Additions and Corrections

1995, Volume 14

Daniel E. Barber, Kurethara S. Bose, Michal Sabat, Ekkehard Sinn, and Bruce A. Averill*: Synthesis, Structure, and Characterization of the $[Fe_5S_4(CO)_{12}]^{2-,-}$ Ions and Studies on the Oxidative Conversion of the Dianion to $[Fe_6S_6(CO)_{12}]^{2-}$.

Page 3229. During the editing and revision process, the name of one of the authors was inadvertently omitted. The correct authorship is as given above.

1996, Volume 15

Donald W. Carpenetti, Lioba Kloppenburg, Justin T. Kupec, and Jeffrey L. Petersen*: Application of Amine Elimination for the Efficient Preparation of Electrophilic *ansa*-Monocyclopentadienyl Group 4 Complexes Containing an Appended Amido Functionality. Structural Characterization of [(C₅H₄)SiMe₂(N-*t*-Bu)]ZrCl₂(NMe₂H).

Page 1573. The NMR data reported in ref 13 for $\{[(C_5H_4)SiMe_2(N-t-Bu)]ZrCl(\mu-Cl)\}_2$ are for a different compound. The four distinct cyclopentadienyl ring proton resonances that we initially assigned to $\{[(C_5H_4) SiMe_2(N-t-Bu)$]ZrCl(μ -Cl) $_2$ in the ¹H NMR spectrum of the product mixture led us to believe that its dimeric structure remains intact in solution. This is apparently not the case. We have since prepared $\{[(C_5H_4)SiMe_2(N$ t-Bu)]ZrCl(u-Cl)}2 by the reaction of 2 equiv of SiMe₃Cl with $[(C_5H_4)SiMe_2(N-t-Bu)]Zr(NMe_2)_2$ and have verified its dimeric structure in the solid state by X-ray crystallography. The correct solution NMR data in CDCl₃ for $\{[(C_5H_4)SiMe_2(N-t-Bu)]ZrCl(\mu-Cl)\}_2$ are as follows. ¹H NMR spectrum: δ 6.91, 6.44 (C₅H₄, t, 2.2), 1.38 (NCMe₃, s), 0.54 (SiMe₂, s). Gated nondecoupled ¹³C NMR spectrum: δ 122.1, 121.2 (proximal and distal carbons of C₅H₄, d, 175), 109.8 (bridgehead C, s), 57.7 (NCMe₃, s), 32.6 (NCMe₃, q, 125), 0.90 (SiMe₂, q, 120). The chemical shifts of these NMR resonances for $\{[(C_5H_4) SiMe_2(N-t-Bu)$]ZrCl(μ -Cl) $_2$ are identical with the corresponding resonances given in ref 14 for the zirconate compound, thereby indicating that both compounds afford the same zirconium species upon dissolution in CDCl₃.