Reactivity of R2AlH (R) **Me, Bui) with Selected Aminoarsines and Secondary Amines**

Craig B. Lagrone,† Steven J. Schauer,‡ Colacot J. Thomas,‡ Gary M. Gray,‡ Charles L. Watkins, $*$, and Larry K. Krannich $*$, \ddagger

Division of Science and Mathematics, Birmingham-Southern College, Birmingham, Alabama 35254, and Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294

Received December 21, 1995^X

 \rm{Me}_2 AlH and $\rm{Bu^i_2AlH}$ were reacted with a series of nine aminoarsines, $\rm{Me}_2\rm{AsR}$ ($\rm{R} = \rm{NMe}_2$, $NPrⁿ2$, $NPrⁱ2$, $NBuⁿ2$, $NBuⁱ2$, NC_4H_8 , NC_5H_{10} , NC_6H_{12} , and $N(C_2H_4)_2NMe$), in C_6D_6 at room temperature, and the reactions were monitored by ${}^{1}H$ and ${}^{13}C$ NMR spectroscopy. The relative rates for initial As-N bond cleavage and final product formation were dependent on the steric requirements of the alkyl groups attached to aluminum and nitrogen in the starting materials. Overall rates were slower with Buⁱ2AlH than with Me2AlH for a given aminoarsine. For most of the reactions, the predominant Al-containing products were the dimeric aminoalane compounds, $[\text{Me}_{2}\text{AlR}]_{2}$ and $[\text{Bu}^{i}_{2}\text{AlR}]_{2}$. Although Al $\overline{-}N$ bond formation was the prefered mode of reaction, Al-As bond formation was also observed when the bulky Pr $^{\rm i}$ and Bu $^{\rm i}$ aminoarsine derivatives were used. The [Bu $^{\rm i}$ 2AlR] $_{\rm 2}$ compounds were synthesized independently by the reaction of Bu $^{\rm i}$ 2AlH and the respective amine or, in the case of [Bu $^{\rm i}$ 2-AlNBu $^{\rm i}$ 2] $_{\rm 2}$, by the reaction of Bu $^{\rm i}$ 2AlCl and LiNBu $^{\rm i}$ 2. $\,$ X-ray crystal structures were determined for the compounds $[Me_{2}AlNC_{6}H_{12}]_{2}$, $[Me_{2}AlN(C_{2}H_{4})_{2}NMe]_{2}$, $[Bu^{i}_{2}AlNMe_{2}]_{2}$, and $[Bu^{i}_{2}AlN (C_2H_4)_2NMe$]₂. All of the compounds have planar Al_2N_2 rings with the exception of [Buⁱ₂- $\text{AlN}(C_2H_4)_2\text{NMe}_{2}$, which displays a puckered Al_2N_2 ring.

Introduction

Although the reactivity of trialkyl organoalanes toward amines has been extensively studied, $1-5$ there are few reported studies involving dialkylaluminum hydrides.⁶⁻⁹ Reactions of Me₂AlH with primary and secondary amines generally result in Al-N condensed species arising from a 1,2-elimination reaction.

Recently, we reported an NMR study of the reactivity of $Me₂AIH^{10,11}$ toward $Me₂AsNMe₂$ and found that the RT (room temperature) 1:1 mol ratio reaction is very exothermic. The 1 H and 13 C NMR spectra indicate that >90% of the reactants are consumed upon mixing with no spectral evidence for an Al-N or Al-As adduct. The major products are $[Me_2AlNMe_2]_2$, $Me_2AsAsMe_2$, and

Me2AsH. Variable-temperature NMR establishes that the reaction is very facile at -90 °C and leads to the observed room-temperature products, which result from $As-N$ bond cleavage and $Me₂ AsH$ elimination.

Herein we report an NMR investigation on the reactivity of a series of monoaminodimethylarsines, Me₂-AsR $[R = NMe_2, NPr_{2}^{n}, NPr_{2}^{i}, NBu_{2}^{n}, \text{NBu}_{2}^{i}, NC_{4}H_{8}^{i},$ NC_5H_{10} , NC_6H_{12} , and $N(C_2H_4)_2NMe$, toward Me₂AlH and Buⁱ₂AlH and note the influence that a variation in the steric bulk of R and the aluminum alkyl moiety has on overall reactivity and aminoalane dimer formation. For the $Me₂AIH/Me₂AsR$ system, the resultant [Me₂- AlR_2 products are compared with previously characterized samples from the reactions of Me₃Al with the same aminoarsine series.^{12,13} Because only [Buⁱ₂AlNMe₂]₂¹⁴ and $[Bu^i_2AlNC_5H_{10}]_2^{15}$ have been previously reported, we synthesized seven $[Bu^i_2AlR]_2$ derivatives $[R = NMe_2]$, NPr_{2}^{n} , NBuⁿ₂, NC₄H₈, NC₅H₁₀, NC₆H₁₂, and N(C₂H₄)₂-NMe] by the reaction of Buⁱ₂AlH with the corresponding secondary amines and one, [Buⁱ₂AlNBuⁱ₂]₂, by the reaction of Buⁱ₂AlCl with LiNBuⁱ₂. Also reported is the synthesis of the trimeric [Buⁱ₂AlAsMe₂]₃, which is an observed reaction product in the $Me₂AsNPrⁱ₂$ and $Me₂$ -AsNBuⁱ₂ systems. Synthesized compounds are characterized by 1H, 13C, and 27Al NMR, IR, MS, and elemental analysis.

X-ray structural data were obtained on four dimers in order to relate the steric bulk of the alkyl moiety on

[†] Birmingham-Southern College.

[‡] University of Alabama at Birmingham.

^X Abstract published in *Advance ACS Abstracts,* May 1, 1996.

⁽¹⁾ Cesari, M.; Cucinella, S. *The Chemistry of Inorganic Homo- and Heterocycles*; Haiduc, I., Sowerby, D. B., Eds.; Academic Press: London, 1987; Vol. 1, p 167.

⁽²⁾ Lappert, M. F.; Power, P. P.; Sanger, A. R.; Srivastava, R. C. *Metal and Metalloid Amides*; Ellis Horwood/Wiley: New York, 1980.

⁽³⁾ Eisch, J. J. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Vol. l, p 555.

⁽⁴⁾ Mole, T.; Jeffery, E. A. *Organoaluminum Compounds*; Elsevier: Amsterdam, 1972.

⁽⁵⁾ Coates, G. E.; Green, M. L. H.; Wade, K. *Organometallic*

Compounds, 3rd ed.; Methuen: London, 1967; Vol. 1. (6) Storr, A.; Thomas, B. S. *J. Chem. Soc. A* **1971**, 3850.

⁽⁷⁾ Sonnek, G.; Päch, M.; Bredereck, H.; Oswald, L. *J. Organomet. Chem.* **1987**, *329*, 31.

⁽⁸⁾ Beachley, O. T., Jr. *Inorg. Chem.* **1981**, *20*, 2825.

⁽⁹⁾ Beachley, O. T., Jr.; Tessier-Youngs, C. *Inorg. Chem.* **1979**, *18*, 3188.

⁽¹⁰⁾ In this paper, the designations Me₃Al, Me₂AlH, and Buⁱ₂AlH are used to simplify the discussions of reaction stoichiometry, although these organoaluminum compounds are known to be oligomeric. See refs $3-5$

⁽¹¹⁾ Watkins, C. L.; Krannich, L. K.; Thomas, C. J.; Srivastava, D. *Polyhedron* **1994**, *13*, 3299.

⁽¹²⁾ Krannich, L. K.; Watkins, C. L.; Srivastava, D. K. *Polyhedron* **1990**, *9*, 289.

⁽¹³⁾ Thomas, C. J.; Krannich, L. K.; Watkins, C. L. *Polyhedron* **1993**, *12*, 389.

⁽¹⁴⁾ Thomas, C. J.; Krannich, L. K.; Watkins, C. L. Polyhedron **1993**, *12*, 89.

⁽¹⁵⁾ Sen, B.; White, G. L. *J. Inorg. Nucl. Chem.* **1973**, *35*, 2207.

Al and of R to the structural parameters of the fourmembered dimer rings of the aminoalanes. Of the dimeric $[Me₂AlR]₂$ derivatives discussed in this study, only structural information for $[Me₂AlNMe₂]$ ₂^{16,17} has been reported. No structural data have been reported for [Bui 2AlR]2 species. Herein, we report structural data for $[Me₂AlNC₆H₁₂]₂$, $[Me₂AlN(C₂H₄)₂NMe]₂$, $[Buⁱ₂AlN Me_2]_2$, and $[Bu^i_2AlN(C_2H_4)_2NMe]_2$. A comparison is given between the Al_2N_2 ring geometries for these aminoalane dimers with those previously reported for species having the general formula $[R'_2AlR_2]_2$ (R = secondary amine, $R' = alkyl$.

Experimental Section

General Procedures. Standard inert-atmosphere techniques were used for the synthesis and manipulation of all compounds owing to their extreme air and moisture sensitivity. This included the use of a high-vacuum line in conjunction with an inert-atmosphere drybox (Vacuum Atmospheres HE-43 DriLab). Hexane was distilled under an atmosphere of nitrogen over sodium. All the amines used were purchased from Aldrich and were dried over sodium or KOH and distilled prior to use. Me2AlH was obtained as a gift from Morton Advanced Materials, Danvers, MA, and Bui 2AlH was purchased from Texas Alkyls. Benzene- d_6 and toluene- d_8 were purchased from Aldrich and stored over molecular sieves. Me₂-AsNMe₂ was synthesized by the aminolysis of $Me₂AsCl.¹⁸$ The other aminoarsine derivatives, $Me₂ AsNR₂$, were synthesized by the modified transamination of Me₂AsNMe₂ with the respective amine.19

 1 H, 13 C, and 27 Al NMR spectral data were collected on Nicolet NT-300 and Bruker ARX 300 FT NMR spectrometers. The 1H and 13C chemical shifts were referenced with respect to the solvent, while aqueous $Al(NO₃)₃$ was used as the ²⁷Al external reference. RT spectra for the reported compounds were obtained as 0.4 M solutions in C_6D_6 in 10 mm Pyrex NMR tubes (Wilmad) equipped with screw tops containing a PTFE insert to exclude moisture and air. Toluene- d_8 was used as a solvent for the variable-temperature NMR studies. FT-IR data

(19) Thomas, C. J.; Krannich, L. K.; Watkins, C. L. *Synth. React. Inorg. Met.-Org. Chem.* **1991**, *21*, 427.

were collected using a Nicolet IR/42 FT spectrometer. Samples were prepared as Kel-F (halocarbon) and Nujol mulls, for solid samples, or as neat liquids on KBr plates. Low-resolution EI-MS data were obtained using the direct insertion probe on HP 5986A and Finnigan MAT95Q GC/MS spectrometers at 70 eV with a 2400 V electron multiplier. Elemental analyses were performed by E+R Microanalytical laboratory, Inc., Corona, NY. Melting points were taken with a Thomas-Hoover melting point apparatus using sealed capillaries and are uncorrected.

General Reaction of Me₂AlH or Buⁱ₂AlH with Aminoarsines, Me₂AsR. In a typical reaction, a solution of Me₂-AlH or Buⁱ2AlH (1.0 mmol, 2 mL of $\mathrm{C}_6\mathrm{D}_6$) was added to a screwtop NMR tube containing a solution of $Me₂ AsR$ (1 mmol) in 1 mL of C_6D_6 at room temperature. ¹H and ¹³C NMR spectroscopy was used to monitor the reaction mixture as a function of time. Products were identified by comparing the NMR chemical shifts with those of previously synthesized samples. The products observed, time required for parent consumption, and time for dimer formation in these NMR studies are given in Table 1. The ¹H and ¹³C NMR data for the aminoarsines¹⁹ and the product $[Me_2AlR]_2$ aminoalane dimers^{12,13} have been previously reported.

General Synthesis of [Buⁱ₂AlR]₂. The following procedure was used for the independent synthesis of the [Buⁱ2AlR]2 derivatives, with the exception of [Buⁱ₂AlNBuⁱ₂]₂. In a typical synthesis, 21.1 mmol of the secondary amine was added dropwise to Buⁱ₂AlH (3.00 g, 21.1 mmol), which was previously cooled to -76 °C using a dry ice/acetone bath. In most cases, an intermediate reaction was observed with gas evolution. Slow warming of the mixture to room temperature resulted in significant gas evolution. The mixtures were then heated to within 20 °C of the boiling point of the corresponding amine and stirred for 12-24 h until no further gas evolution was observed. There was one liquid product, [Buⁱ₂AlNBuⁿ₂]₂, which was used without further purification. All other products were obtained in 80-90% yield after recrystallizing from hexane. Melting point, NMR, IR, MS, and elemental analysis data for the previously unreported [Buⁱ₂AlR]₂ derivatives are as follows:

[Bui 2AlNPrn2]2. Mp: 108-111 °C. 1H NMR: *δ* 0.34 (d, 4 H, AlC*H*₂), 0.76 (t, 6 H, NCH₂CH₂CH₃), 1.22 (d, 12 H, AlCH₂-CH(C*H*3)2), 1.39 (m, 4 H, NCH2C*H*2), 2.12 (non, 2 H, AlCH2C*H*), 2.80 (m, 4 H, NC*H*₂). ¹³C NMR: δ 11.67 (NCH₂CH₂CH₃), 20.92 (NCH₂CH₂), 21.56 (AlCH₂), 26.65 (AlCH₂CH), 29.10 (AlCH₂-CH(*C*H3)2), 49.70 (N*C*H2). 27Al NMR: *δ* 172. IR (cm-1): 2951 (vs), 2876 (vs), 1461 (s), 1402 (m), 1376 (s), 1360 (m), 1318 (m), 1267 (w), 1209 (w), 1185 (m), 1160 (m), 1137 (w), 1110 (m), 1066 (s), 1020 (m), 953 (s), 899 (m), 880 (w), 850 (m), 818 (m), 750 (w), 722 (w), 668 (vs), 603 (s), 571 (w), 433 (m), 408

⁽¹⁶⁾ Hess, H.; Hinderer, A.; Steinhauser, S. *Z. Anorg. Allg. Chem.* **1970**, *377*, 1.

⁽¹⁷⁾ McLaughlin, G. M.; Sim, G. A.; Smith, J. D. *J. Chem. Soc., Dalton Trans.* **1972**, 2197.

⁽¹⁸⁾ Modritzer, K. *Chem. Ber.* **1959**, *92*, 2637.

(m). MS (EI): m/z 425 (M⁺ - Buⁱ). Anal. Calcd for C₂₈H₆₄-Al2N2: C, 69.64; H, 13.37; N, 5.80. Found: C, 69.15; H, 13.26; N, 5.99.

 $[\mathbf{B}\mathbf{u}^i{}_2\mathbf{Al} \mathbf{N} \mathbf{B} \mathbf{u}^n{}_2]_2$. ¹H NMR: δ 0.38 (d, 4 H, AlC*H*₂), 0.89 (t, 6 H, NCH2CH2CH2C*H*3), 1.24 (m, 4 H, NCH2CH2C*H*2), 1.24 (d, 12 H, AlCH2CH(C*H*3)2), 1.48 (m, 4 H, NCH2C*H*2), 2.16 (non, 2 H, AlCH2C*H*), 2.91 (m, 4 H, NC*H*2). 13C NMR: *δ* 14.15 (NCH2CH2CH2*C*H3), 21.09 (NCH2CH2*C*H2), 21.84 (Al*C*H2), 26.73 (AlCH2*C*H), 29.11 (AlCH2CH(*C*H3)2), 29.83 (NCH2*C*H2), 47.61 (N*C*H2). 27Al NMR: *δ* 175. IR (cm-1): 2964 (vs), 2863 (vs), 2778 (m), 1464 (vs), 1403 (w), 1376 (s), 1360 (s), 1318 (m), 1178 (s), 1159 (m), 1138 (w), 1118 (s), 1065 (vs), 1017 (s), 876 (s), 815 (m), 714 (s), 673 (vs), 607 (s), 430 (m). MS (EI): *m*/*z* 481 (M⁺ - Buⁱ). Anal. Calcd for $C_{32}H_{72}Al_2N_2$: C, 71.30; H, 13.47; N, 5.20. Found: C, 70.65; H, 13.38; N 5.60.

[Bui 2AlNC4H8]2. Mp: 43-45 °C. 1H NMR: *δ* 0.20 (d, 4 H, AlC*H*2), 1.14 (d, 12 H, AlCH2CH(C*H*3)2), 1.41 (m, 4 H, NCH2C*H*2), 2.02 (non, 2 H, AlCH2C*H*), 2.75 (m, 4 H, NC*H*2). 13C NMR: *δ* 21.41 (Al*C*H2), 25.50 (NCH2*C*H2), 26.54 (AlCH2*C*H), 28.97 (AlCH2CH(*C*H3)2), 49.88 (N*C*H2). 27Al NMR: *δ* 164. IR (cm-1): 2947 (vs), 2866 (vs), 2782 (m), 1461 (s), 1401 (w), 1359 (m), 1319 (m), 1206 (w), 1183 (s), 1159 (m), 1065 (vs), 1051 (m), 910 (vs), 816 (m), 676 (vs), 590 (w), 518 (vs), 431 (w). MS (EI): m/z 365 (M⁺ Buⁱ). Anal. Calcd for C₂₄H₅₂Al₂N₂: C, 68.19; H, 12.41; N, 6.63. Found: C, 67.53; H, 11.59; N, 6.91.

[Bui 2AlNC6H12]2. Mp: 67-68 °C. 1H NMR: *δ* 0.30 (d, 4 H, AlC*H*₂), 1.23 (d, 12 H, AlCH₂CH(C*H*₃)₂), 1.33 (m, 4 H, NCH₂- CH_2CH_2 , 1.46 (m, 4 H, NCH₂CH₂), 2.12 (non, 2 H, AlCH₂CH), 2.98 (m, 4 H, NC*H*2). 13C NMR: *δ* 22.24 (Al*C*H2), 26.61 (AlCH2*C*H), 27.93 (NCH2CH2*C*H2), 29.14 (AlCH2CH(*C*H3)2), 29.78 (NCH2*C*H2), 50.63 (N*C*H2). 27Al NMR: *δ* 164. IR (cm-1): 2945 (vs), 2857 (vs), 2783 (w), 1476 (m), 1462 (m), 1450 (m), 1374 (w), 1358 (w), 1315 (m), 1184 (m), 1167 (m), 1106 (s), 1068 (s), 1028 (m), 1008 (m), 962 (w), 843 (vs), 818 (m), 742 (vs), 723 (w), 671 (vs), 593 (m), 554 (w), 524 (w). MS (EI): *m*/*z* 421 (M⁺ - Buⁱ). Anal. Calcd for $C_{28}H_{60}Al_2N_2$: C, 70.23; H, 12.64; N, 5.85. Found: C, 70.26; H, 12.09; N, 5.40.

[Bui 2AlN(C2H4)2NMe]2. Mp: 52-53 °C. 1H NMR: *δ* 0.27 (d, 4 H, AlC*H*2), 1.20 (d, 12 H, AlCH2CH(C*H*3)2), 2.02 (s, 3 H, NC*H*3), 2.07 (non, 2 H, AlCH2C*H*), 2.16 (m, 4 H, NCH2C*H*2), 2.86 (m, 4 H, NC*H*2). 13C NMR: *δ* 22.33 (Al*C*H2), 26.67 (AlCH2*C*H), 29.18 (AlCH2CH(*C*H3)2), 46.63 (N*C*H3), 49.00 (N*C*H2), 56.30 (NCH2*C*H2). 27Al NMR: *δ* 178. IR (cm-1): 2950 (vs), 2864 (vs), 2797 (m), 1569 (w), 1534 (w), 1463 (s), 1453 (s), 1402 (w), 1378 (m), 1371 (m), 1361 (m), 1318 (m), 1294 (s), 1152 (s), 1106 (vs), 1067 (m), 1054 (m), 1003 (s), 913 (m), 893 (w), 870 (vs), 685 (vs), 621 (w), 528 (m), 509 (m), 422 (w), 407 (m). MS (EI): m/z 423 (M⁺ - Buⁱ). Anal. Calcd for C₂₆H₅₈-Al2N4: C, 64.96; H, 12.16; N, 11.65. Found: C, 65.20; H, 11.58; N, 11.60.

Synthesis of [Bui 2AlNBui 2]2. A solution of Bui 2AlCl (6.602 g, 37.4 mmol) in hexane (20 mL) was slowly added to a 50 mL hexane solution of $LiNBu^i_{2}$ (5.068 g, 37.5 mmol, previously prepared from the reaction of $HNBu^{i}_2$ and $LiBu^{n}$) at $-40\ ^{\circ}$ C. LiCl precipitated from the solution upon warming to room temperature. After the solution was stirred for 1 h at room temperature, the solution was decanted and the solid was washed with hexane. The removal of the hexane *in vacuo* resulted in a slightly yellow oily residue. The residue was dissolved in 20 mL of toluene and cooled to -15 °C, to give 7.65 g (76% yield) of $[\rm{Bu}^i_2\rm{AlNBu}^i_2]_2$. Mp: 156–158 °C. ¹H NMR: δ 0.43 (d, 4 H, AlC*H*₂), 0.95 (d, 12 H, NCH₂CH(C*H*₃)₂), 1.23 (d, 12 H, AlCH₂CH(CH₃)₂), 2.12 (non, 2 H, NCH₂CH), 2.17 (non, 2 H, AlCH2C*H*), 2.93 (d, 4 H, NC*H*2). 13C NMR: *δ* 23.11 (NCH2CH(*C*H3)2), 24.00 (Al*C*H2), 26.68 (AlCH2*C*H), 27.93 (NCH2*C*H), 29.03 (AlCH2CH(*C*H3)2), 56.20 (N*C*H2). 27Al NMR: *δ* 172. IR (cm-1): 2952 (vs), 2871 (s), 1316 (w), 1271 (w), 1207 (w), 1185 (m), 1158 (m), 1128 (w), 1066 (w, sh), 1054 (s), 976 (m), 954 (w), 923 (w), 864 (m), 829 (m), 725 (w), 666 (s), 588 (m), 461 (m). MS (EI): m/z 481 (M⁺ - Buⁱ). Anal. Calcd for C₃₂H₇₂Al₂N₂: C, 71.32; H, 13.47; N, 5.20. Found: C, 70.98; H, 13.16; N, 5.31.

Synthesis of $[\text{Bu}^i_2\text{AlAsMe}_2]_3$ **.** Onto a cooled (-76 °C) sample of Buⁱ₂AlH (0.71 g, 5.0 mmol) was condensed a 20% excess of $Me₂AsH$ (0.53 mL). The reaction mixture was warmed to 0 °C and stirred until an 1H NMR spectrum of the resulting clear liquid showed the absence of Buⁱ₂AlH (1 week). Occasionally, the sample was cooled (-76 °C) and H_2 was removed under vacuum. Excess Me₂AsH was removed under vacuum at 0 °C. The resulting white crystalline solid, [Buⁱ₂-AlAsMe₂]₃, was obtained in 96% yield. Mp: 47 °C. ¹H NMR: *δ* 0.44 (d, 4 H, AlC*H*2), 1.05 (s, 6 H, AsC*H*3), 1.17 (d, 12 H, AlCH2CH(C*H*3)2), 2.03 (non, 2 H, AlCH2C*H*). 13C NMR: *δ* 1.15 (As*C*H₃), 21.76 (Al*C*H₂), 27.34 (AlCH₂*C*H), 28.60 (AlCH₂CH-(*C*H3)2). IR (cm-1): 2951 (vs), 2921 (vs), 2889 (vs), 2865 (vs), 2769 (m), 2716 (w), 1463 (vs), 1451 (m), 1437 (w), 1420 (m), 1399 (m), 1377 (s), 1360 (vs), 1316 (vs), 1266 (w), 1244 (w), 1202 (m), 1175 (vs), 1159 (vs), 1062 (vs), 1009 (vs), 1000 (s), 896 (vs), 864 (vs), 800 (s), 653 (vs, br), 588 (s), 485 (w), 419 (s). MS (EI): $m/z 681 (M⁺ - Buⁱ)$. Anal. Calcd for $C_{30}H_{72}Al_3As_3$: C, 48.78; H, 9.83; Al, 10.96. Found: C, 48.53; H, 9.79; Al, 10.90.

X-ray Structural Analysis. All measurements were carried out at room temperature on an Enraf-Nonius CAD4 diffractometer using graphite-monochromated Cu K α or Mo K α radiation. The crystals of $[Me₂AlNC₆H₁₂]₂$, $[Me₂AlN(C₂H₄)₂$ - $\text{NMe}|_2$, and $\text{[Bu}^{\text{i}}_{\text{2}}\text{AlN}(C_2\text{H}_4)_2\text{NMe}]_2$ were obtained from hexane solutions $(-20\degree C)$, while crystals of $[Bu^i_2A]NMe_2]_2$ were obtained by vacuum sublimation. The crystals were sealed in thin-walled glass capillaries under an inert atmosphere of nitrogen. Cell parameters and an orientation matrix were obtained from least-squares refinement of 25 reflections with $25 \le \theta \le 35^{\circ}$ for $[Me₂AlNC₆H₁₂]$ ₂, $[Me₂AlN(C₂H₄)₂NMe]₂$, and $[Bu^i_2 AlN(C_2H_4)_2NMe]_2$ and $12 \le \theta \le 16^\circ$ for $[Bu^i_2 AlNMe_2]_2$. Data were collected by *ω*-2*θ* scans, and empirical absorption corrections were applied. Structures were solved by direct methods and refined by full-matrix least-squares procedures that minimized $w(|F_0| - |F_c|)^2$, where $w = 1/\sigma^2(F_0)$ using the MolEN package of programs from Enraf-Nonius. Data were weighed using a non-Poisson scheme. All non-hydrogen atoms were refined anisotropically. For $[Me_{2}AlNC_{6}H_{12}]_{2}$ and $[Bu^{i}_{2}$ - $\text{AlN}(C_2H_4)_2\text{NMe}]_2$, hydrogen atoms were included in the structure factor calculations but were placed in calculated positions $(C-H = 0.95$ A) and were not refined. Hydrogen atom positions for $[Me₂AlN(C₂H₄)₂NMe]₂$ and $[Buⁱ₂AlNMe₂]₂$ were located in difference Fourier maps. Their positional parameters, but not their isotropic thermal factors, were refined.

The asymmetric units for $[Me₂AlNC₆H₁₂]₂$, $[Me₂AlNC₄H₈$ - $\text{NMe}|_{\text{2}},$ and $\text{[Bu}^{\text{i}}_{\text{2}}\text{AlNMe}_{\text{2}}\text{]}_{\text{2}}$ each consisted of one monomer unit situated about a crystallographic inversion center. For [Buⁱ₂- $\text{AINC}_4\text{H}_8\text{NMe}_{2}$, the entire dimer is unique, occupying a general position in the unit cell. Crystallographic data are given in Table 2, and selected bond distances and angles for $[Me₂AlNC₆H₁₂]₂, [Me₂AlNC₄H₈NMe]₂, [Buⁱ₂AlNMe₂]₂, and [Buⁱ₂–$ $\text{AINC}_4\text{H}_8\text{NMe}_2$ are given in Tables 3 and 4. Molecular structures for the compounds are given in Figures 1-4.

In $[Me₂AINC₆H₁₂]$ ₂, one methylene group in the amine ring was found to be disordered over two nearly equally occupied sites related by a change in the conformation of the ring about C5. The occupancies of the two related carbon atom positions were refined, with 55.7% assigned to the major component (C5) and 44.3% to the minor (C5a). The hydrogen atoms associated with the disordered carbons atoms were assigned the same occupancy as the atom to which they were bonded. The occupancies were then fixed for use in later least-squares refinements. A small amount of disorder was also observed in one of the isobutyl groups for $[Bu^i{}_2AINMe_2]_2$, resulting in an elevated thermal motion reflected in C6. The relatively high *R* values for [Me₂AlNC₆H₁₂]₂ and [Buⁱ₂AlNMe₂]₂ are attributed to the presence of these disorders.

Results and Discussion

NMR Reactivity Studies. Me₂AlH readily reacts with Me₂AsR $[R = NMe_2, NPr₁₂, NPr₂, NBu₂, NBu₂,$

 $a R = \sum ||F_0| - |F_c||/\sum |F_0|$. *b* $R_w = (\sum w||F_0| - |F_c||^2/\sum w|F_0|^2)^{0.5}$, $w = (2F_0)^2/|\sigma(I)^2 + (pF_0^2)^2|$.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for [Me2AlNC6H12]2 and [Me2AlN(C2H4)2NMe]2

Table 4. Selected Bond Lengths (A) and Angles	
(deg) for $\text{[Bu}^i_2\text{AlNMe}_2\text{]}_2$ and $\text{[Bu}^i_2\text{AlN}(C_2\text{H}_4)_2\text{NMe}]_2$	

 NC_4H_8 , NC_5H_{10} , NC_6H_{12} , and $N(C_2H_4)_2NMe$ with facile cleavage of the As-N-bond and formation of Al-N bonded species. The time required for >90% parent aminoarsine consumption, as noted from the ${}^{1}H$ and ${}^{13}C$ NMR spectra of the reaction mixtures, occurs within 1 day for all nine systems. Thus, the nature of the R group in Me2AsR is not significant in determining the time for initial cleavage of the As-N bond. However, the steric nature of the R group may be important in terms of the completion time of the reaction as well as in the possibility of Al-As bond formation. The latter can occur either from the reaction of available $Me₂AlH$ with Me $_{2}$ AsH and Me $_{2}$ AsAsMe $_{2}$ ¹¹ or from initial attack of Me2AlH on the respective aminoarsine. In each system, the final AlN-containing product is the dimeric $[Me₂AIR]₂$. The final arsenic-containing products are $Me₂ As AsMe₂ and Me₂ AsH, except for the Me₂AsNPrⁱ₂$ and $\text{Me}_2\text{As} \text{NBu}^{\text{i}}_2$ systems, where $[\text{Me}_2\text{AlAs} \text{Me}_2]_3$ is formed.

For the Me₂AlH/Me₂AsR systems where $R = NMe₂$, $NPr₂$, $NBu₂$, $NC₄H₈$, $NC₅H₁₀$, and $NC₆H₁₂$, the respective aminoalane dimers are observed immediately after

mixing in the 1H and 13C NMR. Several AlN-containing intermediates, analogous to 2Me₂AlNMe₂·Me₂AlH, Me₂-AlNMe₂. Me₂AlH, and [Me₂AlNMe₂. Me₂AlH]₂, which were previously identified for the Me₂AlH/Me₂AsNMe₂ reaction system,¹¹ are present in each case. These serve as precursors to the aminoalane dimers. Concurrent with aminoalane dimer formation is the appearance of resonances in the NMR spectra assignable to Me₂AsH and Me₂AsAsMe₂. Reactivity then proceeds toward completion at varying times (Table 1) dependent on the nature of the R group.

Although extensive reaction occurs upon mixing in the $Me₂AlH/Me₂AsN(C₂H₄)₂NMe reaction system, there is$ no initial dimer formation. The 1H and 13C NMR spectra indicate high intensity peaks for unreacted parent aminoarsine and broad, exchange-averaged reso-

Figure 1. Molecular structure of $[\text{Me}_2\text{AlNC}_6\text{H}_{12}]_2$, showing one of the two possible orientations of the disordered ring.

Figure 2. Molecular structure of $[\text{Me}_2\text{AlN}(C_2H_4)_2\text{NMe}]_2$.

Figure 3. Molecular structure of [Buⁱ₂AlNMe₂]₂.

nances for AlN-containing species. After 1 day, the parent aminoarsine is consumed. However, 1 week is required for the conversion of the AlN-containing intermediates to $[Me₂AIN(C₂H₄)₂NMe]₂$, because of the presence of chemical exchange.

In the Me₂AlH/Me₂AsNBuⁱ₂ system, the NMR spectra exibit initially higher intensity peaks for unreacted parent, Me₂AsH, and the Al-N species Me₂AlNBuⁱ₂. $2Me₂AIH.$ Lower intensity peaks are observed for Me₂-AsAsMe₂, [Me₂AlAsMe₂]₃, and three Al-N species. Within 1e day, the parent is consumed by reaction with the Me₂AlH bound in Me₂AlNBuⁱ₂·2Me₂AlH. Additional amounts of $Me₂AsAsMe₂, Me₂AsH, and [Me₂AlAsMe₂]₃$ are formed, and all the Buⁱ2N moieties are contained in the three Al-N-containing species, which by analogy with the $Me₂AlH/Me₂AsNMe₂ system¹¹ should be Me₂ \text{AlNBu}^i_2 \cdot \text{Me}_2 \text{AlH}, \text{ 2Me}_2 \text{AlNBu}^i_2 \cdot \text{Me}_2 \text{AlH}, \text{ and } [\text{Me}_2-\text{Me}_2 \cdot \text{Me}_2]$ AlNBuⁱ₂·Me₂AlH]₂. Conversion of these species to [Me₂-AlNBuⁱ₂]₂ is complete after 1 month.

Figure 4. Molecular structure of $[Bu^i_2AlN(C_2H_4)_2NMe]_2$.

These results suggest that with the more bulky Buⁱ₂- $N-$ group, the As-N cleavage reaction is slower and the Me₂AlH readily binds to the Me₂AlNBuⁱ₂ moiety. With time the complexed $Me₂AlH$ reacts with the the parent aminoarsine and with Me₂AsAsMe₂ and Me₂-AsH. The latter reactions produce $[Me₂AlAsMe₂]$ ₃.

In the Me₂AlH/Me₂AsNPrⁱ₂ reaction system, the NMR spectra indicate initially high-intensity peaks for Prⁱ₂- \dot{M} H·Me₂AlH and unreacted Me₂AsNPrⁱ₂ and low-intensity resonances for $Me₂AsAsMe₂, Me₂AsH, [Me₂AlAs-$ Me₂]₃, [Me₂AlNPrⁱ₂]₂, and several AlN-containing species. After 1 day, the NMR data indicate consumption of Me₂-AsNPrⁱ₂, formation of additional amounts of Me₂-AsAsMe₂ and [Me₂AlAsMe₂]₃, and generation of Prⁱ₂NH, which is in exchange with $\overline{\mathrm{Pr}}^i_2$ NH \cdot Me₂AlH. With time, the resonances associated with the Prⁱ₂NH·Me₂AlH/Prⁱ₂-NH exchange shift toward those associated with free amine as the intensities of the $[Me_2AlNPr^i_2]_2$ resonances increase. After 6 months, there is 40 mol % conversion of the Prⁱ₂N moiety to [Me₂AlNPrⁱ₂]₂, 27% to AlNcontaining species, and 33% to Prⁱ₂NH. There is 74 mol % conversion of the Me₂As moiety to Me₂AsAsMe₂ and 26% to $[Me₂AlAsMe₂]$ ₃.

These results suggest that the nature of the R group in Me2AsR influences the course of the reaction in forming Al-N vs Al-As containing products. With increasing steric bulk of R, there is a greater tendency to form $[Me₂AlAsMe₂]$ ₃. The resulting free amine further reacts with Me2AlH to form an adduct which ultimately is converted to $[Me₂AlR]₂$. The nature of R also influences both the extent of and time required for Al-N dimer formation.

The reactions of $\rm{Bu^i_2AlH}$ with $\rm{Me_2AsNMe_2}$ and $\rm{Me_2-}$ $AsN(C₂H₄)₂NMe$ are relatively straightforward. For the RT 1:1 mol ratio reaction of Buⁱ₂AlH with Me₂AsNMe₂, the 1H and 13C NMR spectral data indicate almost complete conversion of reactants to [Buⁱ₂AlNMe₂]₂, Me₂- $AsAsMe₂$, and $Me₂ AsH upon mixing.$ An independent variable-temperature NMR study of the reaction of Buⁱ₂-AlH with Me₂NH in 1:1 mol ratio indicated that [Buⁱ₂-AlNMe₂]₂¹⁴ forms above 10 °C. The reaction of Buⁱ₂AlH with $Me₂AsN(C₂H₄)₂NMe$ goes to completion within 1 day.

The reactions of $\text{Bu}^{\text{i}}_2\text{AlH}$ with $\text{Me}_2\text{AsNPr}^{\text{n}}_2$ and Me_2 - $\mathrm{AsNBu}^\mathrm{n}_2$ are more complicated than for the Me_2 As NMe_2 system. Upon mixing, about 50% of each aminoarsine is consumed to produce $Me₂AsAsMe₂$, $Me₂AsH$, and

several AlN-containing intermediates. Over a period of 2 weeks, the parent aminoarsine is consumed. Only after the disappearance of the 1H and 13C NMR resonances for Me₂AsNPrⁿ2 and Me₂AsNBuⁿ2 do peaks appear that are assignable to $[\mathrm{Bu^i}_2\mathrm{AlNPr^n}_2]_2$ and $[\mathrm{Bu^i}_2\text{-}$ AlNBuⁿ₂]₂. Conversion of the AlN-containing intermediates to the respective aminoalane dimers is very slow with only 25% conversion to $[\mathrm{Bu^i_2AlNPr^n_2}]_2$ and 28% conversion to $\rm [Bu^i_2AlNBu^n_2]_2$ after 6 months. $\rm Me_2AsH$ does not appear as a final product due to its reactivity with Me₂AsR.^{11,20}

$$
Me2 AsH + Me2 AsR \rightarrow Me2 AsAsMe2 + RH (1)
$$

The reactions of Buⁱ₂AlH with the sterically demanding Me₂AsNPrⁱ₂ and Me₂AsNBuⁱ₂ are more complex. Initially, the NMR data indicate the formation of $Me₂$ -AsH, $Me₂AsAsMe₂$, and AlN-containing species. After 1 day, 1H and 13C NMR resonances are observed for [Buⁱ₂AlAsMe₂]₃. [See the Experimental Section for an independent synthesis.] Very slow consumption of the parent aminoarsines occurs. Both $Me₂AsH$ and $Me₂$ -AsAsMe₂ react with Buⁱ2AlH to produce more [Buⁱ2-AlAsMe $_2$]₃:

 $3Bu_2^i A lH + 3Me_2 As H \rightarrow [Bu_2^i A lAs Me_2]_3 + 3H_2$ (2) $6\mathrm{Bu}^{\mathrm{i}}_{\mathrm{2}}$ AlH + 3Me $_{\mathrm{2}}$ AsAsMe $_{\mathrm{2}}$ \rightarrow

$$
2[Bu_2^iA1AsMe_2]_3 + 3H_2 \quad (3)
$$

With time, $Me₂ AsH$ is consumed. Independent NMR studies of the Buⁱ2AlH/Me2AsH and Buⁱ2AlH/Me₂-AsAsMe₂ systems confirm the formation of [Buⁱ₂-AlAsMe2]3 *via* eqs 2 and 3, with (2) occurring at a faster rate than (3). The ¹³C NMR spectra of the Buⁱ₂AlH/ Me₂AsNBuⁱ2 system indicate formation of [Buⁱ2AlNBuⁱ2]2 after 2.5 months; however, there is no NMR evidence for the existence of an aminoalane dimer in the Buⁱ₂-AlH/Me₂AsNPrⁱ₂ system. Instead, as more parent aminoarsine is consumed and [Buⁱ2AlAsMe₂]₃ forms, peaks assignable to Prⁱ2NH appear. After 6 months, the ¹H and 13C NMR spectra indicate the presence of unreacted aminoarsine, Me₂AsAsMe₂, and [Buⁱ2AlAsMe₂]₃ in both reaction systems, in addition to [Buʲ2AlNBuʲ2]2 and Buʲ2-AlNMe₂·HAlBuⁱ₂ for the Buⁱ₂AlH/Me₂AsNBuⁱ₂ system and Pri 2NH and uncharacterized AlN-containing species in the Buⁱ2AlH/Me2AsNPrⁱ2 system. The more sterically demanding Prⁱ₂N moiety in combination with the sterically bulky Buⁱ₂Al- group appears to influence the course of the reaction and prevent AlN dimer formation. In the latter case, the presence of Prⁱ₂NH suggests that eq 4 represents another route to [Buⁱ₂AlAsMe₂]₃.

$$
3Bui2AIH + 3Me2AsNPri2 \rightarrow
$$

[Buⁱ₂AlAsMe₂]₃ + 3Prⁱ₂NH (4)

These results suggest there are significant differences in the reactivity of Buⁱ2AlH vs Me2AlH toward the aminoarsines. As noted in Table 1, the time for >90% parent consumption is much longer for the Buⁱ2AlH than the Me2AlH reaction systems and is dependent upon R

for the Buⁱ₂AlH systems. The extent of dimer formation in all systems is dependent upon R.

Synthesis of [Bui 2AlR]2 from the Reaction of Buⁱ₂AlH and Secondary Amines. The [Buⁱ₂AlR]₂ compounds were synthesized independently by reacting Buⁱ₂AlH with the respective secondary amines to confirm the formation of the aminoalane dimers produced in the Buⁱ₂AlH/aminoarsine systems. [Buⁱ₂AlNMe₂]₂¹⁴ and $[Bu^i_2AlNC_5H_{10}]_2^{15}$ have been prepared to obtain characterization data required in this study.

The ¹³C and ¹H NMR data, listed in the Experimental Section, are comparable to those reported for the corresponding methylaluminum derivatives, [Me2AlR]2.^{12,13} The EI-MS data for the compounds confirmed their dimeric nature by giving masses for the appropriate dimer minus an isobutyl group $(M^+ - Bu^i)$. Al-N compounds of this type typically give mass peaks that result from cleavage of an alkyl ligand off the aluminum atom. $6,13-15,21$ The IR data show no peaks in the range 3200-3300 cm-¹ (indicative of N-H stretches derived from adducted secondary amines) 13 nor in the range 1700-1850 cm⁻¹ (derived from Al-H stretches).²²

Although NMR evidence showed that $[\mathrm{Bu^i}_2\mathrm{AlNBu^i}_2]_2$ was synthesized by the reaction of Buⁱ₂AlH with HN-Buⁱ₂, [Buⁱ₂AlNBuⁱ₂]₂ could not be isolated from the reaction mixture. Instead, it was synthesized in 76% yield by the reaction of Buⁱ2AlCl with LiNBuⁱ2. [Buⁱ2-AlNPrⁱ₂]₂ could not be synthesized and isolated by either method.

X-ray Crystallographic Studies. The X-ray structures of four aminoalanes were determined in order to identify any structural differences in the compounds arising from the steric requirements of the various amine fragments and of the methyl or isobutyl groups bound to aluminum. ORTEP drawings of $[Me₂AlNC₆$ - $H_{12}]_2$, [Me₂AlN(C₂H₄)₂NMe]₂, [Buⁱ₂AlNMe₂]₂, and [Buⁱ₂-AlN(C_2H_4)₂NMe]₂ are given in Figures 1-4, respectively, with selected structural data given in Tables 2-5. The structures of $[Me₂AlNC₆H₁₂]₂$, $[Me₂AlN(C₂H₄)₂$ - N Me]₂, [Buⁱ2AlNMe₂]₂, and [Buⁱ2AlN(C₂H₄)₂NMe]₂ each consist of a dimeric four-membered ring Al_2N_2 core. Although there have been several structurally characterized aminoalanes,²³ few have the general formula $[R_2-$ AlNR'₂]₂ (R, R' = alkyl) and none have isobutyl groups bound to aluminum. For comparison, Table 5 contains a compilation of selected X-ray structural data for these aminoalanes along with the others derived from secondary amines.16,17,24-²⁸

For each of these structures, the $Al-N$ and $Al-C$ bond distances are within the expected range of values for dimeric aminoalanes.²³ The angles about the aluminum and nitrogen atoms in all the compounds are highly distorted from tetrahedral, typical for four-membered

- *Polyhedron* **1990**, *9*, 2205. (27) Her, T. Y.; Chang, C. C.; Tsai, J. O.; Lai, Y. Y.; Liu, L. K.; Chang, C. H.; Chen, J. H. *Polyhedron* **1993**, *12*, 731.
- (28) Taghiof, M.; Hendershot, D. G.; Barber, M.; Oliver, J. P. *J. Organomet. Chem.* **1992**, *431*, 271.

⁽²⁰⁾ Gupta, V. K.; Krannich, L. K.; Watkins, C. L. *Inorg. Chem.* **1986**, *25*, 2553.

⁽²¹⁾ Gosling, K.; Smith, J. D.; Wharmby, D. H. W. *J. Chem. Soc. A* **1969**, 1738.

⁽²²⁾ A neat liquid sample of Buⁱ₂AlH produced a broad peak at 1774 $\rm cm^{-1}$ due to Al–H.

⁽²³⁾ For a review, see: Schauer, S. J.; Robinson, G. H. *J. Coord. Chem.* **1993**, *30*, 197.

⁽²⁴⁾ Hill, J. B.; Talley, T. A.; Pennington, W. T.; Robinson, G. H. *J. Chem. Crystallogr.* **1994**, *24*, 61.

⁽²⁵⁾ Belgardt, T.; Storre, J.; Klemp, A.; Gornitzka, H.; Häming, L.; Schmidt, H.-G.; Roesky, H. W. *J. Chem. Soc., Dalton Trans.* **1995**, 3747. (26) Byers, J. J.; Pennington, W. T.; Robinson, G. H.; Hrncir, D. C.

Table 5. Selected Average X-ray Structural Data (Å, deg) for Al-**N Complexes Derived from Secondary Amines**

$Al-N$	$Al-C$	$N - Al - N$	$Al-N-Al$	$C - Al - C$	ring geometry	ref
1.964	1.963	88.4(3)	91.6(3)	115.9(4)	planar	16
1.958(7)	1.951(12)	88.3(3)	91.7(2)	115.7(5)	planar	17
1.968(3)	1.949(5)	89.2(1)	90.8(1)	118.7(2)	planar	24
2.001(2)	1.971(3)	89.3(1)	87.5(1)	109.8(2)	bent	25
1.962(4)	1.972(7)	88.7(1)	91.3(1)	115.7(3)	planar	this work
1.974(2)	1.958(3)	88.7(1)	91.3(1)	117.7(1)	planar	this work
1.992(2)	1.959(4)	90.3(1)	89.7(1)	109.9(2)	planar	26
2.005(3)	1.959(4)	90.5(2)	89.5(3)	104.9(2)	planar	26
2.007(3)	1.980(5)	88.0(1)	87.8(1)	109.7(2)	bent	27
1.976(5)	1.977(7)	87.8(2)	89.3(2)	113.0(3)	bent	28
1.975(6)	1.969(8)	88.3(3)	91.7(3)	119.9(3)	planar	this work
1.984(4)	1.984(5)	87.5(2)	90.6(2)	122.5(2)	bent	this work

rings.23 The internal Al-N-Al and N-Al-N angles are significantly smaller than the external C-Al-C and C-N-C angles but consistent with previously reported values for this class of compounds.²³ The Al-N-Al and N-Al-N angles are similar in all the compounds with the Al-N-Al angles usually having slightly larger values than the N-Al-N angles. C-Al-C bond angles show the greatest deviation in values, and there appears to be little correlation between the $C-AI-C$ angles and other geometrical parameters, but the compounds listed in Table 5 follow the order of increasing C-Al-C angle according to the aluminum alkyl group: $\operatorname{Et} < \operatorname{Me} < \operatorname{B\!u^i}.$

The nature of the ligands on aluminum and nitrogen influences the geometry of the central Al_2N_2 ring. All the Me-Al derivatives contained in Table 5, as well as $[Bu^i_2AlNMe_2]_2$, have planar Al_2N_2 rings, except the very sterically demanding cyclohexylamine derivative.²⁵ How-

ever, $[Et_2AlNPr_2]_2$,²⁷ $[Et_2AlN(C_2H_4)_2S]_2$,²⁸ and $[Bu^i_2AlN (C_2H_4)_2NMe$ ₂, each of which have more sterically demanding ligands on both nitrogen and aluminum, have puckered Al₂N₂ rings. For [Buⁱ2AlN(C₂H₄)₂NMe]₂, the torsion angle $N1 - Al1 - N3 - Al3$ is $14.8(2)$ °.

Acknowledgment. We wish to acknowledge the National Science Foundation ILI-IP program for partial support received through grant DUE 935-0968 toward the purchase of the Bruker ARX 300 FT NMR spectrometer.

Supporting Information Available: Tables listing positional and thermal parameters, complete bond distances and angles, and torsional angles (25 pages). Ordering information is given on any current masthead page.

OM950979A