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Summary: Organocesium compounds, which are still a
rarity, are easily prepared using a droplet of liquid
cesium and occasional ultrasonic surface reactivation.
Despite their extreme air sensitivity, structure analysis
has been achieved under a cooled-N2 flow both for the
black coordination polymer (tetraphenylethanediyl)di-
cesium bis(diglyme) ([(Ph2CsCPh2)2-(Cs+(diglyme)2]∞),
which exhibits the expected cyanine distortion with the
molecular halves -C(C6H5)2 twisted by 76° around the
central CC single bond of 1.51 Å length, and for the
violet-blue coordination polymer (1,1,4,4-tetraphenyl-
butadiene-2,3-diyl)tetracesium bis(diglyme) bis(2-meth-
oxyethanolate) ([(Ph2Cd(CHCH)dCPh2)2-(Cs+(diglyme))-
(Cs+-OCH2CH2OCH3)2]∞), which shows a bond alter-
nancy change relative to the hydrocarbon, >CdC(H)s
(H)CdC< + 2e- f >C-sC(H)d(H)Cs-C<.

The ever-increasing structure reports of alkali-metal-
organic species and especially of lithium, sodium, and
potassium compounds have considerably improved a
rationalization of their physical and chemical proper-
ties.1,2 In contrast, a search in the Cambridge Struc-
tural Database3 showed that out of the total of about
140 entries for ion multiples with contacts M+‚‚‚Cδ- only
two concern Cs+ countercations.4,5
This may be due to their extreme air and moisture

sensitivity, which makes their preparation difficult, as

well as to their resulting low synthetic importance.5
However, the Cs atom exhibits an extremely low first
vertical ionization potential of only 3.89 eV, and its
cation has the largest radius (rCs+ ) 1.67 Å) of all
nonradioactive alkali metals.6 Because of our interest
in the structural details of organocesium compounds,
we have developed a simple technique for the reduc-
tion of π-hydrocarbons in aprotic ether solution using
a Cs metal droplet above its melting point and, if
necessary, surface reactivation by occasional brief
ultrasonic sound irradiation.7 As examples, the low-
temperature single-crystal structures of (tetraphenyl-
ethanediyl)dicesium bis(diglyme), [(H5C6)2CsC(C6H5)22--
(Cs+(H3COCH2CH2OCH2CH2OCH3)2]∞8 (Figure 1), and
of (1,1,4,4-tetraphenylbutadiene-2,3-diyl)tetracesium
bis(diglyme) bis(2-methoxyethanolate), [(H5C6)2Cd
(CHCH)d(C6H5)22-(Cs+H3COCH2CH2OCH2CH2-
OCH3)2(Cs+-OCH2CH2OCH3)2]∞9 (Figure 2), are re-
ported.
In the structure determined for the black crystal8

(Figure 1A), the Cs+ countercations show interactions
with four phenyl rings of two different tetraphenyl-
ethanediyl dianions as well as with the three oxygens
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of one diglyme molecule, forming a distorted polyhedron
around the 15-fold-coordinated Cs+ center. In the
dianion, the (H5C6)2C- halves are twisted by 76° around
a single >-CsC-< bond, elongated from 1.36 Å in the
neutral hydrocarbon to 1.51 Å, i.e. by 0.15 Å (!). This
is in close analogy to the disodium-diethyl ether
salt,2a,10 representing another impressive example of a
large cyanine distortion.2a The contact distances
Cs+‚‚‚Oδ- vary from 3.48 to 3.83 Å, and the Cs+‚‚‚O
contacts are 3.04, 3.06, and 3.19 Å, with the longest one
to the central oxygen of the diglyme ligand. The η6
coordination of Cs+ to the phenyl ring at a centroid
distance of 3.24 Å is slightly unsymmetrical, with closer
contacts to the meta and para positions. The bridging
of two different dianions by each Cs+ cation on both
sides of their horizontal (H5C6)2C- planes leads to a
linear one-dimensional coordination polymer with in-
triguing intermolecular lattice packing (Figure 1B).
For the violet-blue single crystal of the other and

in some aspects analogous coordination polymer, the
structure determination9 (Figure 2) reveals the follow-
ing features: the butadiene dianion is perturbed to a
but-2-ene-1,4-diyl π-system with the bond alterna-
tion in the neutral molecule11 converted by addition
of two electrons, >CdC(H)s(H)CdC< + 2e- f >-Cs
C(H)d(H)CsC-<, and the negative charges delocalized
into the phenyl rings:2a,11 The central CC bond is
shortened by 0.06 Å to 1.38 Å, and the outer ones are

elongated by 0.09 Å to 1.45 Å. Each Cs+ cation is η6- or
η7-bonded to one dianion, η3-bonded to one diglyme
molecule, and η2-bonded to two 2-methoxyethanolate
anions resulting from reductive ether fragmentation by
Cs metal, which are shared with to other Cs+ cations of
adjacent subunits (Figure 1A, dashed lines). The coor-
dination spheres of both cations differ slightly, despite
comparable contact distances: Cs+‚‚‚O(diglyme) is be-
tween 3.10 and 3.33 Å, Cs+‚‚‚-O is 2.83 Å, and Cs+‚‚‚Cδ-

between 3.49 and 3.72 Å, with the shortest distances of
only 3.25 and 3.27 Å to the C2 centers bearing the
highest negative charge.2a,11 Two but-2-ene-1,4-diyl
dianions are bridged by four Cs+ cations, which enclose
the additional anions -OCH2CH2OCH3 (Figure 2B).
In summary, a simple procedure allowed us to grow

crystals of organocesium compounds under argon and
aprotic conditions. Their structures can be determined
under a cooled-N2 flow. Due to the negative reduction
potential of Cs metal (-2.92 V6) dianions of hydrocar-
bons such as tetraphenylethene and 1,1,4,4-tetraphe-
nylbutadiene thus generated show severe cyanine and
charge localization distortions, which can be compared
to literature values especially for Li+,2a,11,12 Na+,2a,12,13
or K+ 2a,11,13 analogues. A preliminary overview would
suggest that Cs+ centers due to their large ionic radii
tend to crystallize in multihapto- and multiion-coordi-
nated, linear polymeric aggregates and that the bor-

(10) Bock, H.; Ruppert, K.; Merzweiler, K.; Fenske, D.; Goesmann,
H. Angew. Chem. 1989, 100, 1715; Angew. Chem., Int. Ed. Engl. 1989,
18, 1684.

(11) Bock, H.; Näther, C.; Ruppert, K. J. Chem. Soc., Chem.
Commun. 1992, 765.

(12) Bock, H.; Hauck, T.; Näther, C. Unpublished results.
(13) Bock, H.; Näther, C.; Ruppert, K.; Havlas, Z. J. Am. Chem. Soc.

1992, 114, 6907.

Figure 1. Single-crystal structure of (tetraphenyl-
ethanediyl)dicesium bis(diglyme) at 200 K:8 (A) Cs+ coor-
dination to one diglyme solvent ligand and to two twisted
tetraphenylethanediyl dianions (d(-CsC-) ) 1.51 Å,
ω(C2

-CsC-C2) ) 76°); (B) unit cell (monoclinic, C2/c, Z )
4) in y direction.

Figure 2. Single-crystal structure of (1,1,4,4-tetraphe-
nylbutadiene-2,3-diyl)tetracesium bis(diglyme) bis(2-meth-
oxyethanolate) at 150 K:9 (A) Cs+ coordination to one
diglyme solvent ligand, two anions -OCH2CH2OCH3 (from
diglyme decomposition), and one skeletal half of the tet-
raphenylbutadienediyl dianion; (B) unit cell (triclinic, P1h,
Z ) 4) in y direction.
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derline between monomeric and higher order complexes
frequently is around Li+/Na+ or Na+/K+.11,13
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