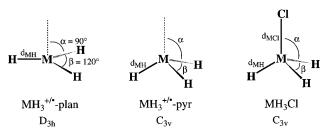
CH₃ Is Planar Due to H–H Steric Repulsion. Theoretical Study of MH_3 and MH_3Cl (M = C, Si, Ge, Sn)

F. Matthias Bickelhaupt,*,[†] Tom Ziegler,* and Paul von Ragué Schleyer[‡]

Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Received July 21, 1995[®]


The molecular structure and bonding mechanisms of MH_3 radicals and MH_3Cl (M = C, Si, Ge, Sn) have been studied with the use of local (LDA) as well as nonlocal (NL-SCF) density-functional theory (DFT) and a large, doubly polarized triple- ζ STO basis (TZ2P). The CH₃ radical is planar (D_{3h}) whereas the heavier central atom analogs are pyramidal: the H–M–H bond angle β (=120.00, 112.66, 112.44, 110.56°) decreases, and the inversion barrier $\Delta E_{inv} + \Delta ZPE$ (=0.0, 3.7, 3.8, 7.0 kcal/mol) increases along the series CH₃, SiH₃, GeH₃, and SnH₃ (NL-SCF/TZ2P). The homolytic M–Cl bond dissociation energy D_{homo} + Δ ZPE is 81.7, 105.6, 96.2, and 93.6 kcal/mol for CH₃-Cl, SiH₃-Cl, GeH₃-Cl, and SnH₃-Cl, respectively (NL-SCF/TZ2P). A detailed analysis of the bonding mechanisms shows that the CH_3 radical is planar because of the steric repulsion between the hydrogen ligands. This steric H–H repulsion is much weaker for SiH₃, GeH₃, and SnH₃ in which the ligands are farther removed from each other. Electronic effects (i.e. electron pair bonding between the central atom and hydrogen ligands) always favor a pyramidal structure, although only slightly so for the methyl radical. The analysis of the MH₃-Cl bond reveals that initially the bond strength increases with the increasing M–Cl electronegativity difference (from M = C to Si) and then decreases together with the bond overlap between the MH_3 and Cl SOMOs (from Si to Sn). The results are discussed in the context of those previously obtained for the complementary series of the CH_3-X bond (X = F, Cl, Br, I) to provide a more complete insight into the electronic structure and bonding of the archetype MH₃X molecule.

1. Introduction

Halomethanes and their heavier central atom homologs (MH₃X, Chart 1) are archetypes of substituted (in)organic molecules.¹ Compounds containing an M-Xbond are furthermore involved in many organic and organometallic standard reactions.¹ Therefore, the experimental²⁻⁴ and theoretical^{5,6} investigation of MH₃X systems and the M-X bond has contributed much to the understanding and development of both structural

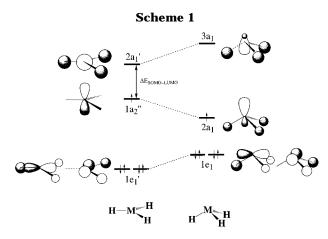
(4) (a) Sita, L. R. Acc. Chem. Res. **1994**, 27, 191. (b) Walsh, R. Acc. Chem. Res. **1981**, 14, 246.

Chart 1

and synthetic chemistry. The pronounced elongation of M-X and M-H bonds as well as the (slightly) increasing degree of pyramidalization of the MH_3 fragment when M varies from carbon to a heavier group 14 atom are general structural trends (*vide infra*). The decreasing CH_3-X bond strength along X = F, Cl, Br, and I was shown by Deng *et al.*⁵ to be due to the decreasing difference in electronegativity between C and X and the associated decrease in charge transfer. The homolytic MH_3-Cl bond strength, on the other hand, increases

[†] Present address: Baker Laboratory, Department of Chemistry, Cornell University, Ithaca, NY 14853-1301.

[‡] Computer-Chemie-Centrum, Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, D-91052 Erlangen, Germany.


 [®] Abstract published in Advance ACS Abstracts, February 1, 1996.
 (1) (a) March, J. Advanced Organic Chemistry; Wiley-Interscience: New York, 1992.
 (b) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, Part A; Plenum Press: New York, 1984.
 (c) Elschenbroich, Ch.; Salzer, A. Organometallics. A Concise Introduction, 2nd ed.; VCH: Weinheim, Germany, 1992.
 (d) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987.

^{(2) (}a) Bürger, H.; Betzel, M.; Schultz, P. J. Mol. Spetrosc. 1987, 121, 218. (b) Cradock, S.; McKean, D. C.; MacKenzie, M. W. J. Mol. Struct. 1981, 74, 265. (c) Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G. J. Phys. Chem. Ref. Data 1979, 8, 619. (d) Callomon, J. H.; Hirota, E.; Kuchitsu, K.; Lafferty, W. J.; Maki, A. G.; Pote, C. S. In Strukturdaten freier mehratomiger Molekeln, Landolt-Bornstein, Neue Serie, Gruppe II: Atom- und Molekularphysik, Band 7; Hellwege, K.-H.; Hellwege, A. M., Eds.; Springer-Verlag: Berlin, 1976.

<sup>K.-H.; Hellwege, A. M., Eds.; Springer-Verlag: Berlin, 1976.
(3) (a) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.;</sup> Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. No. 1. (b) CRC Handbook of Chemistry and Physics, 63rd ed.; Weast, R. C., Ed.; CRC Press: Boca Raton, FL, 1982; p D-195.
(4) (a) Sita, L. R. Acc. Chem. Res. 1994, 27, 191. (b) Walsh, R. Acc.

^{(5) (}a) Deng. L.; Branchadell, V.; Ziegler, T. J. Am. Chem. Soc. 1994, 116, 10645.
(b) Fujimoto, H.; Satoh, S. J. Phys. Chem. 1994, 98, 1436.
(c) Pearson, R. G. J. Am. Chem. Soc. 1985, 107, 6801.

^{(6) (}a) Schneider, W.; Thiel, W. Chem. Phys. 1992, 159, 49. (b) Schneider, W.; Thiel, W. J. Chem. Phys. 1987, 86, 923. (c) Shi, Z.; Boyd, R. J. J. Am. Chem. Soc. 1990, 112, 6789. (d) Gordon, M. S.; Davis, L. P.; Burggraf, L. W. Chem. Phys. Lett. 1989, 163, 371. (e) Schmidt, M. W.; Gordon, M. S. Can. J. Chem. 1985, 63, 1609. (f) Luke, B. T.; Pople, J. A.; Krogh-Jespersen, M.-B.; Apeloig, Y.; Chandrasekhar, J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 260. (g) Vacek, G.; Mastryukov, V. S.; Schaefer, H. F., III. J. Phys. Chem. 1994, 98, 11337.
(h) Berger, S.; Bock, W.; Frenking, G.; Jonas, V.; Müller, F. J. Am. Chem. Soc. 1995, 117, 3820. (i) Su, M.-D.; Schlegel, H. B. J. Phys. Chem. 1993, 97, 8732. (j) Coffey, D., Jr.; Smith, B. J.; Radom, L. J. Chem. Phys. 1993, 98, 3952. (k) Binning, R. C., Jr.; Curtiss, L. A. J. Comput. Chem. 1990, 11, 1206. (l) Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B. J. Am. Chem. Soc. 1995, 117, 11299. (m) Su, M.-D.; Schlegel, H. B. J. Phys. Chem. 1933, 97, 97, 97, 97, 97, 99, 981.

significantly when the central atom M changes from carbon (83.4 kcal/mol) to the heavier silicon (125.5 kcal/mol).^{3a}

The MH₃• radical appears naturally, namely as a building block, in the investigation of the MH₃–X bond. Furthermore, the MH₃• series displays a trend which is interesting by itself: the degree of pyramidalization as well as the height of the inversion barrier increases when M is running down in group 14, starting with the flat D_{3h} symmetric methyl radical (Chart 1).^{7–12} Similar trends are known for the closed-shell group 15 (AH₃) and group 16 hydrides (AH₂)^{10–14} as well as for the allylic CH₂=CH–MH₂⁻ anions where M is a group 14 atom.¹⁵ This is generally explained in MO theoretical terms through the operation of a second-order Jahn–Teller effect (Scheme 1):^{11,13} (1) the mixing between the nonbonding n_{p_z} SOMO and the M–H antibonding

(9) (a) Cremer, D.; Olsson, L.; Ottosson, H. J. Mol. Struct. (*THEOCHEM*) **1994**, 313, 91. (b) Nyalászi, L.; Belghazi, A.; Szétsi, S. K.; Veszprémi, T.; Heinicke, J. J. Mol. Struct. (*THEOCHEM*) **1994**, 313, 73. (c) Rodriquez, C. F.; Hopkinson, A. C. Can. J. Chem. **1992**, 70, 2234. (d) Das, K. K.; Balasubramanian, K. J. Chem. Phys. **1990**, 93, 5883. (e) Green, W. H.; Jayatilaka, D.; Willetts, A.; Amos, R. D.; Handy, N. C. J. Chem. Phys. **1986**, 108, 243.

(10) (a) Binning, R. C., Jr.; Curtiss, L. A. J. Chem. Phys. 1990, 92, 3688.
(b) Binning, R. C., Jr.; Curtiss, L. A. J. Chem. Phys. 1990, 92, 1860.
(c) Pople, J. A.; Curtiss, L. A. J. Phys. Chem. 1987, 91, 155.
(d) Pople, J. A.; Luke, B. T.; Frisch, M. J.; Binkley, J. S. J. Phys. Chem. 1985, 89, 2198.
(e) Marynick, D. S. J. Chem. Phys. 1981, 74, 5186.

(11) (a) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. *Orbital Interactions in Chemistry*; Wiley-Interscience: New York, 1985; Chapters 7 and 9. (b) Gimarc, B. M. *Molecular Structure and Bonding*; Academic Press: New York, 1979; Chapter 3.

Academic Press: New York, 1979; Chapter 3. (12) Gillespie, R. J.; Hargittai, I. *The VSEPR Model of Molecular Geometry*; Allyn and Bacon: Boston, MA, 1991.

(13) Gilheany, D. G. Chem. Rev. 1994, 94, 1339.

(14) (a) Dixon, D. A.; Arduengo, A. J., III. J. Am. Chem. Soc. 1987, 109, 338. (b) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1987, 109, 7362. (c) Magnusson, E. Tetrahedron 1985, 41, 5235. (d) Ibid.
1985, 41, 2945. (e) Magnusson, E. J. Am. Chem. Soc. 1984, 106, 1185. (f) Magnusson, E. J. Am. Chem. Soc. 1984, 106, 1185. J. Am. Chem. Soc. 1978, 100, 6332.

(15) Gobbi, A.; Frenking, G. J. Am. Chem. Soc. 1994, 116, 9287.

LUMO stabilizes and pyramidalizes MH₃; (2) this effect becomes stronger for the heavier (more electropositive and diffuse) central atoms M, because the SOMO-LUMO gap becomes smaller due to the higher energy of the np_z SOMO and the less M–H antibonding nature of the LUMO; (3) the Jahn-Teller effect is opposed by the rising energy of the $1e_1$ orbitals which is ascribed to the loss of M-H bonding overlap; (4) thus, only CH₃• remains planar because the Jahn-Teller effect is not strong enough in this case to outweigh the 1e₁ destabilization. In addition, MH₃ radicals and the corresponding cations play an important role as reactive intermediates¹ and are (M = Si, Ge) involved in processes (e.g. chemical vapor deposition, CVD) which are important for the production of high-technology electronic devices.¹⁶

In the present study, we have carried out a high-level density functional theoretical (DFT)^{17,18} investigation on MH₃Cl and MH₃• systems for M = C, Si, Ge, and Sn, using the ADF program.^{19,20} The purpose is to better understand the structural and bonding trends along the MH₃Cl and MH₃• series. Why, for example, does the MH₃-Cl bond strength increase in going from CH₃Cl to SiH₃Cl and then decrease for heavier homologs as will be shown? What in this trend is the role of intraatomic Pauli repulsion?²¹ The latter is a way to view the effect of the Pauli exclusion principle which is responsible for the existence of (core) electron shells and, thus, for the increasing effective size of atoms, going down the periodic table.²¹ The present results for

(18) (a) Ziegler, T. Chem. Rev. 1991, 91, 651. (b) Density Functional Methods in Chemistry; Labanowski, J. K., Andzelm, J. W., Eds.; Springer-Verlag: New York, 1991.
(19) (a) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2,

(19) (a) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41. (b) Baerends, E. J.; Ros, P. Chem. Phys. 1975, 8, 412. (c) Baerends, E. J.; Ros, P. Int. J. Quantum Chem., Quantum Chem. Symp. 1978, S12, 169. (d) Ravenek, W. In Algorithms and Applications on Vector and Parallel Computers; Riele, H. H. J., Dekker, Th. J., van de Vorst, H. A., Eds.; Elsevier: Amsterdam, 1987. (e) Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988, 33, 87. (f) te Velde, G.; Baerends, E. J. J. Comp. Phys. 1992, 99, 84. (g) Snijders, J. G.; Baerends, E. J., Vernooijs, P. At. Nucl. Data Tables 1982, 26, 483. (h) Krijn, J.; Baerends, E. J. Fit-Functions in the HFS-Method, Internal Report (in Dutch), Vrije Universiteit Amsterdam, The Netherlands, 1984. (i) Baker, J.; Nobes, R. H.; Radom, L. J. Comput. Chem. 1986, 7, 349. (j) Gutsev, G. L.; Ziegler, T. J. Phys. Chem. 1991, 95, 7220. (k) Gutsev, G. L.; Ziegler, T. Can. J. Chem. 1991, 69, 993. (l) Versluis, L.; Ziegler, T. J. Chem. Phys. 1988, 822. (m) Fan, L; Versluis, L.; Ziegler, T. J. Chem. Phys. 1988, 822. (m) Fan, L; Versluis, L.; Xusair, M. Can. J. Phys. 1980, 58, 1200. (o) Becke, A. D. J. Chem. Phys. 1986, 34, 363098. (q) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. Erratum: Ibid. 1986, 34, 7406. (r) Fan, L.; Ziegler, T. J. Chem. Phys. Rev. A 1988, 34, 3098. (q) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. Erratum: Ibid. 1986, 34, 7406. (r) Fan, L.; Ziegler, T. J. Chem. Phys. Rev. A 1988, 34, 2098. (q) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. Erratum: Ibid. 1986, 34, 7406. (r) Fan, L.; Ziegler, T. J. Chem. Phys. Rev. A 1988, 34, 209. (d) Bickelhaupt, F. M.; Nibbering, N. M. M.; van Wezenbeek,

(20) (a) Bickelhaupt, F. M.; Nibbering, N. M. M.; van Wezenbeek,
 E. M.; Baerends, E. J. J. Phys. Chem. 1992, 96, 4864. (b) Ziegler, T.;
 Rauk, A. Inorg. Chem. 1979, 18, 1558. (c) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, 1755. (d) Ziegler, T.; Rauk, A. Theoret. Chim. Acta
 1977, 46, 1.

(21) (a) Jacobsen, H.; Ziegler, T. J. Am. Chem. Soc. 1994, 116, 3667.
(b) Kutzelnigg, W. Angew. Chem. 1984, 96, 262.

^{(7) (}a) Yamada, C.; Hirota, E.; Kawaguchi, K. J. Chem. Phys. **1981**, 75, 5256. (b) Yamada, C.; Hirota, E. Phys. Rev. Lett. **1986**, 56, 923. (c) Jackel, G. S.; Gordy, W. Phys. Rev. **1968**, 176, 443. (d) Jackel, G. S.; Christiansen, J. J.; Gordy, W. J. Chem. Phys. **1967**, 47, 4274. (e) The ESR geometries are deduced from the average s character of the three bonding orbitals: 33, 29, 30, and 31% for CH₃*, SiH₃*, GeH₃*, and SnH₃*; our corresponding NL-SCF/IZ2P values are 33, 31, 31, and 30%. (f) Johnson, R. D., III; Tsai, B. P.; Hudgens, J. W. J. Chem. Phys. **1988**, 89, 4558.

<sup>69, 4558.
(8) (</sup>a) Selmani, A.; Salahub, D. R. Chem. Phys. Lett. 1988, 146, 465.
(b) Moc, J.; Rudzinski, J. M.; Ratajczak, H. Chem. Phys. 1992, 109, 197.
(c) Chatgilialoglu, C.; Guerra, M. J. Am. Chem. Soc. 1990, 112, 2854.
(d) Trinquier, G. J. Chem. Soc., Faraday Trans. 1993, 89, 775.
(e) Michels, H. H.; Hobbs, R. H. Chem. Phys. Lett. 1993, 207, 389.
(f) Guerra, M. J. Am. Chem. Soc. 1993, 115, 11926.
(g) Moc, J.; Rudzinski, J. M.; Ratajczak, H. Z. Phys. D 1992, 22, 629.
(9) (a) Cremer D.: Olsson L.: Ottasson H. J. Mal. Structure (1993).

⁽¹⁶⁾ See for some examples the following references: (a) Gal, J.-F.;
Grover, R.; Maria, P.-C.; Operti, L.; Rabezzana, R.; Vaglio, G.-A.; Volpe, P. J. Phys. Chem. 1994, 98, 11978. (b) Davies, P. B.; Smith, D. M. J. Chem. Phys. 1994, 100, 6166. (c) Lu, G.; Crowell, J. E. J. Chem. Phys. 1993, 98, 3415. (d) Operti, L.; Splendore, M.; Vaglio, G. A.; Volpe, P. Organometallics 1993, 12, 4516. (e) Schleyer, P. v. R.; Buzek, P.; Müller, T.; Apeloig, Y.; Siehl, H.-U. Angew. Chem. 1993, 105, 1558. (f) Ruscic, B.; Schwarz, M.; Berkowitz, J. J. Chem. Phys. 1990, 92, 1865. Erratum: Ibid. 1990, 92, 6338. (g) Raghavachari, K. J. Chem. Phys. 1990, 92, 452.

^{(17) (}a) Dreizler, R. M.; Gross, E. K. U. *Density Functional Theory, An Approach to the Quantum Many-Body Problem;* Springer-Verlag: Berlin, 1990. (b) Parr, R. G.; Yang, W. *Density-Functional Theory of Atoms and Molecules;* Oxford University Press: New York, 1989. (c) Slater, J. C. *Quantum Theory of Molecules and Solids;* McGraw-Hill: New York, 1974; Vol. 4.

MH₃Cl are compared with those obtained previously for the CH₃X series (X = F, Cl, Br, I).^{5a} Furthermore, it is discussed how the electronic structure varies in the different MH₃X systems and how this may influence their reactivity in S_N2 reactions; e.g. why is the backside lobe of the chloromethane LUMO so poorly developed, as has been pointed out recently?²² First, however, we focus on the MH₃ building block and the question why the degree of pyramidalization increases along M = C, Si, Ge and Sn. Is this to be conceived as a purely "electronic" effect or does steric repulsion also play a role? Detailed analyses²⁰ of the electronic structures and bonding mechanisms in all MH₃Cl and MH₃. systems enable us to interpret our results in chemically meaningful terms from MO theory^{11,23} and, thus, help to answer the above and other questions.

2. Methods

A. General Procedure. All calculations were performed using the Amsterdam-Density-Functional (ADF) program,¹⁹ developed by Baerends et al.^{19a-c} and vectorized by Ravenek.^{19d} The numerical integration was performed using the procedure developed by te Velde et al.^{19e,f} The MOs were expanded in a large uncontracted set of Slater type orbitals (STOs) containing diffuse functions (TZ2P).^{19g} The basis set is of triple- ζ quality, augmented with two polarization functions: three 2p on H, two 3d functions on C, Si, and Cl, 3d and 4f on F, two 4d on Ge, and two 5d on Sn ($\zeta_{1s}^{H} = 0.69, 0.92, 1.58; \zeta_{2p}^{H} = 2.50, 1.66,$ 1.10; $\zeta_{2s}^{C} = 1.28$, 2.10, 4.60; $\zeta_{2p}^{C} = 0.82$, 1.48, 2.94; $\zeta_{3d}^{C} = 3.00$, 1.50; $\zeta_{2s}^{F} = 0.74$, 1.94, 3.24; $\zeta_{2p}^{F} = 1.24$, 2.30, 4.54; $\zeta_{3d}^{F} = 2.00$; $\zeta_{4f}^{F} = 3.00$; $\zeta_{3s}^{Si} = 1.20$, 1.85, 2.85; $\zeta_{3p}^{Si} = 0.75$, 1.20, 1.85; ζ_{3d}^{Si} = 0.65, 1.75; ζ_{3s}^{Cl} = 1.60, 2.30, 3.30; ζ_{3p}^{Cl} = 1.20, 2.05, 2.85; $\zeta_{3d}^{Cl} =$ 1.20, 2.20; $\zeta_{3d}^{Ge} =$ 2.50, 4.80, 9.20; $\zeta_{4s}^{Ge} =$ 1.25, 1.95, 3.15; $\zeta_{4p}^{Ge} = 0.80$, 1.35, 2.35; $\zeta_{4d}^{Ge} = 0.80$, 2.00; $\zeta_{4d}^{Sn} = 2.30$, 3.70, 5.65; $\zeta_{5s}^{Sn} = 1.35$, 2.10, 3.25; $\zeta_{5p}^{Sn} = 0.90$, 1.45, 2.45; ζ_{5d}^{Sn} = 1.90, 0.90). The core shells of carbon and fluorine (1s), silicon and chlorine (1s2s2p), germanium (1s2s2p3s3p), and tin (1s2s2p3s3p3d4s4p) were treated by the frozen-core approximation.^{19a} An auxiliary set of s, p, d, f, and g STOs was used to fit the molecular density and to represent the Coulomb and exchange potentials accurately in each SCF cycle.^{19h} Our TZ2P basis is of the composition recommended by Baker et al.¹⁹ⁱ for negative ions and has been successfully applied to the calculation of electron affinities of, i.a., CX⁻, $\overline{\text{CXY}}^-$, and CCl_n^- (n = 1-4);^{19j,k} this flexibility is of importance for the analysis of the CH₃Cl and CH₃F LUMOs in section 3E.

Geometries were calculated at the LDA and NL level. Equilibrium structures were optimized using analytical gradient techniques.¹⁹¹ Frequencies^{19m} were calculated at the LDA level by numerical differentiation of the analytical energy gradients.

Energies were evaluated using the local density approximation (LDA) as well as density-functionals including nonlocal corrections (NL). At the LDA level exchange is described by Slaters X α potential^{17c} and correlation is treated in the Vosko–Wilk–Nusair (VWN) parametrization.¹⁹ⁿ At the NL-SCF level nonlocal corrections for the exchange due to Becke^{190,p} and for correlation due to Perdew^{19q} are added self-consistently (NL-SCF).^{19r}

B. Bonding Energy Analysis. The bonding mechanism in the various MH₃[•] and MH₃Cl systems was analyzed using an extended transition state (ETS) method developed by Ziegler and Rauk.²⁰ This was done at the NL-P level (nonlocal corrections added as a perturbation to the LDA result) for technical reasons. The NL-P analysis results are scaled to fit the bond energies with the corresponding NL-SCF values (which differ consistently by a few kcal/mol) to facilitate a straightforward comparison. The overall bond energy ΔE is made up of two major components (eq 1). The preparation

$$\Delta E = \Delta E_{\rm prep} + \Delta E_{\rm int} \tag{1}$$

energy ΔE_{prep} is the amount of energy required to deform the separated fragments from their equilibrium structure to the geometry which they acquire in the overall molecule. The interaction energy ΔE_{int} corresponds to the actual energy change when the prepared fragments are combined to form the overall molecule. The interaction energy is further split up in two physically meaningful terms (eq 2).²⁰ The term ΔE_{elst}

$$\Delta E_{\rm int} = \Delta E_{\rm elst} + \Delta E_{\rm Pauli} + \Delta E_{\rm oi} = \Delta E^0 + \Delta E_{\rm oi} \qquad (2)$$

corresponds to the classical electrostatic interaction between the unperturbed charge distributions of the prepared fragments and is usually attractive. The Pauli-repulsion ΔE_{Pauli} comprises the 4-electron destabilizing interactions between occupied orbitals and is responsible for the steric repulsion. For neutral fragments, it is useful to combine ΔE_{elst} and ΔE_{Pauli} in the steric interaction ΔE^0 (eq 2). The orbital interaction ΔE_{oi} accounts for charge transfer (interaction between occupied orbitals on one moiety with unoccupied orbitals of the other, including the HOMO–LUMO interactions) and polarization (empty/occupied orbital mixing on one fragment). It can be decomposed into the contributions from each irreducible representation Γ of the interacting system (eq 3).

$$\Delta E_{\rm oi} = \sum_{\Gamma} \Delta E_{\Gamma} \tag{3}$$

3. Results and Discussion

The results are summarized in Tables 1 and 2 (geometries), 3 and 4 (MH₃ energies), and 5 and 6 (MH₃-Cl energies). In the following, the trends in MH₃[•] geometries and inversion barriers are discussed (section 3A); we try to explain these trends through a detailed analysis of the bonding mechanisms (section 3B). Thereafter, the MH₃Cl geometries and M–Cl bond dissociation energies are presented (section 3C) and analyzed (section 3D). Finally, the nature of the MH₃X LUMO is considered in more detail (section 3E).

Geometries (Table 1) and energies (Tables 3 and 5) were evaluated at the LDA/TZ2P and NL-SCF/TZ2P levels. At the LDA level, the M–Cl bonds are up to 0.03 Å shorter than at the NL-SCF level (Table 1). The MH₃ inversion barriers are ca. 1 kcal/mol lower (Table 3) and M–Cl bonds are up to 20 kcal/mol stronger (Table 5) at the LDA/TZ2P than at the NL-SCF/TZ2P level, in agreement with the general tendency of LDA to overestimate bond strengths and to underestimate transition state barriers. The discussion is therefore based on the nonlocal results.

A. MH₃[•] Geometry and Inversion Barrier. The CH₃[•] radical is planar (D_{3h}) whereas the heavier central atom analogs are pyramidal: the H–M–H bond angle β (=120.00, 112.66, 112.44, 110.56°) decreases and the inversion barrier corrected for zero point vibrational energy effects $\Delta E_{inv} + \Delta ZPE$ (=0.0, 3.7, 3.8, 7.0 kcal/mol) increases monotonically along the series CH₃[•], SiH₃[•], GeH₃[•], and SnH₃[•] (Tables 1 and 3, NL-SCF/TZ2P). Note, however, that SiH₃[•] and GeH₃[•] have essentially the same degree of pyramidalization and that the inversion barrier of GeH₃[•] is slightly higher only after correction for ΔZPE . Furthermore, the equilibrium

⁽²²⁾ Bickelhaupt, F. M.; Ziegler, T.; Schleyer, P. v.R. Organometallics 1995, 14, 2288.

⁽²³⁾ Rauk, A. Orbital Interaction Theory of Organic Chemistry, Wiley-Interscience: New York, 1994.

Table 1. Optimized Geometries of MH₃, MH₃, and MH₃Cl (in Å, deg)^a

			LDA/TZ2P	NL-SCF/TZ2P					
system	NIMAG ^b	$d_{ m MCl}$	$d_{ m MH}$	α	β	$d_{\rm MCl}$	$d_{ m MH}$	α	β
planar MH ₃ + ^c									
CH_3^+	0		1.106	90	120		1.102	90	120
SiH_3^+	0		1.463	90	120		1.459	90	120
GeH_3^+	0		1.485	90	120		1.491	90	120
SnH_3^+	0		1.721	90	120		1.746	90	120
planar MH ₃ • ^c									
CH ₃ •-plan	0		1.089	90	120		1.088	90	120
SiH ₃ ·-plan	1 (<i>i</i> 610.9) ^d		1.471	90	120		1.470	90	120
GeH ₃ •-plan	$1(i554.8)^d$		1.493	90	120		1.505	90	120
SnH ₃ •-plan	$1(i436.5)^d$		1.711	90	120		1.733	90	120
pyramidal MH ₃ • ^e									
CH ₃ •-pyr ^f	f		1.097 ^f	107.67^{f}	111.21^{f}		1.094^{f}	106.06 ^f	112.66^{f}
SiH ₃ •-pyr	0		1.488	107.67	111.21		1.484	106.06	112.66
GeH ₃ •-pyr	0		1.516	107.13	111.71		1.524	106.31	112.44
SnH ₃ •-pyr	0		1.738	108.71	110.22		1.755	108.36	110.56
MH ₃ Cl									
CH ₃ Cl	0	1.753	1.096	109.30	109.64	1.779	1.094	108.40	110.52
SiH ₃ Cl	0	2.017	1.482	109.14	109.80	2.034	1.479	108.63	110.30
GeH ₃ Cl	0	2.104	1.511	107.60	111.28	2.129	1.518	107.23	111.62
SnH ₃ Cl	0	2.333	1.733	106.41	112.35	2.361	1.744	106.36	112.40

^{*a*} See Scheme 1 for definition of geometry parameters. ^{*b*} Number of imaginary frequencies (LDA/TZ2P). ^{*c*} Optimized in D_{3h} symmetry. ^{*d*} Imaginary frequency (in cm⁻¹) corresponding to $A_2^{\prime\prime}$ inversion of MH₃[•]. ^{*e*} Optimized in C_{3y} symmetry. ^{*f*} d_{MH} optimized in C_{3v} symmetry with fixed α from SiH₃[•]-pyr C_{3v} optimization.

M–H bond length increases from 1.088 Å in CH₃·-plan to 1.755 Å in SnH₃·-pyr (Table 1). The transition states for inversion (MH₃·-plan) are characterized by one imaginary frequency (=*i*610.9, *i*554.8, and *i*436.5 cm⁻¹) which decreases along SiH₃·, GeH₃·, and SnH₃· (Table 1); the potential energy surface is thus becoming still shallower. The planar transition states display a slight M–H contraction of 0.01–0.02 Å with respect to the pyramidal equilibrium structures. For comparison, the corresponding MH_3^+ cations are planar for each M.

Our results agree well with most of the available literature data (Tables 2 and 3).7-10 At the Hartree-Fock level,^{8b,10d} the H–M–H angle β (=120, 110.9, 110.7, and 109.3°; Table 2) decreases again along CH₃, SiH₃, GeH₃, and SnH₃, but it is slightly more pyramidal than ours at NL-SCF/TZ2P. Similar results were also obtained at the LSD level,^{8a} but here SiH₃• (β = 111.6°) is slightly more pyramidal than GeH₃• (β = 113°). The most accurate ab initio studies available (CISD and CASSCF) yield again an SiH₃• (β = 111.1 or 112.6°)^{9f,10e} which is less pyramidal than GeH₃• (β = 110.7°).9d Apparently, the precise order for these two MH₃ radicals depends delicately on the level of theory. Experiments confirm that CH₃ is planar and that the heavier homologs are pyramidal (Table 2).7 There seems to be a slight discrepancy with ESR experiments which indicate a continuous decrease of pyramidalization ($\beta = 114$, 115, and 117°) along SiH₃, GeH₃, and SnH₃^{•,7c,e} This may tentatively be ascribed to slightly different matrix effects on the ESR spectra of different MH₃• radicals.

Our NL-SCF/TZ2P trend in inversion barriers ΔE_{inv} (without Δ ZPE!) agrees satisfactorily with the trends obtained at LSD-LCGTO^{8a} and UHF/3-21G^{*8b} (Table 3); barriers are however underestimated by the former and overestimated by the latter. The agreement with higher level *ab initio* results for SiH₃• (4.4 at NL-SCF *versus* 5.8 or 4.4 kcal/mol at CISD)^{9f,10e} and GeH₃• (4.3 at NL-SCF *versus* 4.6 kcal/mol at CASSCF)^{9d} is excellent (Table 3). **B. MH₃ Bonding Mechanism.** In this section, we try to *understand* the trends in pyramidalization and inversion barrier of the four MH₃ **•** radicals, through detailed analyses of the M–H bonding and the H–H repulsive interactions (see also section 2B). The overall bond energy ΔE is divided into three components (eq 4,

$$M + 3H^{\bullet} \rightarrow MH_{3}^{\bullet}$$
$$\Delta E = \Delta E_{int}(M - H_{3}) + \Delta E_{int}(H_{3}) + \Delta E(M - sp^{3})$$
(4)

Table 4). The promotion energy $\Delta E(M-sp^3)$ is the amount of energy required to bring the group-14 atom M from its s²p² ground state to its valence sp³ configuration (eq 5). The interaction energy $\Delta E_{int}(H_3)$ corre-

$$M \rightarrow M-sp^3$$
 $\Delta E(M-sp^3)$ (5)

$$3\mathbf{H}^{\bullet} \rightarrow (\mathbf{H}^{\bullet})_3 \quad \Delta E_{\text{int}}(\mathbf{H}_3) = \Delta E^0(\mathbf{H}_3) + \Delta E_{\text{oi}}(\mathbf{H}_3)$$
(6)

$$\mathbf{M} \cdot \mathbf{sp}^{3} + (\mathbf{H}^{\bullet})_{3} \rightarrow (\mathbf{H}^{\bullet})_{3}$$
$$\Delta E_{\text{int}}(\mathbf{M} - \mathbf{H}_{3}) = \Delta E^{0}(\mathbf{M} - \mathbf{H}_{3}) + \Delta E_{\text{oi}}(\mathbf{M} - \mathbf{H}_{3}) \quad (7)$$

sponds to the formation of the (H[•])₃ triangle in its quartet valence configuration and in the geometry which it acquires in the overall molecule (eq 6). Finally, the interaction energy $\Delta E_{int}(M-H_3)$ corresponds to the actual energy change when the prepared M-sp³ and (H[•])₃ fragments are combined to form the M–H bond (eq 7).

Electronic Structure and Orbital Interactions. How are the various energy terms related to the electronic structure and the orbital interactions? First, we consider the formation of the quartet (H[•])₃ fragment (Scheme 2):²⁴ the three same-spin, singly occupied hydrogen 1s AOs enter into a 3-orbital–3-electron interaction which yields a bonding $1a_1'$ and a degenerate pair of antibonding $1e_1'$ orbitals, each occupied by one β -electron. This gives primarily rise to steric repulsion

⁽²⁴⁾ See also ref 11a, Chapter 5.2, and ref 11b, Chapter 2.

				-	H_3^+ , and MH ₃ Cl (in Å, deg	-
system	$d_{ m MCl}$	$d_{ m MH}$	α	β	method	ref
planar MH ₃ +						
CH_3^+		1.078		120	HF/6-31G(d)	9a, 10
SiH_3^+		1.451		120	MP2/TZ2P+f	9e
		1.454		120	HF/6-31G(d)	9a, 10
GeH ₃ ⁺		1.517		120	HF/641(d)	10a
-		1.509		120	CASSCF/MRSDCI	9d
lanar MH3•						
CH ₃ •-plan		1.10		120	LSD-LCGTO	8a
CI13-pian		1.073		120	HF/6-31G(d)	10d
		1.082		120	HF/DZP	8d
		1.079		120 120	EXP IR EXP ESR	7a 7c
Cillenlan		1 409				
SiH ₃ •-plan		1.462		120	UHF/3-21G*	8b
Caller		1.470		120	MP2/6-31G*	9b
GeH ₃ •-plan		1.528		120	UHF/3-21G*	8b
		1.500		120	UMP2/BAS2	8g
SnH₃•-plan		1.726		120	UHF/3-21G*	8b
yramidal MH ₃ •						
SiH ₃ •-pyr		1.50		111.6	LSD-LCGTO	8a
0 15		1.475		110.9	UHF/3-21G*	8b
		1.474		111.1	HF/DZP	8d
		1.4830		111.255	MP2/6-31G*	8e
		1.4766		111.15	UMP2/DZP	8f
		1.473		111.2	MP2(full)/6-31G*	6i
		1.477		111.1	CISD/CGF-TZ2P	9f
		1.488		112.6	CISD/STO-DZP	10e
		1.476		111.0	HF/6-31++G(d,p)	9c
		1.476		110.9	HF/6-31G(d)	10d
		1.483		107.63	MP2/6-31G*	9b
		1.468^{b}		110.5 ^b	EXP IR^b	7b
		1.456 ^b		108.5 ^b	EXP IR^b	7b 7b
		1.100		114	EXP ESR	76 7c
GeH ₃ •-pyr		1.535		113	LSD-LCGTO	8a
ucii3 pyi		1.549		110.7	UHF/3-21G*	8b
		1.549		110.7	HF/DZP	8d
		1.549		111.6	UMP2/BAS2	
		1.539		110.8		8g 10b
		1.526		110.8	HF/641(d) CASSCF/MRSDCI	9d
		1.520		115		9d 7d
SnH ₃ •-pyr		1.69		115	EXP ESR	
SIIF13"-Py1					LSD-LCGTO	8a
		1.750		109.3	UHF/3-21G*	8b
		1.717		109.4	HF/DZP	8d
				117	EXP ESR	7d
MH ₃ Cl						
CH ₃ Cl	1.777	1.078	108.5	110.5	HF/ECP1*	6b
	1.779	1.089	108.9		MP2/6-31++G**	6c
	1.784	1.082	108.2		HF/3-21G+d	6e
	1.787	1.088	108.7		MP2/6-311+G**	6j
	1.782	1.087	108.8		CISD/6-31G*	6j
	1.787	1.091	108.8		CISD(Q)/6-31G*	6j
	1.778	1.086	108.2	110.7	EXP MW	2c
	1.785	1.090		110.8	EXP MW, IR	2d
SiH ₃ Cl	2.042	1.452	108.6	110.4	HF/ECP1*	6b
	2.058	1.479	108.63		MP2/6-31G*	9b
	2.056	1.468	108.6	110.3	MP2(full)/6-31G*	6i
	2.051	1.465	108.4	11010	HF/3-21G+d	6e
	2.067	1.468	108.3		HF/6-31G(d)	6d
	2.048	1.482	107.9	111.0	EXP MW	2c
	2.048	1.481	107.5	111.0	EXP MW, IR	2d
GeH ₂ Cl	2.155	1.527	107.5	111.4	HF/ECP1*	6b
GeH ₃ Cl	2.133	1.530	107.0	111.7	HF/641(d)	6k
	a.1/4				. ,	
	9 1 / 0	1 590	105 G	112.0		
	2.149	1.520	105.6	113.0	EXP MW/IR	2b 2d
SpH-Cl	2.150	1.537		111.0	EXP MW, IR	2d
SnH ₃ Cl			105.6 106.7 105.5 ^c			

^a See Scheme 1 for definition of geometry parameters. ^b Inferred using two assumed forms of potential function. ^c Geometry of the SnH₃ group was estimated.

 $\Delta E^{0}(H_{3})$ which is however counteracted by a stabilizing interaction $\Delta E_{oi}(H_3)$ with hydrogen 2s and 2p AOs.

Next, we inspect the orbital interactions between M-sp³ and (H[•])₃. In planar MH₃[•], three (polar) electron pair bonds are formed ($ns \pm 1a_1'$ and $np_{x,y} \pm 1e_1'$); the M-*n*p_z AO becomes, essentially unchanged, the MH₃•

 $1a_2''$ SOMO, because it has no overlap with $(H^{\bullet})_3$ valence orbitals (Figure 1, left). The corresponding orbital interactions are $\Delta E_A(M-H_3)$ (mainly $ns \pm 1a_1'$) and ΔE_E - $(M-H_3)$ $(np_{x,y} \pm 1e_1')$. In pyramidal MH₃, M-np_z has overlap and mixes in a bonding fashion with $(H^{\bullet})_3$ -1 a_1' (Figure 1, right) which yields an additional stabilization

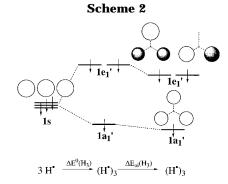
Table 3. Calculated Inversion Barriers ΔE_{inv} of MH₃ · Radicals (in kcal/mol)

		LDA/T	Z2P	N	L-SCF/TZ2P	literature		
MH ₃ •	$\Delta E_{\rm inv}$	ΔZPE	$\Delta E_{\rm inv} + \Delta Z P E$	$\Delta E_{\rm inv}$	$\Delta E_{\rm inv} + \Delta Z P E^a$	theoretical	exptl	
CH ₃ •	0.0	0.0	0.0	0.0	0.0	0.0 ^{<i>b</i>,<i>c</i>}	0.0 ^d	
SiH ₃ •	4.0	-0.7	3.3	4.4	3.7	3.0, ^b 4.4, ^c 7.6, ^e 5.8, ^f 4.4, ^g 4.2 ^h	$5.3^{i}, 5.0^{i}$	
GeH ₃ •	3.7	-0.5	3.2	4.3	3.8	$2.7,^{b}7.5,^{e}7.7,^{j}4.6,^{k}4.9,^{l}4.5^{m}$	4.4 ⁿ	
SnH ₃ •	4.6	1.2	5.8	5.8	7.0	3.0, ^b 10.2 ^e		

^a ΔZPE from LDA/TZ2P frequencies. ^b LSD-LCGTO: ref 8a. ^c MP4/6-31G*//HF/6-31G* + ΔZPE: ref 6f. ^d IR: ref 7a. ^e UHF/3-21G*: ref 8b. ^f CISD/CGF-TZ2P: ref 9f. ^g CISD/STO-DZP+TZP//CISD/STO-DZP: ref 10e. ^h MP2/6-31G*: ref 9b. ⁱ IR (inferred using two assumed forms of potential function): ref 7b. ^j UHF/6-31G*: ref 8b. ^k CASSCF/MRSDCI: ref 9d. ¹ UMP2/BAS2: ref 8g. ^m UMP4SDTQ/BAS4// UMP2/BAS2: ref 8g. ⁿ REMPI: ref 7f.

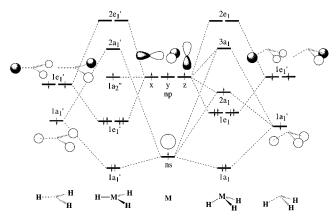
Table 4. Analysis of the Bonding Mechanism in Planar and Pyramidal MH₃· Radicals^{a,b}

	CH ₃ •			SiH ₃ •			GeH ₃ •			SnH ₃ •		
	plan	pyr* ^c	pyr ^c	plan	pyr*	pyr	plan	pyr*	pyr	plan	pyr*	pyr
Geometry (in Å, deg)												
$d_{ m MH}$	1.088	1.088	1.094	1.470	1.470	1.484	1.505	1.505	1.524	1.733	1.733	1.755
α	90.00	106.06	106.06	90.00	106.06	106.06	90.00	106.31	106.31	90.00	108.36	108.36
				E	nergy (in l	kcal/mol) ^d						
$\Delta E^0(M-H_3)$	-89.3	-87.0	-88.9	-86.3	-85.0	-87.1	-88.8	-87.0	-89.4	-78.1	-76.5	-78.1
$\Delta E_{\rm A}({\rm M-H_3})$	-91.5	-94.4	-94.5	-71.5	-76.0	-76.1	-79.1	-84.5	-84.8	-65.5	-72.7	-72.9
$\Delta E_{\rm E}({\rm M-H_3})$	-252.0	-251.0	-248.5	-167.2	-169.3	-167.0	-160.0	-161.1	-158.7	-137.7	-138.4	-136.5
$\Delta E_{int}(M-H_3)$	-432.8	-432.4	-431.9	-325.0	-330.3	-330.2	-327.9	-332.6	-332.9	-281.3	-287.6	-287.5
$\Delta E^0(\mathrm{H}_3)$	24.8	30.2	29.4	4.4	5.7	5.4	3.8	4.9	4.5	1.5	2.1	1.9
$\Delta E_{oi}(H_3)$	-8.5	-9.9	-9.7	-4.1	-4.3	-4.3	-4.1	-4.2	-4.1	-3.9	-3.9	-3.9
$\Delta E(M-sp^3)$	96.9	96.9	96.9	99.4	99.4	99.4	123.2	123.2	123.2	99.7	99.7	99.7
ΔE	-319.6	-315.2	-315.3	-225.3	-229.5	-229.7	-205.0	-208.7	-209.3	-184.0	-189.7	-189.8
				Fragn	nent Orbit	tal Overla	ps ^{e,f}					
$H + H \langle 1s 1s \rangle$	0.32	0.34	0.34	0.16	0.18	0.18	0.15	0.17	0.17	0.10	0.12	0.11
$M + H_3 \langle ns 1a_1' \rangle$	0.83	0.82	0.82	0.77	0.76	0.75	0.74	0.73	0.72	0.70	0.68	0.68
$M + H_3 \langle np_z 1a_1' \rangle$	0.0	0.21	0.21	0.0	0.24	0.24	0.0	0.24	0.24	0.0	0.28	0.28
$M + H_3 \langle np_x 1e_{1-x'} \rangle$	0.74	0.72	0.72	0.76	0.74	0.74	0.76	0.74	0.73	0.72	0.69	0.68
Fragment Orbital Populations (in e) ^{f,g}												
M: <i>P</i> (<i>n</i> s)	1.27	1.32	1.33	1.18	1.20	1.22	1.21	1.26	1.28	1.23	1.33	1.35
M: $P(n\mathbf{p}_z)$	0.93	0.88	0.88	0.95	0.84	0.83	0.94	0.81	0.81	0.95	0.76	0.75
M: $P(n\mathbf{p}_x)$	0.99	1.08	1.08	1.04	1.06	1.04	0.97	1.00	0.99	0.76	0.79	0.78
H ₃ : $P(1a_1')$	0.72	0.72	0.72	0.82	0.91	0.90	0.79	0.88	0.87	0.77	0.88	0.87
H ₃ : $P(1e_{1-x'})$	0.96	0.85	0.86	0.87	0.85	0.86	0.97	0.94	0.95	1.20	1.17	1.18

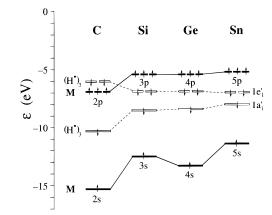

^{*a*} NL-P/TZ2P//NL-SCF/TZ2P; ΔE_{int} decomposition scaled to fit NL-SCF/TZ2P value. ^{*b*} See eq 8: plan = planar, optimized in D_{3h} ; pyr = pyramidal, optimized in C_{3v} ; pyr^{*} = pyramidal, d_{MH} from D_{3h} optimization, α from C_{3v} optimization. ^{*c*} α from SiH₃• C_{3v} optimization. ^{*d*} See eqs 4–7: $\Delta E^0(M-H_3)$, $\Delta E_{oi}(M-H_3) = \Delta E_A(M-H_3) + \Delta E_E(M-H_3)$, $\Delta E_{int}(M-H_3) = \text{steric}$, orbital, and net interaction between M-sp³ and H₃ in MH₃•; $\Delta E^0(H_3)$, $\Delta E_{oi}(H_3) = \text{steric}$ and orbital interaction between 3 H• in (H•)₃; $\Delta E(M-sp^3) = \text{sp-sp}^3$ promotion energy; $\Delta E = \text{overall energy change for M-sp}^3 + 3H• \rightarrow MH_3•$. ^{*e*} Overlaps between orbitals of the indicated fragments. ^{*f*} *n* (in *n*s and *n*p) = 2, 3, 4, and 5 for M = C, Si, Ge, Sn, respectively. ^{*g*} $P(\varphi)$ is the gross Mulliken population which fragment orbital φ acquires in the overall molecule.

of $\Delta E_A(M-H_3)$ (Table 4). The Pauli repulsion between M-sp³ and (H[•])₃ is very small because the two fragments have opposite spin; Pauli repulsion can thus only occur through core–valence overlap.

Planar vs Pyramidal: Quantitative Trends in Interactions. The H–H and M–H interactions were analyzed for three geometries of each MH_3^{\bullet} radical (eq 8): (1) MH_3^{\bullet} -plan, the optimized planar structure; (2)


MH₃·-pyr^{*}, in which $d_{\rm MH}$ is kept fixed to its value in the planar radical, whereas the H–M–H angle β is bent to its value in the optimized pyramidal structure; (3) MH₃·-pyr, the optimized pyramidal structure in which $d_{\rm MH}$ is allowed to elongate to its equilibrium value. Note that for both CH₃·-pyr^{*} and CH₃·-pyr the optimum H–M–H angle β of SiH₃·-pyr was used, because there is no stationary point corresponding to a pyramidal methyl radical (Table 4).

The geometry of MH₃• is primarily determined by the subtle balance between the H–H steric repulsion ΔE^{0} -



(H₃) (eq 6) and the M–H bonding orbital interactions ΔE_{oi} (M–H₃) (eq 7). The steric interaction ΔE^{0} (M–H₃) is dominated by electrostatic attraction and is relatively insensitive to H–M–H bond angle variations (Table 4). The promotion energy ΔE (M-sp³) has no influence at all on the geometry because, for a given central atom M, it leads to a constant (endothermic) contribution between 97 kcal/mol for C and 123 kcal/mol for Ge (Table 4).

There is a striking difference between CH_3^{\bullet} and the heavier homologs: in CH_3^{\bullet} , the H–H steric repulsion

Figure 1. Orbital interaction scheme for planar (D_{3h}) and pyramidal (C_{3h}) MH₃.

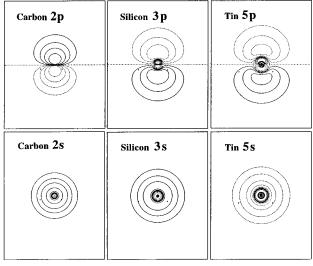


Figure 2. Orbital energies of C, Si, Ge, Sn, and $(H^{\bullet})_3$ (in the geometry of the corresponding MH_3^{\bullet} radical).

 $\Delta E^0(H_3)$ is significantly stronger and increases much more upon pyramidalization. This is seen most clearly from a comparison of MH₃*-plan and MH₃*-pyr*: ΔE^{0} -(H₃) rises by 5.4 kcal/mol for CH₃* and only by 1.3 kcal/ mol or less for SiH₃*, GeH₃*, and SnH₃* (Table 4). This trend is also reflected by the decreasing (H*)₃ 1a₁'-1e₁' energy gap shown in Figure 2. The reason is the shorter M-H and thus H-H distance in CH₃* and the associated larger H-H $\langle 1s|1s \rangle$ overlap. The H-H repulsion is slightly relieved (and thus partly hidden) after the M-H bond is allowed to elongate in MH₃*-pyr.

The short C-H bonds are related to the compact nature of the carbon 2s and 2p AOs (Figure 3) which causes optimal bond overlaps and ΔE_{oi} at shorter bond lengths (Table 1). The valence *n*s and *n*p AOs become significantly more extended and diffuse (i.e. the effective size of M increases) and M-H bonds thus elongate, along C, Si, Ge, and Sn (Figure 3: Ge 4s and 4p are not shown; they are only slightly larger than Si 3s and 3p). The origin of this phenomenon is the intraatomic Pauli repulsion²¹ of the valence *n*s and *n*p electrons with the increasing number of core shells (Figure 3). The effect is most pronounced for the step from carbon 2p (no p core at all) to silicon 3p (first M with a p core).

The M–H orbital interaction ΔE_{oi} (M–H₃) is largest for CH₃, but its additional *stabilization upon pyramidalization*, through the ΔE_A (M–H₃) term, is the *weakest* for this radical. This is again most clearly demonstrated by a comparison of MH₃-plan and MH₃-pyr*: ΔE_A (M– H₃) is stabilized by –2.9, –4.5, –5.4, and –7.2 kcal/mol along CH₃, SiH₃, GeH₃, and SnH₃, a trend which follows approximately the increasing gain in M–H₃

Figure 3. Contour plots of *n*s and *n*p AOs of carbon, silicon, and tin. (Asterisks indicate positions of nuclei in corresponding MH₃[•]. Scan values: 0.0, \pm 0.02, \pm 0.05, \pm 0.10, \pm 0.2, \pm 0.5).

overlap $\langle np_z|1a_1' \rangle$ (Table 4). The overall $\Delta E_A(M-H_3)$ term is -91.5, -71.5, -79.1, and -65.5 kcal/mol along the MH₃•-plan series (Table 4). This trend follows primarily the $ns-1a_1'$ orbital energy gap (5.1, 4.0, 4.9, and 3.4 eV along the MH₃• series) which is controlled by the M-ns atomic orbital energies (Figure 2): the smaller the $ns-1a_1'$ energy gap, the smaller the stabilization associated with charge transfer to M-ns. The reduction of the M–H₃ overlap $\langle np_z|1a_1' \rangle$ has in addition a weakening effect on $\Delta E_A(M-H_3)$. Together, the interactions in A symmetry lead to a net charge flow from (H•)₃-1a₁' and M- np_z to M-ns (Table 4).

The $n\mathbf{p}_{x,y} \pm 1\mathbf{e}_1$ interaction $\Delta E_{\rm E}(\rm M-H_3)$ is much stronger than $\Delta E_A(M-H_3)$, but at the same time it changes much less upon pyramidalization (MH₃-plan \rightarrow MH₃·-pyr^{*}; eq 8), namely by +1.0, -2.1, -1.1, and -0.7 kcal/mol along CH₃, SiH₃, GeH₃, and SnH₃ (Table 4). Consequently, the change in the overall orbital interaction ΔE_{00} (M–H₃) (–1.9, –6.6, –6.5, –7.9 kcal/mol) follows approximately that of the $\Delta E_A(M-H_3)$ term and favors pyramidalization, although only slightly so for CH₃• (Table 4). Note that $\Delta \Delta E_{0i}$ (M-H₃) becomes slightly endothermic (i.e. +0.5 kcal/mol) for CH₃• after M-H elongation (MH₃•-pyr* \rightarrow MH₃•-pyr; eq 8). The relative invariance of $\Delta E_{\rm E}({\rm M}-{\rm H}_3)$ upon pyramidalization is ascribed to a very subtle interplay and mutual cancellation of the trends in overlap $\langle n\mathbf{p}_{x}|\mathbf{1e}_{1-x'}\rangle$, which is slightly reduced, and the relative orbital energies of M- $np_{x,y}$ and (H[•])₃-1e₁'. The fact that $\Delta E_{\rm E}$ (M-H₃) is significantly larger than $\Delta E_{\rm A}({\rm M-H_3})$ has its origin in the larger number of valence electrons in E_1 symmetry and in the larger $\langle n \mathbf{p}_{x} | 1 \mathbf{e}_{1-x'} \rangle$ overlaps (Table 4, Figure 1). The corresponding electron pair bonds are relatively covalent because of the small $np_{x,y}-1e_1'$ energy gap in combination with the large $n_{\mathbf{p}_{x,y}} \pm 1\mathbf{e}_1$ splitting. This shows up in orbital populations which are close to one for $np_{x,y}$ and $1e_1'$; only for SnH₃ · is there a significant charge transfer of ca. 0.2 e from M to (H[•])₃ (Table 4).

We conclude that the CH₃• radical is planar because of the steric repulsion between the hydrogen ligands whereas electronic effects (i.e. electron pair bonding between central atom and hydrogen ligands) always favor a pyramidal structure.

Table 5. Calculated Homolytic (D_{homo}) and Heterolytic (D_{hetero}) MH3-Cl Bond Dissociation Energies(in kcal/mol)^a

	LDA/TZ2P					NL-SCF/TZ2P						
			$D_{\rm hetero} +$			$D_{\rm homo} +$		$D_{\rm hetero} +$		$D_{\text{homo}} +$	literature L	homo
MH ₃ -Cl	$D_{\rm hetero}$	ΔZPE	ΔZPE	$D_{ m homo}$	ΔZPE	ΔZPE	$D_{ m hetero}$	ΔZPE^{b}	$D_{ m homo}$	$\Delta \mathbf{ZPE}^{b}$	theoretical	exptl
CH ₃ -Cl	252.2	-4.2	248.0	107.2	-4.8	102.4	236.3	232.1	86.5	81.7	$75.8,^c 78.3,^d 46.8,^e 83.0,^f 83.2^g$	83.4, ^{<i>h</i>} 82.4 ^{<i>i</i>}
SiH ₃ -Cl GeH ₃ -Cl SnH ₃ -Cl	222.4 209.9 196.8	$-2.4 \\ -1.9 \\ -2.1$	220.0 208.0 194.7	124.4 114.3 111.4	$-3.1 \\ -2.8 \\ -4.2$	121.3 111.5 107.2	212.3 199.2 187.6	209.9 197.3 185.5	108.7 99.0 97.8	105.6 96.2 93.6	104.9, ^j 109.7, ^g 109 ^k	125.5, ^{<i>h</i>} 113 ^{<i>l</i>}

^{*a*} $D_{\text{hetero}} = \text{energy change for MH_3Cl} \rightarrow MH_3^+ + Cl^-; D_{\text{homo}} = \text{energy change for MH_3Cl} \rightarrow MH_3^+ + Cl^-, {}^{$ *b* $} \Delta ZPE from LDA/TZ2P frequencies.$ ^{*c* $} MP4/6-311G(d,p)//MP2/6-311G(d,p)+<math>\Delta ZPE$: ref 5a. ${}^{$ *d* $} MP2/6-311G(d,p)+\Delta ZPE$: ref 5a. ${}^{e} HF/6-311G(d,p)//MP2/6-311G(d,p)+\Delta ZPE$: ref 5a. ${}^{f} G2$: ref 6l. ${}^{g} CBS-Q$: ref 6l. ${}^{h} Calculated with \Delta H_{t}^{298}$ values from ref 3a. ${}^{i} Calculated with \Delta H_{t}^{298}$ values from ref 3b. ${}^{j} Obtained from$ experimental $D(CH_3-Cl)_{298} + MP4/6-31G^*//HF/3-21G^*+\Delta ZPE$ value of ΔH_r for SiH_3Cl + CH_3^{\bullet} \rightarrow SiH_3^{\bullet} + CH_3Cl: ref 6f. ${}^{k} G2$: ref 6i, ${}^{k} G2$:

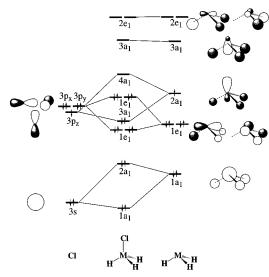
C. MH₃Cl Geometry and M-Cl Bond Dissociation Energy. Now, we come to the MH₃Cl molecules in which the MH₃ radicals act as building blocks. The M-Cl and M-H bonds *expand* by ca. 0.6 Å, and the MH₃ fragment becomes ca. 2° less pyramidal for heavier M: $d_{MCl} = 1.779$, 2.034, 2.129, and 2.361 Å and H–M–H angle β = 110.52, 110.30, 111.62, and 112.40° along CH₃-Cl, SiH₃Cl, GeH₃Cl, and SnH₃Cl (Table 1, NL-SCF/ TZ2P). The homolytic M–Cl bond dissociation energy rises steeply in going from C-Cl to Si-Cl and then decreases more moderately in going from Si-Cl to Sn-Cl: $D_{\text{homo}} + \Delta ZPE$ is 81.7, 105.6, 96.2, and 93.6 kcal/ mol for CH₃-Cl, SiH₃-Cl, GeH₃-Cl, and SnH₃-Cl, respectively (Table 5, NL-SCF/TZ2P). The corresponding heterolytic M-Cl bond dissociation energies are significantly higher: $D_{\text{hetero}} + \Delta ZPE$ is 232.1, 209.9, 197.3, and 185.5 kcal/mol along the same series (Table 5, NL-SCF/TZ2P). Thus, isolated MH₃-Cl dissociates in all four cases preferentially in a homolytic fashion.

Our results are in excellent agreement with the available literature data (Tables 2 and 5).^{2-6,9b} Both theoretical (HF/ECP1*)^{6b} and experimental (MW, IR)² studies confirm the ca. 0.6 Å M-Cl and M-H bond elongation and the ca. 2° decrease of the H-M-H angle β (Table 2). The trend of the homolytic bond dissociation energy ($D_{\text{homo}} + \Delta ZPE$) is also fully corroborated for CH₃Cl and SiH₃Cl (Table 5); to our knowledge no previous data are available for GeH₃Cl and SnH₃Cl. Our NL-SCF CH₃-Cl bond dissociation energy of 81.7 kcal/ mol is only ca. 2 kcal/mol lower than experimental (83.4 and 82.4 kcal/mol) or G2 values (83.0 kcal/mol); for comparison, the HF, MP2, and MP4 calculations underestimate the CH₃-Cl bond dissociation energy by 37, 5, and 8 kcal/mol, respectively (Table 5). Our NL-SCF SiH₃-Cl bond dissociation energy of 105.6 kcal/mol is essentially equal to the accurate value of 104.9 kcal/ mol obtained by Luke et al.6f by adding their MP4/6- $31G^*//HF/3-21G^* + \Delta ZPE$ energy change for the isogyric reaction SiH₃Cl + CH₃· \rightarrow SiH₃· + CH₃Cl to the experimental CH₃-Cl bond dissociation energy. The G2 value of 109 kcal/mol is somewhat higher. Thus, the theoretical studies are in support of an SiH₃-Cl bond dissociation energy (105–109 kcal/mol) which is 4–21 kcal/mol lower than the experimental values (113-126 kcal/mol; Table 5).

D. MH₃Cl Bonding Mechanism. *Why* does the MH_3 -Cl bond strength increase at first and then decrease whereas the M-Cl bond length increases continuously along M = C, Si, Ge, and Sn? To answer this, a detailed analysis of the bonding mechanism has been carried out (Table 6). The overall M-Cl bond

Table 6. Analysis of the M–Cl BondingMechanism between MH3 and Cl in MH3Cla

		-		-					
	CH ₃ -Cl	SiH ₃ -Cl	GeH ₃ -Cl	SnH ₃ -Cl					
Energy (in kcal/mol) ^{<i>a,b</i>}									
ΔE^0	82.4	82.7	67.8	49.8					
ΔE_{oi}	-175.1	-191.4	-166.9	-147.8					
$\Delta E_{\rm int}$	-92.7	-108.7	-99.1	-98.0					
$\Delta E_{ m prep}$	6.2	0.0	0.1	0.2					
ΔE	-86.5	-108.7	-99.0	-97.8					
Orbital Energy Gap (in eV)									
$2a_1-3p_z$	3.8	4.6	4.7	4.9					
F	ragment Or	bital Overla	os (MH ₃ Cl) ^c						
$\langle 1a_1 3s \rangle$	Ŭ.16	0.15	0.14	0.12					
$\langle 1a_1 3p_z \rangle$	0.28	0.23	0.23	0.19					
$\langle 2a_1 3p_z\rangle$	0.34	0.34	0.33	0.32					
$\langle 1e_{1-x} 3p_x\rangle$	0.15	0.12	0.11	0.09					
Fragment Orbital Populations (in e) ^d									
MH ₃ • P(2a ₁)	0.83	0.54	0.56	0.44					
$\operatorname{Cl}^{\bullet} P(3p_z)$	1.17	1.44	1.42	1.53					


^{*a*} NL-SCF/TZ2P; ΔE_{int} decomposition: NL-P/TZ2P scaled to fit with NL-SCF/TZ2P result. ^{*b*} ΔE^0 = steric interaction, ΔE_{oi} = orbital interaction (comes from \geq 90% from A₁ symmetry), ΔE_{int} = net interaction between MH₃• and Cl•, ΔE_{prep} = preparation energy, required to deform MH₃• to its geometry in the overall molecule, ΔE = overall energy change for MH₃• + Cl• \rightarrow MH₃Cl (see eq 9). ^{*c*} Overlaps between MH₃• and Cl• orbitals. ^{*d*} $P(\varphi)$ is the gross Mulliken population which fragment orbital φ acquires in the overall molecule.

energy $\Delta E = -D_{\text{homo}}$ is divided into two terms (eq 9).

$$MH_3^{\bullet} + Cl^{\bullet} \rightarrow MH_3Cl \qquad \Delta E = \Delta E_{nren} + \Delta E_{int}$$
 (9)

The preparation energy ΔE_{prep} is the energy required to deform MH₃• to its geometry in MH₃Cl. The actual interaction ΔE_{int} between the prepared MH₃• and Cl• is composed of the steric repulsion ΔE^0 and the attractive orbital interaction ΔE_{oi} (section 2B). The orbital interaction ΔE_{oi} is mainly ($\geq 90\%$) provided by the polar electron pair bond between the SOMOs of MH₃• and Cl•, $2a_1 \pm 3p_z$ (Figure 4). The steric interaction ΔE^0 is dominated by the Pauli repulsion between closed shells: $1a_1 \pm 3s$ (or $1a_1 \pm 3p_z$) and $1e_1 \pm 3p_{x,y}$ (Figure 4).

The M–Cl bond lengths are determined by the balance between the repulsive ΔE^0 and attractive ΔE_{oi} . Both interaction terms have their onset or optimum (for ΔE_{oi}) at still longer d_{MCl} along M = C, Si, Ge, and Sn, because of a similar behavior of the corresponding MH₃–Cl orbital overlaps. The origin of this phenomenon is again intraatomic Pauli repulsion²¹ which causes valence orbitals of M and thus MH₃• to become more extended and diffuse (Figure 3) when the number of core shells increases (see also section 3B).

Figure 4. Orbital interaction scheme for MH₃-Cl.

The general trend in the MH₃-Cl bond energy is set by the orbital interaction ΔE_{oi} (=-175.1, -191.4, -166.9, and -147.8 kcal/mol) which gives rise to the order C < Si > Ge > Sn (Table 6). The orbital interaction ΔE_{oi} correlates to a certain degree with the $2a_1-3p_z$ energy gap (=3.8, 4.6, 4.7, 4.9 eV) which reflects the trend in $M-mp_z$ AO energies (Figure 2) and increases steeply from M = C to Si (Figure 5 and Table 6).²⁵ Consequently, the electron originating from the MH₃·-2a₁ experiences a stronger stabilization when it enters the bonding 2a₁ + $3p_z$ (i.e. MH₃Cl-3a₁), in spite of a reduced $2a_1 \pm 3p_z$ interaction (Figure 5). Thus, the M-X bond becomes more polarized, as reflected by the increased charge transfer to $Cl-3p_z$ (Table 6). This confirms the finding by Luke *et al.* that the SiH₃-X bond is stronger than the CH₃-X bond for electronegative X due to the lower ionization energy (IE) of the SiH3 radical.^{6f} The 2a1- $3p_z$ energy gap rises only slightly along Si, Ge, Sn (Figure 5).²⁵ Now, ΔE_{0i} is more sensitive to other factors, e.g. the decreasing $\langle 2a_1|3p_z \rangle$ overlap which weakens the interaction (Table 4). This trend may be further enhanced as the $1a_1 \pm 3p_z$ two-orbital threeelectron interaction pushes the $Cl-3p_z$ effectively up in energy, thus causing a smaller $2a_1-3p_z$ energy gap. Together, these effects lead to a further, slight increase of the M-X bond polarization.

The steric repulsion ΔE^0 (=82.4, 82.7, 67.8, and 49.8 kcal/mol) runs counter to the order given by ΔE_{oi} and has the effect to make the overall ΔE the weakest for CH₃-Cl. It remains essentially unchanged in going from CH₃Cl to SiH₃Cl where the 1a₁ ± 3s repulsion is taken over by 1a₁ ± 3p_z, as the MH₃·-1a₁ orbital energy increases (Figure 5). The decrease of ΔE^0 from SiH₃Cl to SnH₃Cl is related to a similar decrease in the $\langle 1a_1|3p_z \rangle$ and $\langle 1e_{1-x}|3p_x \rangle$ overlaps (Table 6). The preparation energy ΔE_{prep} is small and without significant influence on the overall trend: 6 kcal/mol for the pyramidalization

 Table 7. Analysis of the C-X Bonding Mechanism

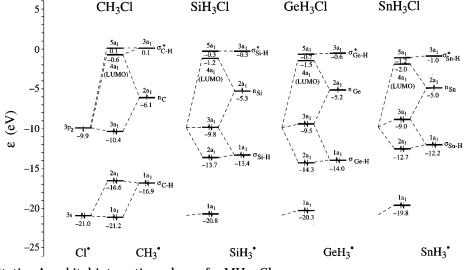
 between CH₃ and X in CH₃X^a

Detween CH ₃ [*] and X [*] In CH ₃ X [*]										
	CH ₃ -F	CH ₃ -Cl	CH ₃ -Br	CH ₃ -I						
Geometry (in Å, deg)										
$d_{\mathrm{C-X}}$	1.400	Ĭ.778	1.967	2.156						
$d_{ m C-H}$	1.099	1.095	1.094	1.093						
α_{HCX}	108.7	108.2	107.5	107.3						
Energy (in kcal/mol)										
ΔE^0	152.0	85.6	55.8	45.0						
$\Delta E_{ m oi}$	-277.9	-179.0	-137.0	-115.4						
$\Delta E_{\rm int}$	-125.9	-93.4	-81.2	-70.4						
$\Delta E_{ m prep}$	6.5	5.9	5.4	5.2						
ΔE	-119.4	-87.5	-75.8	-65.2						
	Orbital E	Energy Gap (i	n eV) ^b							
$2a_1 - np_z$	7.5	3.8	3.0	2.1						
Fragment Orbital Overlaps (CH ₃ X)										
$\langle 2a_1 np_z \rangle^b$	0.26	0.34	0.35	0.36						
Fragment Orbital Populations (in e)										
CH3• P(3a1)	Ŏ.77	0.83	0.87	0.90						
$X \cdot P(np_z)^b$	1.23	1.17	1.13	1.10						
•										

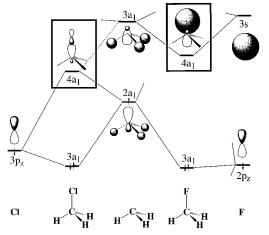
 a NL-P/TZ2P//NL-SCF/TZ2P; from ref 5a. b np_z = 2p_a 3p_a 4p_a and 5p_z for F, Cl, Br, and I, respectively.

of CH₃• and 0 kcal/mol for the heavier MH₃• radicals which are already pyramidal (Table 6).

Summarizing, the MH_3-Cl bond strength ΔE follows initially the increasing M-Cl electronegativity difference (i.e. from C to Si) and then, among others, the decreasing $\langle 2a_1|3p_z\rangle$ overlap which, in combination with the decreasing steric repulsion, leads to the overall order C \ll Si > Ge > Sn.


Comparison with CH₃–X. We recall that the CH₃–X bond strength ΔE (determined by the orbital interaction ΔE_{0i}) follows the decreasing C–X electronegativity difference (accompanied by a decreasing charge transfer from CH₃·-2a₁ to X-*n*p₂) which leads to the overall order F \gg Cl > Br > I (Table 7).^{5a} The bond overlap $\langle 2a_1|3p_2 \rangle$ runs counter (i.e. increases), but this effect is strongly overruled by the electronegativity trend (Table 7). Thus, bond polarization rather than orbital overlap governs the CH₃–X bond strength.

The apparent difference between the ΔE trends of MH₃-Cl (Table 6) and CH₃-X (Table 7) is the much higher correlation of the latter with the M-X electronegativity difference and bond polarization.²⁵ The reason is obvious if one compares the trends in the orbital energy gaps $2a_1-3p_z$ (MH₃-Cl) and $2a_1-m_{p_z}$ (CH₃-X). The CH₃-X $2a_1-m_{p_z}$ gap (=7.5, 3.8, 3.0, and 2.1 eV) changes considerably along X = F, Cl, Br, and I (Table 7). In contrast, the MH₃-Cl $2a_1-3p_z$ gap (=3.8, 4.6, 4.7, 4.9 eV) changes only very slightly, in particular along M = Si, Ge, and Sn (Table 6); therefore, the effect of the decreasing bond overlap $\langle 2a_1|3p_z \rangle$ dominates along the latter.


E. MH₃**X LUMO and Reactivity.** Finally, we take a closer look to the electronic structure of MH₃X, in particular the 4a₁ LUMO which plays the important role of acceptor orbital in S_N2 reactions.^{23,26} The orbital energy of the MH₃Cl 4a₁ LUMO decreases by 1.4 eV in going from M = C to Sn, due to the reduced $2a_1-3p_z$ interaction (*vide supra*). This makes the LUMO a still better partner in a donor–acceptor interaction with the HOMO of a nucleophile B⁻. Thus, it is to be expected that the activation energy for the B⁻ + MH₃Cl S_N2

⁽²⁵⁾ In our approach, orbital energies occur naturally as a measure of (orbital) electronegativities of atoms or groups. Note that the trend in Pauling electronegativities for M, i.e., 2.55, 1.90, 2.01, and 1.96 for C, Si, Ge, and Sn, respectively, follows that of the AO energies and, in particular, that the irregular variation from Si via Ge to Sn correlates with the M-*n*s orbital energy (Figure 2). (b) Electronegativities were taken from: Boyd, R. J.; Markus, G. E. J. Chem. Phys. **1981**, *75*, 5385. (c) See also: Pauling, L. *The Nature of the Chemical Bond*; Cornell University Press: Ithaca, NY, 1960; Chapter 3.

⁽²⁶⁾ Fleming, I. *Grenzorbitale und-Reaktionen organischer Verbindungen;* VCH Verlagsgesellschaft: Weinheim, Germany, 1990.

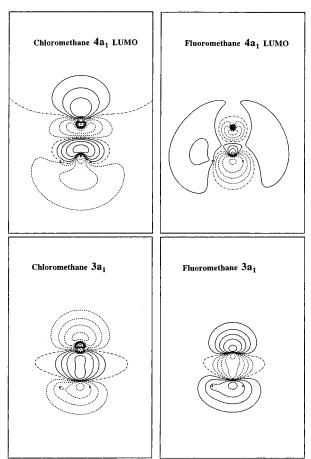

Figure 5. Quantitative A₁ orbital interaction scheme for MH₃-Cl.

Figure 6. Comparison of the main orbital interactions of CH_3-Cl and CH_3-F .

substitution drops for heavier M and eventually vanishes completely leading to stable pentacoordinate $[B-MH_3-Cl]^-$ intermediates. This is actually confirmed by experimental and theoretical studies (for M = Si).²⁷ Of course, other factors (e.g. the size of M and orbital overlap) may play an equally important role in determining the course of the B⁻ + MH_3Cl reactions and more detailed calculations of such reactions are under way to tackle this problem.²⁸

Another point concerns the shape of the $4a_1$ LUMO. Recently, we have pointed out that the backside lobe of this LUMO is poorly developed in CH₃Cl, at variance to the "classical" view of a large backside lobe.²² There are two reasons for this small backside lobe. First, already the CH₃•-2a₁ has its small lobe at the methyl backside (Figure 6). Nevertheless, the backside lobe of the antibonding $2a_1-3p_z$ combination (i.e. the CH₃Cl $4a_1$ LUMO) could be larger through the renormalization effect. Its amplitude is further diminished by a slight contribution of the CH₃•-3a₁ which mixes in a bonding fashion with the Cl-3p_z (see Figures 5 and 6).

Figure 7. Contour plots of the $4a_1$ LUMOs and $3a_1$ bond orbitals of CH₃Cl and CH₃F. (Asterisks indicate positions of nuclei. Scan values: 0.0, ± 0.02 , ± 0.05 , ± 0.10 , ± 0.2 , ± 0.5 .)

The fluoromethane $4a_1$ LUMO has a much higher amplitude backside lobe as shown by the contour plots in Figure 7. Interestingly, the "classical" (i.e. large) backside lobe of the CH₃F $4a_1$ LUMO is *not* the result of a "normal" $2a_1-2p_z$ mixing (i.e. without some admixture of CH₃·-3a₁). Instead, the CH₃F $4a_1$ LUMO *is* the bonding combination of the empty CH₃·-3a₁ and the rather diffuse F·-3s orbitals (Figure 6)! This unanticipated interaction is due to the very low energy of the fluorine 3s, which is only 0.8 eV above the methyl 3a₁

⁽²⁷⁾ See, for example, the following studies and references cited therein: (a) Taketsugu, T.; Gordon, M. S. J. Phys. Chem. **1995**, 99, 8462. (b) Windus, T. L.; Gordon, M. S.; Davis, L. P. Burggraf, L. W. J. Am. Chem. Soc. **1994**, 116, 3568. (c) Ramsden, C. A. Chem. Soc. Rev. **1994**, 111. (d) DePuy, C. H.; Damrauer, R.; Bowie, J. H.; Sheldon, J. C. Acc. Chem. Res. **1987**, 20, 127.

⁽²⁸⁾ Bickelhaupt, F. M.; Ziegler, T.; Schleyer, P. v.R. To be published.

(for comparison, the corresponding chlorine 4s is 5.6 eV above the methyl 3a₁). Thus, chloromethane and fluoromethane have fundamentally different LUMOs whereas the occupied spectrum is similar (compare the 3a₁ bond orbitals in Figure 7) in the sense that it arises from corresponding CH₃–X orbital interactions. The CH₃F 4a₁ LUMO may, however, still transform into the "classical" C–F antibonding 2a₁–2p_z when this orbital combination is stabilized by C–F bond elongation (e.g. in an S_N2 transition state), and therefore, the differences between the CH₃F and CH₃Cl LUMOs should not be overrated.

4. Conclusions

The CH₃• radical is planar because of the steric repulsion between the hydrogen ligands. The steric H–H repulsion is much weaker for the heavier central atom homologs in which the ligands are farther removed from each other. Electronic effects (i.e. electron pair bonding between central atom and hydrogen ligands) always favor a pyramidal structure (although only slightly so for the methyl radical) through the additional stabilization of the unpaired electron in M- np_z (Figure 1). This causes an increasing degree of pyramidalization along SiH₃•, GeH₃•, and SnH₃•. Thus, intraatomic Pauli repulsion plays an important role as it is responsible for the occurrence of the increasing number of core shells which cause the central atom M to expand along the MH₃• series.²¹

Our analysis confirms but also adjusts the classical explanation for the trend in MH₃ · geometry and inver-

sion barrier as given in Scheme 1. The difference is that the main opposing factor to pyramidalization is the increase in repulsive H–H $\langle 1s|1s \rangle$ overlap and not the loss in $\langle np_{x,y}|1e_1' \rangle$ bonding overlap.

The MH₃-Cl bond strength ΔE increases initially (i.e. from C to Si) with the increasing M-Cl electronegativity difference and then, as the changes in M's electronegativity become small, decreases, following among others the trend of the decreasing SOMO-SOMO bond overlap $\langle 2a_1|3p_z \rangle$; in combination with the decreasing steric repulsion this gives rise to the overall order C \ll Si > Ge > Sn. The decreasing bond overlap as well as the bond elongation can be ascribed to the expansion and increasing diffuseness of the M-*n*s and *n*p valence orbitals along this series. This is again determined by the intraatomic Pauli repulsion.

The CH_3-X bond strength (X = F, Cl, Br, and I) correlates significantly stronger with the bond polarization. The reason is the larger variation in electronegativity along the halogen atoms if compared to the group 14 atoms.

Acknowledgment. This investigation was supported by the Deutsche Forschungsgemeinschaft (DFG), the Netherlands Organization for Scientific Research (NCF/NWO), and the Natural Sciences and Engineering Research Council of Canada (NSERC). F.M.B. gratefully acknowledges a postdoctoral DFG fellowship.

OM950560K