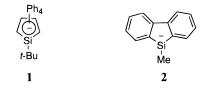
The Question of Aromaticity in the 1-Lithio-1-methyl-1-silafluorenide Anion. Evidence for a Localized Silyl Anion¹

Jang-Hwan Hong, Philip Boudjouk,* and Ioana Stoenescu


Center for Main Group Chemistry, Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105

Received November 29, 1995[®]

Summary: The 1-lithio-1-methyl-1-silafluorenide anion (2) was prepared in high yield be reductive cleavage of the Si–Si bond from bis(1-methyl-1-silafluorenyl) (3) with lithium in THF at room temperature using ultrasonic waves. Treatment of 2 with trimethylchlorosilane produces 1-methy-1-(trimethylsilyl)-1-silafluorene (4). NMR parameters (¹H, ¹³C, ²⁹Si) of 2 are consistent with localization of charge on the silicon.

Introduction

Recently we investigated the chemical and NMR spectral characteristics of the 1-*tert*-butyl-2,3,4,5-tetraphenyl-1-silacyclopentadienide anion (1), finding

evidence in the form of ²⁹Si and ¹³C NMR data consistent with significant delocalization of negative charge into the silacyclopentadienide ring.² These results are supported by high-level calculations which show that silole anions such as **1** are indeed aromatic and that planarization of the ring and delocalization of π electrons are further enhanced when coordination of the lithium ion is taken into consideration.³

The acidity of cyclopentadiene (p $K_a = 16$) is attenuated in the fused ring analog fluorene (pK = 23) as a result of reduced π delocalization in the conjugate bases of the annelated systems.⁴ We wished to explore the question of π delocalization in a silicon analogue of the fluorenide anion. In this paper we report the results of our NMR studies of the 1-lithio-1-methyl-1-silafluorenide anion (**2**).⁵

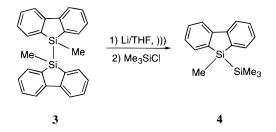

(5) 2 has been used as an intermediate: (a) Gilman, H.; Gorsich, R.
D. J. Am. Chem. Soc. 1958, 80, 3243. (b) Ishikawa, M.; Tabohashi, T.; Ohashi, H.; Kumada, M.; Iyoda, J. Organometallics 1983, 2, 351.

Figure 1.

Results and Discussion

Sonication of bis(1-methyl-1-silafluorenyl) (3) and lithium in THF for 8 h gives a dark green solution of 2. Removal of the unreacted lithium by filtration followed by treatment with an excess of trimethylsilyl chloride produces 1-methyl-1-(trimethylsilyl)-1-silafluorene (4) in 66% yield.

Samples of **2** prepared in an NMR tube gave only one peak in the ²⁹Si spectrum. The ¹³C NMR spectrum shows one methyl and six aromatic carbon peaks, consistent with C_2 symmetry (Figure 1).

The ²⁹Si NMR chemical shift for **2** (-22.09 ppm) is in the range of aryl-substituted silyllithium compounds, which have no delocalization of the negative charge on silicon to the phenyl substituents.⁶ ²⁹Si NMR chemical shifts for two phenylated silyllithium anions and related neutral aryldisilanes⁷ are given in Table 1 for comparison. That **2** is upfield from Ph₂MeSi⁻Li⁺ ($\Delta \delta = -1.59$ ppm) is noteworthy because Ph₂MeSi⁻Li⁺ differs from **2** only in the absence of a connecting carbon–carbon bond between the rings. That connection, which enforces planarity in **2**, might be expected to increase π delocalization leading to a downfield shift for the ²⁹Si peak. Analysis of the ¹H NMR shows the methyl peaks of **2** and **3** have the same chemical shift while the phenyl

[®] Abstract published in *Advance ACS Abstracts*, March 1, 1996.

⁽¹⁾ Boudjouk, P.; Hong, J.-H. The Sendai International Symposium on the Frontiers of Organosilicon Symposium, Sendai, Japan, Nov 4–6, 1994; Abstract IL6.

Hong, J.-H.; Boudjouk, P. J. Am. Chem. Soc. 1993, 115, 5883.
 Goldfuss, B.; Schleyer, P. v. R. Organometallics 1995, 14, 1555.

⁽⁴⁾ March, J. Advanced Organic Chemistry, 4th ed.; John Wiley & Sons: New York, 1992; pp 45-46.

^{(6) (}a) Olah, G. A.; Hunadi, R. J. J. Am. Chem. Soc. 1980, 102, 6989.
(b) Edlund, U.; Lejon, T.; Venkatachalam, T. K.; Buncel, E. J. Am. Chem. Soc. 1985, 107, 6408. (c) Edlund, U.; Lejon, T.; Pyykkö, P.; Venkatachalam, T. K.; Buncel, E. J. Am. Chem. Soc. 1987, 109, 5982.

^{*a*} In THF-*d*₈, external Me₄Si as standard. ^{*b*} In CDCl₃, external TMS as standard. ^{*c*} In THF, external Me₄Si as standard. ^{*d*} In CDCl₃, internal TMS as standard. ^{*e*} In THF, internal TMS as standard.

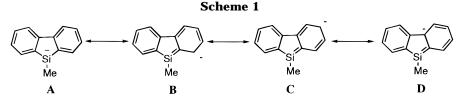


Table 2. ¹H NMR Chemical Shifts (δ) for 1-Lithio-1-methyl-1-silafluorenide (2) and Bis(1-methyl-1-silafluorenyl) (3)

obsd protons	2 ^a	3^{b}
C_6H_5 CH_3	$6.9-7.9 \\ 0.27$	7.3–7.95 0.27

^{*a*} In THF- d_8 , reference solvent = 1.73 ppm. ^{*b*} In CDCl₃, reference = external TMS as standard.

Table 3. ¹³C NMR Chemical Shifts (δ) for 1-Lithio-1-methyl-1-silafluorenide (2) and Bis(1-methyl-1-silafluorenyl) (3)^b

obsd carbons	2 ^a	3		$\Delta(2-3)$
C_1	145.69	138.25	ΔC_1	7.44
$\begin{array}{c} C_2\\ C_3\end{array}$	$163.40 \\ 123.36$	$148.27 \\ 129.85$	$\begin{array}{c} \Delta \mathrm{C}_2 \\ \Delta \mathrm{C}_3 \end{array}$	$15.13 \\ -6.49$
C_4	119.43	121.13	ΔC_4	-1.70
$\begin{array}{c} \mathrm{C}_5 \ \mathrm{C}_6 \end{array}$	$123.10 \\ 132.69$	$127.18 \\ 133.34$	${\Delta C_5 \over \Delta C_6}$	$-4.08 \\ -0.65$
T^{c} CH ₃	807.67 1.54	$\begin{array}{c} 798.02 \\ -6.27 \end{array}$	$\Delta T \Delta(CH_3)$	9.65 7.81

^{*a*} In THF-*d*₈, reference solvent = 25.30 ppm. ^{*b*} In CDCl₃, reference = external TMS as standard. ^{*c*} Summation of chemical shifts from C₁ to C₆ in ppm.

protons in **3** undergo an upfield shift upon formation of **2** (Table 2).

Upon metalation of **3** to form **2**, the C₁ and C₂ carbons of the ring and the methyl carbon are observed to shift downfield [$\Delta\delta(C_1) = 7.44$, $\Delta\delta(C_2) = 15.13$, and $\Delta\delta(Me)$ = 7.81 ppm, respectively], while the four carbons, C₃– C₆, shift upfield (Table 3). The downfield shifts of C₁ and the methyl carbon in **2** are similar to the downfield shifts of C_{ipso} and the methyl carbon in Ph₂MeSi⁻Li⁺ relative to Ph₂MeSiCl ([$\Delta\delta(C_{ipso}) = 25.5$ and $\Delta\delta(Me) =$ 4.2 ppm].^{6a} These downfield shifts can be explained in terms of a field effect induced by the negative charge on silicon.⁸ Similar downfield shifts of the ring carbons are observed in [C₄Me₄GeR]⁻ (R = Ph,⁹ Si(SiMe₃)₃¹⁰), in which the negative charge is localized on the germanium atom.

The ¹³C NMR chemical shifts of conjugated carbon rings are inversely dependent on the π -electron density on the carbon atoms.¹¹ Thus, it is important to note that, upon metalation of **3** to form **2**, the total chemical shift change of the phenyl ring carbons is small and downfield ($\Delta T = 9.65$ ppm), which means no additional accumulation of π electron density in the phenyl ring carbons (Table 3).

These NMR data provide an important contrast with the data for **1** in which the ²⁹Si chemical shift is ~47 ppm downfield from that in **2**. Moreover, the ¹³C chemical shifts of the ring carbons in **1** are upfield from the parent silacyclopentadiene, while the opposite trend exists for **2**.² Our interpretation of these observations is that the negative charge in **2** is localized on the silicon and that annelation essentially eliminates π delocalization.

Conclusion

Analysis of the ²⁹Si and ¹³C NMR data obtained on solutions of 1-lithio-1-methyl-1-silafluorenide anion indicate that the negative charge in the anion is not significantly delocalized as in silole anions but localized as in conventional arylsilane anions. Thus, resonance forms such as B-D (Scheme 1) are not significant contributors to the ground state of the 1-lithio-1-methyl-1-silafluorenide anion.

Experimental Section

General Considerations. All reactions were performed under an inert nitrogen atmosphere using standard Schlenk techniques. Air-sensitive reagents were transferred in a nitrogen-filled glovebox. THF was distilled from sodium benzophenone ketyl under nitrogen. Hexane was stirred over concentrated H_2SO_4 and distilled from CaH_{20} NMR spectra were obtained on JEOL GSX 270 and GSX 400 spectrometers. A common ultrasonic cleaner was used for sonication of synthetic scale reactions and for NMR studies. The sample was placed in a location in the bath that produced maximum cavitation in the reaction flask or NMR tube.¹²

1-Lithio-1-methyl-1-silafluorenide Anion (2) (NMR Sample). Sonication of an NMR tube containing **3** (0.100 g, 0.256 mmol) and lithium (0.004 g, 0.571 mmol) in 1.2 mL of THF- d_8 for 8 h produced a dark green solution which gave very clean NMR spectra: ¹H NMR (THF- d_8 ; reference solvent = 1.73 ppm) 0.27 (s, 3H, SiMe), 7.79 (d, 2H, J = 7.8 Hz), 7.66 (d, 2H, J = 5.9 Hz), 7.00 (q with equal intensity, 4H, J = 7.3, 5.9, 6.6 Hz).

Bis(1-methyl-1-silafluorenyl) (3). 3 was prepared by the method of Gilman and Gorsich:^{5a} Mp 181–182 °C, (lit. mp 180–182 °C); ¹H NMR (CDCl₃, reference solvent = 7.27 ppm), 0.27 (s, 6H, SiMe), 7.91 (d, 2H, Ph, J = 7.32 Hz), 7.65 (d, 2H, Ph, J = 7.32 Hz), 7.32 Hz), 7.49 (t, 2H, Ph, J = 7.32 Hz), 7.32 (t, 2H, Ph, J = 7.32 Hz).

^{(8) (}a) Buncel, E.; Venkatachalam, T. K.; Eliasson, B. J.; Edlund, U. J. Am. Chem. Soc. **1985**, 107, 303. (b) Buncel, E.; Venkatachalam, T. K.; Edlund, U.; Eliasson, B. J. J. Chem. Soc. Chem. Commun. **1984**, 1476.

⁽⁹⁾ Dufour, P.; Dubac, J.; Dartiguenave, M.; Dartiguenave, Y. Organometallics **1990**, *9*, 3001.

⁽¹⁰⁾ Freeman, W. P.; Tilley, T. D.; Arnold, F. P.; Rheingold, A. L.; Gantzel, P. K. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 1887.

⁽¹¹⁾ Stothers, J. B. *Carbon-13 NMR Spectroscopy*; Academic Press: New York, 1972; Chapter 3, pp 77–91.

⁽¹²⁾ For reviews of the effects of ultrasonic waves on heterogeneous reactions see: (a) Boudjouk, P. In *High Energy Processes in Organo-metallic Chemistry*; Suslick, K. S., Ed.; ACS Symposium Series 333; American Chemical Society: Washington, DC, 1987; Chapter 13. (b) Boudjouk, P. In *Ultrasound: Chemical, Physical and Biological Effects*, Suslick, K. S., Ed.; Verlag Chemie: Deerfield Beach, FL, 1988; Chapter 5.

Notes

1-Methyl-1-(trimethylsilyl)-1-silafluorene (4). A 100 mL flask containing **2** (0.400 g, 1.026 mmol) and lithium (0.014 g, 2.018 mmol) in 35 mL of THF was placed in an ultrasonic cleaning bath and sonicated for 10 h to give a dark greenbrown solution. The solution was filtered to remove excess lithium and added to an excess of trimethylchlorosilane with stirring at room temperature. Stirring for an additional 2 h produced a nearly colorless solution. After the volatiles were removed under vacuum, the residue was extracted with hexane. Evaporation of the hexane gave an oily residue which, after standing for 1 day, gave colorless crystals. **4** was identified by comparison with literature data:¹³ Yield 66%

(isolated); mp 62.5 °C (lit. mp 57 °C), ¹H NMR (CDCl₃, reference solvent = 7.27 ppm), 0.10 (s, 9H, SiMe₃), 0.51 (s, 3H, SiMe), 7.91 (d, 2H, Ph, J = 7.3 Hz), 7.68 (d, 2H, Ph, J = 7.3 Hz), 7.46 (t, 2H, Ph, J = 7.3 Hz), 7.31 (t, 2H, Ph, J = 7.3 Hz); ¹³C NMR (CDCl₃, reference solvent = 77.00 ppm), -6.03 (SiMe), -2.17 (SiMe₃), 148.19 (C₂), 139.71 (C₁), 133.13, 129.40, 126.97, 121.00 (ring carbons); ²⁹Si NMR (CDCl₃, reference external TMS = 0.00 ppm), -17.62 (Si of ring), -18.06 (SiMe₃).

Acknowledgment. Financial support from the Air Force Office of Scientific Research through Grant No. 91-0197 and the National Science Foundation through Grant No. OSR 9452892 is gratefully acknowledged.

OM9509195

⁽¹³⁾ Ishikawa, M.; Tabohashi, T.; Sugisawa, H.; Nishimura, K.; Kumada, M. J. Organomet. Chem. **1983**, 250, 109.