl₂ solutions on a Bruker AC300 spectrometer. ¹³C{¹H} NMR spectra were obtained from CDCl₃ solutions on Bruker AC300 and AM360 spectrometers, in the cases of the carbonyl complexes with 2 s pulse delays and in the presence of Cr(acac)₃. ¹⁹⁵Pt{¹H} NMR spectra were also obtained on a Bruker AM360 (at 77.7 MHz) and are referenced to [PtCl₆]^{2–} in water. UV–visible spectra were obtained from CHCl₃ or CH₂Cl₂ solutions on a Perkin-Elmer Lambda 19, and IR spectra as KBr disks, Nujol mulls, or in 1,2-dichloroethane solutions on a Perkin Elmer 983G. C, H analyses were from the Microanalytical Laboratory of Imperial College, London.

1,1,1-Tris((diphenylstibino)methyl)ethane, MeC(CH₂-SbPh₂)₃ (tts). Sodium metal (2.0 g, 0.08 mol) in liquid ammonia (250 cm³) was treated with Ph₃Sb (14.0 g, 0.04 mol). The reaction was stirred for 3 h to produce a deep red solution. Dry NH₄Cl (2.0 g, 0.037 mol) was added in small portions to destroy NaPh. MeC(CH₂Br)₃²² (4.0 g, 0.012 mol) in dry THF (150 cm³) was added dropwise from a pressure-equalized dropping funnel. The ammonia was allowed to boil off, and the reaction was stirred overnight. Dichloromethane (150 cm³) was added, and the solution turned dark green. Any solid material was removed by filtration under vacuum to leave a vellow solution. The volume of solvent was reduced to 50 cm³ at reduced pressure, and ethanol (100 cm³) was added. The solution was left to crystallize in the freezer overnight. The products Ph₄Sb₂ and MeC(CH₂SbPh₂)₃ were separated by fractional crystallization from ethanol-dichloromethane (1.4 g, 12% yield). Anal. Calcd for C₄₁H₃₉Sb₃: C, 54.9; H, 4.4. Found: C, 54.9; H, 4.4. ¹H NMR in CDCl₃: δ(CH₃) 1.2 (s) [3H], $\delta(CH_2)$ 2.3 (s) [6H], $\delta(Ph)$ 7.1–7.4 (m) [30H] (lit.⁷ ¹H NMR: 1.2, 2.3, 7.2 ppm). ${}^{13}C{}^{1}H$ NMR in CDCl₃: $\delta(CH_3)$ 34.9, δ(CH₂) 43.5, δ(CMe) 39.6, δ(Ph) 128.9, 134.1, 136.2, 137.8 ppm.

[Pd{MeC(CH₂SbPh₂)₃}Cl₂]. [PdCl₂(MeCN)₂] (0.026 g, 0.10 mmol) was added to a solution of MeC(CH₂SbPh₂)₃ (0.10 g, 0.11 mmol) in dichloromethane (20 cm³). The solution was stirred for 1 h and then concentrated in volume at reduced pressure (2 cm³). Diethyl ether (20 cm³) was slowly added to afford an orange precipitate. The solid was filtered off and dried *in vacuo*. Three recrystallizations from CH₂Cl₂/Et₂O gave a deep yellow powder. Yield: 0.076 g (71%). Anal. Calcd for C₄₁H₃₉Cl₂PdSb₃: C, 45.8; H, 3.6. Found: C, 46.3; H, 3.7. ¹H NMR in CDCl₃: δ (CH₃) 0.95 (s), δ (CH₂) 2.0–2.5 (m), δ (Ph) 7.1–7.4 (m). UV-vis (CH₂Cl₂) [E_{max} /10³ cm⁻¹ (ϵ_{mol} /dm³ cm⁻¹, 295 cm⁻¹.

[Pt{MeC(CH₂SbPh₂)₃}Cl₂] was prepared analogously using [PtCl₂(MeCN)₂] in 68% yield. Anal. Calcd for C₄₁H₃₉-Cl₂PtSb₃: C, 42.3; H, 3.4. Found: C, 42.3; H, 3.5. ¹H NMR in CDCl₃: δ (CH₃) 0.95, δ (CH₂) 2.0–2.5 (m), δ (Ph) 7.1–7.4 (m). ¹⁹⁵Pt NMR (CH₂Cl₂): δ –4617. UV–vis (CH₂Cl₂): 32.7 (6500), 25.5 (sh). ν (Pt–Cl) (Nujol mull): 310, 295 cm⁻¹.

[**Rh**{**MeC(CH₂SbPh₂)₃**]. RhCl₃·3H₂O (0.029 g, 0.11 mmol) in ethanol (15 cm³) was added dropwise to a solution of MeC(CH₂SbPh₂)₃ (0.105 g, 0.11 mmol) in CH₂Cl₂ (10 cm³). The solution was stirred for 2 h, and then the volume of solvent

 ⁽¹⁹⁾ Levason, W.; McAuliffe, C. A. *Inorg. Chem.* 1974, *13*, 2765.
 (20) Hope, E. G.; Levason, W.; Powell, N. A. *Inorg. Chim. Acta* 1986, *115*, 187.

⁽²¹⁾ Chiffey, A. F.; Evans, J.; Levason, W. *Polyhedron*, in press. (22) Schurink, H. B. *Org. Synth.* **1937**, *17*, 73.

was reduced to 2 cm³ at reduced pressure. The orange solid that precipitated was filtered off, recrystallized twice from CH₂-Cl₂-Et₂O, and dried *in vacuo*. Yield: 0.089 g (73%). Anal. Calcd for C₄₁H₃₉Cl₃RhSb₃: C, 44.5; H, 3.5. Found: C, 45.2; H, 4.1. ¹H NMR in CDCl₃: δ (CH₃) 1.1 (s), δ (CH₂) 2.20 (s), δ (Ph) 7.1–7.4 (m). UV-vis (CH₂Cl₂): 32.2 (3100), 26.7 (3400). ν (Rh–Cl) (Nujol mull): 334, 298 cm⁻¹.

[Cu(MeCN){MeC(CH₂SbPh₂)₃}]PF₆. [Cu(MeCN)₄]PF₆ (0.056 g, 0.15 mmol) dissolved in MeCN (15 cm³) was treated with a solution of MeC(CH₂SbPh₂)₃ (0.134 g, 0.15 mmol) in MeCN (10 cm³). The solution was stirred for 1 h and then concentrated (2 cm³). Diethyl ether (20 cm³) was added to precipitate a white solid. This was filtered off and recrystallized from CH₂Cl₂-Et₂O before drying *in vacuo*. Yield: 0.101 g (59%). Anal. Calcd for C₄₃H₄₂CuF₆NPSb₃: C, 45.0; H, 3.7. Found: C, 44.7; H, 3.4. IR spectrum (Nujol): 838, 557 cm⁻¹ ([PF₆]⁻); 2273 cm⁻¹ (MeCN). ¹H NMR in CDCl₃: δ (CH₃) 1.1 (s), δ (CH₃CN) 1.8 (s), δ (CH₂) 2.20 (s), δ (Ph) 7.1–7.4 (m).

[Mo(CO)₃{MeC(CH₂SbPh₂)₃]. Mo(CO)₆ (0.03 g, 0.11 mmol) was added to a suspension of MeC(CH₂SbPh₂)₃ (0.190 g, 0.21 mmol) and NaBH₄ (0.009 g, 0.24 mmol) in ethanol (30 cm³). The mixture was heated to reflux for 5 h and then allowed to cool with stirring overnight. The material that crystallized was filtered off, washed with H₂O (3 × 30 cm³) and ethanol (30 cm³), and air dried. The white solid was recrystallized from CH₂Cl₂–MeOH and dried *in vacuo*. Yield: 0.08 g (64%). Anal. Calcd for C₄₄H₃₉MoO₃Sb₃: C, 49.1; H, 3.6. Found: C, 48.8; H, 3.4. ¹H NMR in CDCl₃: δ (CH₃) 1.2 (s) [3H], δ (CH₂) 2.25 (s) [6H], δ (Ph) 7.0–7.5 (m) [30H]. ¹³C{¹H} NMR in CDCl₃: δ (CH₃) 34.8, δ (CH₂) 43.5, δ (CMe) 39.6, δ (Ph) 128.9–137.8, δ (CO) 222.2.

[Cr(CO)₃{MeC(CH₂SbPh₂)₃] was prepared analogously using Cr(CO)₆ (50% yield). Anal. Calcd for C₄₄H₃₉CrO₃Sb₃: C, 51.1; H, 3.8. Found: C, 51.2; H, 3.8. ¹H NMR in CDCl₃: $\delta(CH_3)$ 1.2 (s) [3H], $\delta(CH_2)$ 2.25 (s) [6H], $\delta(Ph)$ 7.0–7.5 (m) [30H]. ¹³C{¹H} NMR in CDCl₃: $\delta(CH_3)$ 34.8, $\delta(CH_2)$ 43.5, $\delta(CMe)$ 39.6, $\delta(Ph)$ 128.9–137.8, $\delta(CO)$ 235.0.

[W(CO)₃{MeC(CH₂SbPh₂)₃} was prepared analogously using W(CO)₆ (60% yield). Anal. Calcd for C₄₄H₃₉O₃Sb₃W: C, 45.4; H, 3.4. Found: C, 45.5; H, 3.4. ¹H NMR in CDCl₃: δ -(CH₃) 1.2 (s) [3H], δ (CH₂) 2.25 (s) [6H], δ (Ph) 7.0–7.5 (m) [30H]. ¹³C{¹H} NMR in CDCl₃: δ (CH₃) 34.8, δ (CH₂) 43.5, δ (CMe) 39.6, δ (Ph) 128.9–137.8, δ (CO) 212.3.

Crystal Structure of [Mo(CO)₃{**MeC(CH**₂**SbPh**₂)₃]. Airstable colorless crystals were obtained from dichloromethane– pentane mixtures by liquid diffusion and mounted on a Rigaku AFC7S diffractometer fitted with Mo K α radiation and a graphite monochromator. The crystals were examined at 150 K and mounted with the oil method on a glass fiber. Intensities were corrected for the Lorentz and polarization factors in the usual manner, a small amount (0.13%) of decay was allowed for, and an empirical ψ -scan absorption correction

Table 3. Crystallographic Data

J	1
mol formula	$C_{44}H_{39}MoO_3Sb_3$
mol wt	1076.98
cryst syst	orthorhombic
space group	<i>Pbca</i> (No. 61)
a, Å	20.358(2)
b, Å	20.488(2)
<i>c</i> , Å	19.164(1)
<i>V</i> , Å ³	7994(1)
Т, К	150
d(calcd), g cm ⁻³	1.790
Ζ	8
<i>F</i> (000), e	4176
cryst size, mm	$0.45\times0.35\times0.20$
type of data collcn	$2\theta/\omega$
tot. no. of observns	7869
tot. no. of unique observns	7707
abs corr	ψ -scan (3 reflns)
transm factors	0.65 (min), 1.00 (max)
no. of data used in refinement	4955 ($I > 3\sigma(I)$)
no. of params	460
weighting scheme (W^{-1})	$\sigma^2(Fo)$
λ, Å (Μο Κα)	0.710 69
μ , cm ⁻¹	23.5
max 2θ , deg	50.0
<i>hkl</i> limits	0-24, 0-24, 0-22
S	1.45
max shift/esd	0.07
max, min electron dens (e Å ⁻³)	+0.39, -0.42
R ^a	0.023
R _w	0.023
	(
$A R = \sum F_0 - F_c / \sum F_0 ; R_w = \sum w $	$(F_0 - F_c)^2 / \sum W F_0^2 ^{1/2}$.

applied. The heavy atoms were located using SHELXS-86²³ and developed using structure factor and electron-density calculations. Hydrogen atoms appeared in later maps, and all were introduced in calculated positions (d(C–H) = 0.97 Å). Full-matrix least-squares refinement (on *F*) converged to *R* =

0.023.²⁴ Crystallographic details are given in Table 3.

Acknowledgment. We thank the EPSRC and BP Chemicals Ltd for support (A.F.C.) and the EPSRC for funds to purchase the X-ray diffractometer and for the use of the Chemical Database Service at Daresbury.

Supporting Information Available: Listings of complete atomic coordinates, anisotropic thermal parameters, and complete bond lengths and angles (7 pages). Ordering information is given on any current masthead page.

OM950823A

⁽²³⁾ Sheldrick, G. M. SHELXS86, Program for the Solution of Crystal Structures University of Göttingen, FRG, 1986.

⁽²⁴⁾ teXsan: Crystal Structure Analysis Package, Molecular Structure Corp., The Woodlands, TX, 1985, 1992.