Synthesis and Characterization of Platina- β -diketones[†]

Dirk Steinborn,* Michael Gerisch, Kurt Merzweiler, Karla Schenzel, Karsten Pelz, and Horst Bögel

Fachbereich Chemie, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany

Jörg Magull

Institut für Anorganische Chemie, Universität Karlsruhe, D-76128 Karlsruhe, Germany

Received December 18, 1995[®]

Summary: Hexachloroplatinic acid reacts with *n*-butanol to give the but-2-ene complex $H[PtCl_3(\eta^2-C_4H_8)]$ (3) as intermediate, which reacts with trimethylsilyl-substituted acetylenes R'C=CSiMe₃ (R' = H, Me, SiMe₃) with cleavage of the silvl groups to form platina- β -diketones $[Pt_2(\mu-Cl)_2\{(COR)_2H\}_2]$ [R = Me (2a), Et (2b)]. The constitution of 2 was determined by microanalysis, NMR (¹H, ¹³C) spectroscopy, IR, Raman, and mass spectroscopy. The structure of 2a was determined by X-ray diffraction.

Introduction

Hexachloroplatinic acid is a very effective precatalyst for acetal formation MeCH(OⁿBu)₂ by the reaction of acetylene with *n*-butanol.¹ Apart from this catalytic formation of ketals, alkynes with an internal triple bond, RC=CR', react with hexachloroplatinic acid to form monomeric (cyclobutadiene)platinum(II) complexes, $[PtCl_2(C_4R_2R'_2)]$ (1) (eq 1).^{2,3}

$$H_{2}PtCl_{6} \bullet 6 H_{2}O \xrightarrow{\text{RC} \equiv CR'/ ^{n}BuOH}{\frac{75-100^{\circ}C}{}}$$

$$[PtCl_{2}(C_{4}R_{2}R'_{2})] + \text{RCH}_{2}CR'(O^{n}Bu)_{2}$$
(1)

We report here on the analogous reaction of trimethylsilyl-substituted alkynes, which affords platina- β diketones $[Pt_2(\mu-Cl)_2\{(COR)_2H\}_2]$ (R = Me, Et) (2). Metalla- β -diketones, prepared for the first time by Lukehart, were synthesized according to eq 2 by the protonation of diacylmetalate complexes (metalla- β diketonate anions), which were obtained by the reaction of acylmetal carbonyl complexes with strong bases, such as organolithium or Grignard reagents.⁴

M= Mo, W, Mn, Re, Fe, Os L= CO, Cp, ...

$$Li[L_{x}M(COR)(COR)] \xrightarrow{H^{*}} (2)$$

$$\begin{bmatrix} R \\ C \\ C \\ C \\ C \\ R \end{bmatrix}$$

- [†] Dedicated to Professor Max Herberhold on the occasion of his 60th birthday.
- Abstract published in Advance ACS Abstracts, April 1, 1996.

(1) Steinborn, D.; Nünthel, R.; Krause, K. J. Organomet. Chem. 1991, 414, C54 (2) Steinborn, D.; Nünthel, R.; Sieler, J.; Kempe, R. Chem. Ber. 1993,

(3) Steinborn, D.; Gerisch, M.; Heinemann, F. W.; Scholz, J.; Schenzel, K. Z. Allg. Anorg. Chem. 1995, 621, 1421.
 (4) Lukehart, C. M. Adv. Organomet. Chem. 1986, 25, 45.

Results and Discussion

Hexachloroplatinic acid was reduced in *n*-butanol at 75-100 °C to form the trichloro(butene)platinate(II) complex (3), which is analogous to Zeise's acid. On addition of bis(trimethylsilyl)acetylene at ambient temperature, light yellow-colored needles of $[Pt_2(\mu-Cl)_2 \{(COMe)_2H\}_2\}$ (2a) were obtained within 10 h (eq 3).

The trimethylsilyl groups were cleaved, forming Me₃SiOSiMe₃. Quite analogously (trimethylsilyl)acetylene reacted to give 2a. By the reaction with the methyl-substituted alkyne MeC=CSiMe₃, the corresponding ethyl derivate $[Pt_2(\mu-Cl)_2\{(COEt)_2H\}_2]$ (2b) was obtained.

The platina- β -diketone complexes **2** decompose within 1 day when in contact with air. Both complexes show an astonishing thermal stability: 2a,b melt with decomposition at 183 and 176 °C (dta), respectively. The NMR spectra of 2a,b exhibit the equivalence of all C-O groups as well as of the methyl and ethyl substitutents, respectively. The resonances of the carbonyl carbon atoms [δ (¹³C) 228.1 ppm (**2a**) and 231.0 ppm (**2b**)] are in the range of those in acyl and carbene platinum complexes.^{5–8} However, the values of ${}^{1}J_{Pt-C} = 1457$ Hz

^{126, 2393.}

⁽⁵⁾ Ruegg, H. J.; Pregosin, P. S.; Scrivanti, A.; Toniolo, L.; Botteghi, C. J. Organomet. Chem. 1986, 316, 233.

⁽⁶⁾ Chisholm, M. H.; Clark, H. C.; Ward J. E. H.; Yasafuku, K. Inorg. Chem. 1975, 14, 893.

⁽⁷⁾ Canziani, F.; Galimberti, F.; Garlaschelli, L.; Malatesta, M. C.; Albinati, A.; Ganazzoli, F. J. Chem. Soc., Dalton Trans. 1983, 827

⁽⁸⁾ Anderson, K. G.; Cross, R. J.; Manojlovic-Muir, L.; Muir, K. W.; Wales, R. A. J. Chem. Soc., Dalton Trans. 1979, 684.

Figure 1. ORTEP plot of the molecule **2a**, showing atom numbering (thermal ellipsoids at 50% probability).

Table 1. Selected Interatomic Distances (Å) and Angles (deg) for [Pt₂(µ-Cl)₂{(COMe)₂H₁₂] (2a)

Pt-C(1)	1.95(1)	C(3)-O(2)	1.23(1)
Pt-C(3)	1.95(1)	C(1) - C(2)	1.48(2)
Pt-Cl	2.430(3)	C(3)-C(4)	1.48(2)
Pt-Cl'	2.430(4)	O(1)-O(2)	2.37(1)
C(1)-O(1)	1.26(1)		
C(1) - Pt - C(3)	91 4(5)	O(1) - C(1) - Pt	123 9(8)
C(1) - Pt - Cl	93.6(3)	C(2) - C(1) - Pt	121.7(7)
C(3)-Pt-Cl	174.1(3)	O(2) - C(3) - C(4)	114.6(10)
C(1)-Pt-Cl'	173.8(3)	O(2)-C(3)-Pt	124.9(8)
C(3)-Pt-Cl'	94.2(3)	C(4)-C(3)-Pt	120.5(8)
Cl-Pt-Cl'	80.7(1)	C(1) - O(1) - O(2)	99.8(7)
Pt-Cl-Pt'	99.3(1)	C(3) - O(2) - O(1)	99.7(7)
O(1)-C(1)-C(2)	114.3(9)		

(2a) and 1459 Hz (2b) are significantly larger (about 300-500 Hz) than those measured in acyl and carbene complexes.^{6–8} The chemical shifts of the enolic protons of about $\delta(^{1}\text{H})$ 16 ppm (2a) and 18 ppm (2b) are approximately 2–5 ppm at higher field than the resonances of ferra-, tungstena-, and rhena- β -diketones, indicating a higher electron density at the enolic H atom in 2.^{9–11} The mass spectrum of 2a shows the presence of the molecular ion [M]⁺ (m/e 634; <1%), followed by successive elimination of a methyl group [M – 15]⁺, HCl [M – 51]⁺, and CO [M – 79]⁺. The base peak represents the acetyl fragment [MeCO]⁺. In the case of 2b the base peak is the [EtCO]⁺ fragment. The molecular ion was not observed, but the peaks [M – 30]⁺, [M – 66]⁺, and [M – 94]⁺ indicate successive elimination of an ethyl group, HCl, and CO analogous to 2a.

The molecular structure of **2a** was determined by single-crystal X-ray crystallography (Figure 1). Selected bond lengths and angles are listed in Table 1. The molecule has an imposed crystallographic C_i symmetry. The idealized molecular structure belongs to the symmetry point group D_{2h} . The Pt₂Cl₂ unit has an exactly rhombic constitution. The Pt-Cl distances [d(Pt-Cl) = 2.430(3) and d(Pt-Cl') = 2.430(4) Å] are in the range of those known for chloro-bridged platinum compounds.^{12–14} The Pt-C distances [d(Pt-C1)/d(Pt-C3)

(14) Anderson, K. G.; Cross, R. J.; Manojlovic-Muir, L.; Muir, K. W.; Solomun, T. J. Organomet. Chem. 1979, 170, 385.

Figure 2. IR spectra (25, -149 °C) of **2b** in the region of the O–H–O deformation and C–O stretching vibration.

= 1.95(1) Å] are equivalent within one esd. They are in the range of platinum carbene complexes, whereas the Pt–C bond distances in acylplatinum complexes are generally somewhat longer.^{12–17} The C–O bond lengths [d(C1-O1) = 1.26(1) Å and d(C3-O2) 1.23(1) Å] are equivalent within the 3σ limit. Thus the C–O bond lengths correspond to those in the rhena- β -diketone, *cis*-[Re{(COMe)₂H}(CO)₄] (**4**) [1.28(2) and 1.25(2) Å, respectively].¹⁸ The O1–O2 distance of 2.37(1) Å in **2a** is in accordance with a hydrogen bridge bond and is similar to that observed in the rhena complex **4** [d(O1-O2) =2.40(2) Å].^{9,18} The hydrogen atom itself could not be located.

The IR and Raman spectra of 2 confirm the results of the X-ray structure determination. In accordance with the inversion symmetry of the molecule, the asymmetric stretching vibration of the Pt₂Cl₂ unit only appears in the IR spectra $[238 \text{ cm}^{-1} (2a), 251 \text{ cm}^{-1} (2b)],$ and the symmetrical one, only in the Raman spectra $[262 \text{ cm}^{-1} (2a), 278 \text{ cm}^{-1} (2b)]$. An indication of the equivalence of the Pt-C bonds is a moderately strong absorption in the Raman spectra at 501 cm^{-1} (2a) and at 476 cm^{-1} (2b), respectively, caused by the symmetrical Pt-C vibration. Two very weak O-H-O deformation vibrations [1665, 1632 cm⁻¹ (**2a**); 1662, 1611 $cm^{-1}\left(2b\right)]$ and one C–O stretching vibration [1548 cm^{-1} (2a); 1539 cm^{-1} (2b)] were observed IR spectroscopically at room temperature; cf. Figure 2. At -149 °C the absorption of the O-H-O deformation vibrations increases from a very weak to a moderately strong band. Furthermore, two C–O stretching vibrations [1549 (s), 1559 (sh) cm⁻¹ (**2a**); 1536 (s), 1544 (s) cm⁻¹ (**2b**)] appear at low temperature, which points to a slight asymmetry of the molecules.

In order to characterize the bonding in the platina- β -diketones **2**, some *ab initio* Hartree–Fock MO calculations were carried out. For that purpose, the anion [PtCl₂{(COMe)₂H}]⁻ (**I**) was used as a simplified model of **2**; see Figure 3 and Table 2. The resulting structure **I** was found to have $C_{2\nu}$ symmetry, which is in ac-

⁽⁹⁾ Lukehart, C. M.; Zeile, J. V. J. Am Chem. Soc. **1976**, 98, 2365. (10) Kundel, P.; Berke, H. J. Organomet. Chem. **1988**, 339, 103.

⁽¹¹⁾ Lukehart, C. M. Acc. Chem. Res. 1981, 14, 109.

⁽¹²⁾ Struchkov, Yu. T.; Aleksandrov, G. G.; Pukkarevich, V. B.; Sushchinskaya, S. P.; Voronkov, M. G. *J. Organomet. Chem.* **1979**, *172*, 269.

⁽¹³⁾ Illingworth, M. L.; Teagle, J. A.; Burmeister, J. L.; Fultz, W. C.; Rheingold, A. L. *Organometallics* **1983**, *2*, 1364.

⁽¹⁵⁾ Garlaschelli, L.; Malatesta, M. C.; Panzeri, S.; Albinati, A.; Ganazzoli, F. Organometallics **1987**, *6*, 63.

⁽¹⁶⁾ Klingler, R. J.; Huffman, J. C.; Kochi, J. K. *J. Am. Chem. Soc.* **1982**, *104*, 2147.

⁽¹⁷⁾ Badley, E. M.; Muir, K. W.; Sim, G. A. J. Chem. Soc., Dalton Trans. **1976**, 1930.

⁽¹⁸⁾ Schultz, H. J.; Srinivasan, K.; Teller, R. G.; Williams, J. M.; Lukehart, C. M. J. Am. Chem. Soc. **1984**, 106, 999.

Table 2. Mulliken Net Atomic and Overlap Populations: Total Values and Irreducible Representations in
 C_{2v} and C_s , Respectively, Contributing to the π -System

	Ι			II
	total	A ₂ , B ₁	total	Α″
Pt d_1 /Pt d_2	1.9150/1.9340	1.9150/1.9340	1.8850/1.9240	1.8850/1.9240
C_1/C_2	5.1895	0.2803	5.0230/5.3379	0.4380/0.2339
O_1/O_2	8.3797	1.4871	8.1301/8.0800	1.2051/1.6755
H	0.2431		0.3970	
Cl_1/Cl_2	7.5740	1.9846	7.5412/7.6849	1.9769/1.9924
$Pt-C_1/Pt-C_2$	0.2798	0.0701	0.3453/0.0955	0.0278/0.1235
Pt-Cl ₁ /Pt-Cl ₂	0.3003	-0.0022	0.3462/0.2413	0.0063 / -0.0099
$C_1 - O_1 / C_2 - O_2$	0.5856	0.1466	0.9757/0.4891	0.4067/0.1970
$O_1 - H/O_2 - H$	0.3180		-/0.5549	

Figure 3. Geometry of $[PtCl_2\{(COMe)_2H\}]^-$ (I) and $[PtCl_2(COMe)\{C(OH)Me\}]^-$ (II) (distances in Å).

cordance with the observed molecular structure of **2a**. It was impossible to determine any structure having a similar ring formation with lower symmetry, especially with an explicitly localized O–H bond. The calculated noncyclic arrangement **II** (see Figure 3 and Table 2) is about 37 kcal/mol higher in energy and shows slightly different Pt–C bonds. Furthermore, this results in a localized C–O single and double bond, respectively, corresponding to a hydroxycarbene and an acyl ligand.

The irreducible representations A_2/B_1 in $C_{2\nu}$ symmetry (including the π -bonding system) consists of 16 electrons. The 12 electrons of interest (4 electrons centered at the methyl groups, will not be discussed further) at the Pt, Cl, C, and O centers are composed of a system of mainly localized C-O π -bonds and lone pairs at Pt ($5d_{xz}/d_{yz}$) and Cl; hence, only weak π -Pt-C bonds were obtained. Thus, the calculations agree with the observed D_{2h} symmetry for **2a** and the use of the term platina- β -diketone for this type of compound is justified. In contrast to that, **II** exhibits another distribution of π -electrons (as expected for a complex with a separated hydroxycarbene and acyl ligand); cf. Table 2. Although the mechanism of the reaction 3 has not been investigated, as yet, a plausible intermediate is an anionic or a neutral platinum(II)–alkyne complex, $H[PtCl_3(\eta^2-RC\equiv CSiMe_3)]$ or $[PtCl_2(\eta^2-RC\equiv CSiMe_3)]_2$, respectively, which can undergo nucleophilic attack by water (H₂PtCl₆·6H₂O was used as starting material) resulting in a hydroxycarbene complex. Similar cleavages of Si–C bonds by nucleophilic attack of alcohol leading to stable alkoxycarbene complexes were observed in the reactions of *trans*-[PtX(PR₃)₂(R'OH)]⁺ (R = alkyl, aryl; R' = Me, Et) with (trimethylsilyl)acetylenes in R'OH.¹⁹

Reactions according to eq 3 establish the simplest access to metalla- β -diketones known to date. Investigations on the reactivity of complexes **2**, which represent the first platina- β -diketones as well as the first binuclear metalla- β -diketones, are in progress.

Experimental Section

General Comments. ¹H and ¹³C NMR spectra were recorded on a Varian Gemeni 300 or Varian Unity 500 NMR spectrometer. Chemical shifts are relative to $CHCl_3$ (δ 7.24) and $CDCl_3$ (δ 77.0) as internal references. IR and Raman spectra were recorded on a Bruker IFS 66 FT-spectrometer (with Raman unit) using CsI pellets. Mass spectra were recorded on an Intectra AMD 402 mass spectrometer (electron impact, 70 eV). H₂PtCl₆·6H₂O was obtained from Degussa.

Synthesis of [Pt₂(μ -Cl)₂{(COR)₂H₃] (2). A solution of hexachloroplatinic acid, H₂PtCl₆·6H₂O (0.51 g, 1.05 mmol), in *n*-butanol (3 mL, 33 mmol) was kept at 100 °C for 3 h. Then bis(trimethylsilyl)acetylene (2.5 g, 15 mmol) was added at room temperature. On standing overnight, deep yellow needles of **2a** were formed, which were washed with diethyl ether (10 mL) and dried *in vacuo*. Yield: 0.13 g (40%, based on H₂PtCl₆·6H₂O). Mp: 183 °C (dec). Anal. Calcd for C₈H₁₄Cl₂O₄Pt₂: C, 15.16; H, 2.23; Cl, 11.18. Found: C, 15.26; H, 2.24; Cl, 11.16. IR (CsI, in cm⁻¹): ν_{OHO} 1665 (m), 1632 (m), ν_{CO} 1548 (s), ν_{PtCl} 238. ¹H NMR (300.07 MHz, CDCl₃): δ 2.43 (s, 6H, CH₃, ³J_{PtH} = 21 Hz), ca. 16 (bs, 1H, OHO). ¹³C NMR (125.70 MHz, CDCl₃): δ 38.5 (²J_{PtC} = 161 Hz), 228.1 (¹J_{PtC} = 1457 Hz). MS: *m/e* (%) 634 (<1) [M]⁺, 619 (12), 583 (10), 555(11), 85 (31), 59 (44), 43 (100) [MeCO]⁺.

The corresponding ethyl compound **2b** was sythesized in the same way using MeC=CSiMe₃ (2.0 g, 18 mmol) instead of Me₃-SiC=CSiMe₃. Yield: 0.22 g (64%, based on H₂PtCl₆·6H₂O). Mp: 176 °C (dec). Anal. Calcd for C₁₂H₂₂Cl₂O₄Pt₂: C, 20.85; H, 3.21; Cl, 10.26. Found: C, 21.04; H, 3.20; Cl, 10.37. IR (CsI, in cm⁻¹): ν_{OHO} 1662 (m), 1611 (m), ν_{CO} 1539 (s), ν_{PtCl} 251. ¹H NMR (300.07 MHz, CDCl₃): δ 1.10 (t, 6H, CH₃), 2.80 (q, 4H, CH₂), 18.4 (bs, 1H, OHO). ¹³C NMR (125.70 MHz, CDCl₃): δ 9.0 (³*J*_{PtC} = 14 Hz), 44.7 (²*J*_{PtC} = 154 Hz), 231.0 (¹*J*_{PtC} = 1459 Hz). MS: *m/e* (%) 661 (6) [M - Et]⁺, 625 (4), 597 (7), 57 (100) [EtCO]⁺.

⁽¹⁹⁾ Clark, H. C.; Jain, V. K.; Rao, G. S. J. Organomet. Chem. 1983, 259, 275.

Platina-β-diketones

Table 3. Crystal Data and Structure Refinement for 2a

empirical formula	C ₄ H ₇ ClO ₂ Pt
fw	317.64
Т, К	203(2)
λ, Å	0.710 73
cryst system	monoclinic
space group	$P2_1/n$
a, Å	4.527(5)
b, Å	10.571(5)
c. Å	13.707(14)
β , deg	92.81(9)
V. Å ³	655.2(10)
Ż	4
$\rho_{\text{calc}}, \text{g/cm}^3$	3.220
μ (Mo K α), mm ⁻¹	21.731
F(000)	568
scan range, deg	$2.43 < \theta < 25.01$
reflcns collcd	1162
indepdt reflcns	1162
refinement method	full-matrix least-squares on F^2
params refined	75
goodness-of-fit on F^2	1.074
final $R[I > 2\sigma(I)]$	$R_1 = 0.0308$, w $R_2 = 0.0774$
R, all data	$R_1 = 0.0411, wR_2 = 0.0831$
largest diff peak and hole, e $Å^{-3}$	1.884 and -1.255

X-ray Structure Determination of 2a. Geometry and intensity data were collected on a Stoe Stadi IV diffractometer with Mo K α radiation (0.7173 Å, graphite monochromator). A summary of the crystallographic data, the data collection parameters, and the refinement parameters is given in Table 3. An empirical absorption correction was applied using ψ

scans. The structure was solved by direct methods with the SHELXS-86 program and refined with the SHELXS-93 program.^{20,21} In the final full-matrix refinement, non-hydrogen atoms were refined with anisotropic thermal parameters. The methyl H atoms were added to the model in the calculated position and refined isotropically.

Quantum Chemical Calculation. The calculations were carried out with the TURBOMOLE program.²² Bases in standard DZ quality for main group elements except chlorine and ECPs for platinum and chlorine were employed.²³

Acknowledgment. This work is supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie. Gifts of chemicals by the Degussa and Merck Co.'s are gratefully acknowledged.

Supporting Information Available: Complete tables of X-ray parameters, atomic coordinates and U values, H atom parameters, bond distances, bond angles, and anisotropic thermal parameters (5 pages). Ordering information is given on any current masthead page.

OM950963K

⁽²⁰⁾ Sheldrick, G. M. SHELXS-86, SHELXS-93, Programs for Crystal Structure Determination; University of Göttingen: Göttingen, Germany, 1986, 1993.

⁽²¹⁾ Johnson, C. K. ORTEP-II; Report ORNL-5138; Oak Ridge National Laboratory: Oak Ridge, TN, 1976.
(22) Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.

Theor. Chim. Acta 1990, 77, 123.

⁽²³⁾ Häser, M.; Ahlrichs, R. J. Comput. Chem. 1989, 10, 104.