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Summary: Under appropriate conditions, the bis(ethyl-
ene) derivative Tp*Ir(C2H4)2 (Tp* ) hydrotris(3,5-di-
methyl-1-pyrazolyl)borate) reacts with MeCN to provide
the Ir(III) complex Tp*Ir(CHdCH2)(C2H5)(NCMe) (1). In
the presence of catalytic amounts of water, 1 undergoes
intramolecular coupling of the vinyl and acetonitrile
ligands, with formation of a compound (2a) that con-
tains a delocalized, five-membered iridapyrrole ring.
This unusual cycloaddition reaction can be extended to
other related alkenyl complexes of iridium.

Transition-metal vinyls constitute an important group
of organometallic compounds which find many applica-
tions in organic and organometallic synthesis and are
also invoked as active intermediates in some catalytic
processes, e.g. Fischer-Tropsch synthesis.1,2 Recent
work from this laboratory has shown that the hydrido-
vinyl derivative Tp*Ir(H)(CHdCH2)(C2H4) (B; Tp* )

hydrotris(3,5-dimethyl-1-pyrazolyl)borate), which can be
generated thermally or photochemically3a from the bis-
(ethylene) complex Tp*Ir(C2H4)2 (A), is capable of
activating a variety of organic molecules.3b-d The
corresponding reactions are thought to require the
coordination of the organic substrate to the unsaturated
iridium center C, which results from the insertion of
C2H4 into the IrsH bond of B. Prompted by these
observations, we have investigated the reaction of A and
B with MeCN. Nitriles are useful synthons in organic

preparations4 in addition to showing rich coordination
chemistry,5 the R-carbon exhibiting electrophilic reactiv-
ity by virtue of the contribution of the dipolar resonance
structure E. Here we describe the unprecedented CsC
coupling reaction of vinyl and acetonitrile ligands to
yield iridapyrrole structures of type F.

Upon heating of acetonitrile solutions of A or B to 60
°C, a smooth reaction ensues that results in the new
complex 1 in essentially quantitative yield (Scheme 1).
Identification of 1 is straightforward on the basis of its
spectroscopic properties,6 which are very similar to those
of the Rh analogue.7 Further heating of the colorless
solutions of 1 to 100 °C produces a pale red solution that
affords, after workup, the crystalline material 2a, which
has the same analytical composition as 1. Spectroscopic
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data, including multinuclear 1D and 2D NMR experi-
ments, are consistent with the delocalized iridapyrrole
structure shown in Scheme 1 (see canonical formsG and
H). For example, the iridium-bonded methine unit (C1-

H1) is responsible for resonances at δ 10.71 and 191.3
in the 1H and 13C{1H} NMR spectra, respectively.
These signals are clearly in a range intermediate
between those of metal-carbene and metal-vinyl reso-
nances.8 Additional support for the proposed aroma-
ticity of 2a is provided by the 3 Hz value found for the
four-bond H2-H3 coupling constant.
Preliminary kinetic and mechanistic studies shed

some light on the course of this coupling reaction, the
following pieces of information being particularly worthy
of note. (a) The process is catalyzed by water; a
graphical representation of kobs vs [D2O] shows satura-
tion kinetics (Figure 1). (b) It is intramolecular, exhib-
iting pseudo-first-order behavior with relatively little
incorporation (<15%) of CD3CN being observed when 1
is heated in neat CD3CN under saturation conditions.

(c) The analogous reaction of the propenyl complex 39
shows remarkable selectivity (Scheme 1, reaction b),
yielding compound 2b as the only detectable product.
The above observations would not appear to be a

simple insertion reaction, i.e. a formal 1,3-vinyl shift
from the metal to the R-carbon of the nitrile, as has been
proposed for complexes of the early transition metals.10
Instead, they point to a direct coupling of the Irs
CHdCH2 fragment with the coordinated molecule of
acetonitrile, to generate the undetected iridacycle I
(Scheme 2), subsequently trapped as the thermody-
namically favored iridapyrrole 2a by a water-dependent
tautomerism process.11 The rate expression for such a
mechanism is given in eq 1; k1 and k-1/k2 values of

[3.2(2)] × 10-4 s-1 and 0.16(4) M, respectively, can be
computed from the data of Figure 1. It should be
emphasized that as a result of the experimental method
the above figures are subject to significant uncertainty,
particularly k-1/k2.
Further support for the proposed mechanism comes

from the measurement of an inverse deuterium kinetic
isotope effect (KIE) in the saturation regime when using
Tp*Ir(C2D3)(C2D5)(NCMe), 1-d8 (kHobs/kDobs ) 0.87(2),
[D2O] ) 2.1(1) M). This measurement not only shows
that no significant C-H bond breaking occurs in the
transition state of the rate-determining step but also
constitutes additional support for the sp2-to-sp3 change
in hybridization at the nucleophilic â-vinyl carbon as
implied by this mechanism.12a,b Inverse KIE’s have
been reported for reactions involving hydrogen atom
transfer, most notably in the reductive elimination of
alkanes from σ-alkyl metal hydrides,12c-f and have been
interpreted as evidence for the existence of a preequi-
librium between M(R)H and an unobserved metal-
alkane σ-complex.
Attracted by this unusual reactivity of the Ir-vinyl

fragments toward MeCN,13 we have sought its gener-
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Figure 1. kobs vs [D2O] representation for the conversion
1 to 2a.

Scheme 1

Scheme 2

rate ) kobs[1] )
k1k2[D2O]

k-1 + k2[D2O]
(1)
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alization to other related systems. Preliminary results
indicate benzonitrile behaves similarly. Moreover, com-
plexes of the unsubstituted Tp ligand14 originating from
both simple olefins such as ethylene15 and internal
olefins such as cyclooctene readily take part in this
transformation (Scheme 3).
The generation of the iridapyrrole 2a in the described

process can be viewed as a formal [3 + 2] cycloaddition
of nitrile and metal-vinyl fragments, with the forma-
tion of the aromatic heterometallacycle providing the
driving force for the reaction. Alternatively, if the

canonical form Ir+dCHsCH2j 16 has an important
contribution to the electronic structure of the Ir-vinyl
moiety, the above transformation could be regarded as
a 1,3-dipolar cycloaddition, a reaction not very com-
monly encountered in organometallic chemistry.17 The
formation of metallapyrrole derivatives, albeit by dif-
ferent synthetic methodologies, is not unprecedented in
the literature.18 Notwithstanding and irrespective of its
intimate mechanism, the C-C coupling of the â-vinyl
carbon and the acetonitrile ligand reported in this
contribution documents a new kind of reactivity of
metal-vinyl fragments.19
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