Direct Observation of β -Methyl Elimination in Cationic **Neopentyl Complexes: Ligand Effects on the Reversible Elimination of Isobutene**

Andrew D. Horton

Shell Research and Technology Centre, Amsterdam, Postbus 38000, 1030 BN Amsterdam, The Netherlands

Received February 8, 1996[®]

Summary: β -Me elimination from cationic neopentyl complexes, $[Cp'_{2}Zr(CH_{2}CMe_{3})]^{+}$, has been demonstrated. The more crowded complex ($Cp' = C_5Me_5$) eliminates isobutene instantaneously at -75 °C, whereas the less crowded analogue ($Cp' = C_5H_5$) is stable in solution at $0 \,^{\circ}C$ but undegoes reversible β -Me elimination at 25 $^{\circ}C$; strong anion or Lewis base coordination suppresses β -Me elimination, consistent with involvement of a 14-electron species.

 β -Alkyl elimination, although much less common than β-hydrogen elimination/transfer in alkene polymerization catalysis, has recently been implicated in several processes using $[(C_5Me_5)_2ZrR]^+$ catalysts, including the formation of propene oligomers with vinyl end groups $(CH_2=CHCH_2-)^1$ and the cyclopolymerization of 2-methyl-1,5-hexadiene.² The propagation step in the ringopening polymerization of methylenecyclobutane involves a β -alkyl shift.³ Direct observation of β -Me elimination in d⁰ complexes is, however, rare and limited to in situ generated isobutyl (and related) complexes which also undergo competing β -hydrogen elimination.⁴ Although widely used neopentyl ligands are known to decompose by α - or γ -hydrogen activation,⁵ we postulated that complexes of the form [Cp'₂Zr(CH₂- $[CMe_3)]^+$ would undergo β -Me elimination.^{6,7} Here we report the first direct observations of β -Me elimination at a base-free d⁰ metallocene, which also represent the first cases of neopentyl ligand decay by this process.^{8–10} Irreversible allylic activation of the isobutene elimina-

(6) Thermochemical studies predict that β -Me elimination from a group 4 neopentyl complex is weakly exothermic and likely to be entropically driven: Schock, L. E.; Marks, T. J. J. Am. Chem. Soc. 1988, 110, 7701.

(7) Evidence for β -Me elimination from the (unobserved) neopentyl cation, [(C5H5)2Zr(CH2CMe3)]+, has been obtained from gas-phase studies: Christ, C. S., Jr.; Eyler, J. R.; Richardson, D. E. J. Am. Chem. Soc. 1990, 112, 596.

(8) Protonolysis of the Schiff-base complex (R₆-acen)Zr(CH₂CMe₃)₂ gives cationic neopentyl complexes, which appear not to undergo β -Me elimination: Tjaden, E. B.; Śwenson, D. C.; Jordan, R. F. Organometallics 1995, 14, 371.

(9) Evidence for reversible β -Me elimination involving a Pd-CH₂-SiMe₃ fragment has been obtained: Ankianiec, B. C.; Christou, V Hardy, D. T.; Thompson, S. K.; Young, G. B. J. Am. Chem. Soc. 1994, *116*, 9963.

tion product has been found to compete with the reversible insertion of isobutene in the Zr-Me bond.¹⁰

The proposed route to cationic metallocene neopentyl complexes relied on the hypothesis that the mixed complexes $Cp'_2ZrMe(CH_2CMe_3)$ ($Cp' = C_5Me_5$, 1; Cp' = C_5H_5 , **2**)^{11–13} would undergo selective abstraction of the sterically more accessible methyl ligand.¹⁴ This route was chosen due to the difficulty in synthesizing bis-(neopentyl) adducts of crowded metallocenes and the expected inertness of such crowded dialkyls toward alkyl abstraction (using Brönstead or, particularly, Lewis acids).8

Reaction of 1 with $B(C_6F_5)_3$ in C_6D_5Br or C_7D_8 solution at 25 °C cleanly generates $(C_5Me_5)_2$ ZrMe $\{MeB(C_6F_5)_3\}$ (3), identified by ¹H and ¹⁹F NMR spectroscopy and comparison to literature data,¹⁵ together with 1 equiv of isobutene (Scheme 1). The putative neopentyl intermediate, $(C_5Me_5)_2Zr(CH_2CMe_3)\{MeB(C_6F_5)_3\}$, is not observed, even when the reaction is carried out at -75 °C in an NMR tube. Similarly, $[PhMe_2NH][B(C_6F_5)_4]$ or $[Ph_3C][B(C_6F_5)_4]$ cleanly and instantly afford $[(C_5Me_5)_2-$ ZrMe[B(C₆F₅)₄] and isobutene.

Although the neopentyl cation is too unstable to be observed, even at low temperatures, preliminary results indicate that it may be trapped as Lewis base adducts, $[(C_5Me_5)_2Zr(CH_2CMe_3)(L)]^+$ (**4a**-**c**). Whereas the labile THF adduct 4a (formed with 1.2 equiv of THF) undergoes β -Me elimination with a $t_{1/2}$ of about 5 min at 25 °C, the adducts formed with a 1.5-fold excess of RCN $(R = Me, Me_3C)$ are stable in solution for several hours (Scheme 1) and isobutene formation may not be ob-

(14) Temme, B.; Erker, G. J. Organomet. Chem. 1995, 488, 177. (15) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116. 10015.

[®] Abstract published in *Advance ACS Abstracts,* May 15, 1996.

^{(1) (}a) Resconi, L.; Piemontesi, F.; Fraciscono, G.; Abis, L.; Fiorani, T. *J. Am. Chem. Soc.* **1992**, *114*, 1025. (b) Eshuis, J. J. W.; Tan, Y. Y.; Meetsma, A.; Teuben, J. H.; Renkema, J.; Evens, G. G. Organometallics 1992. 11. 362

⁽²⁾ Kesti, M. R.; Waymouth, R. M. J. Am. Chem. Soc. 1992, 114, 3565

 ⁽³⁾ Yang, X.; Jia, L.; Marks, T. J. J. Am. Chem. Soc. 1993, 115, 3392.
 (4) (a) Guo, Z.; Swenson, D. C.; Jordan, R. F. Organometallics 1994,

^{13, 1424. (}b) Hajela, S.; Bercaw, J. E. Organometallics 1994, 13, 1147.
(c) Watson, P. L.; Roe, D. C. J. Am. Chem. Soc. 1982, 104, 6471.
(5) (a) Schrock, R. R. Acc. Chem. Res. 1979, 12, 98. (b) Bruno, J.

W.; Smith, G. M.; Marks, T. J.; Fair, C. K.; Schultz, A. J.; Williams, J. M. J. Am. Chem. Soc. 1986, 108, 40.

⁽¹⁰⁾ The first direct observation of reversible β -Me elimination/ migratory insertion (in a 3,3-dimethylruthenacyclobutane) was very recently reported: McNeill, K.; Andersen, R. A.; Bergman, R. *J. Am. Chem. Soc.* **1995**, *117*, 3625.

⁽¹¹⁾ Complexes 1 and 2 were synthesized by reaction of $[Cp'_2ZrMe-(THF)]^+[B(4-C_6H_4F)_4]^-$ ($Cp' = C_5Me_5$ or $C_5H_5)^{12}$ with LiCH₂CMe₃ in THF/Et₂O, followed by crystallization from hexane/toluene.

⁽¹²⁾ Horton, A. D.; Orpen, A. G. Organometallics 1991, 10, 3910. (13) Selected NMR data (¹H NMR, C₆D₅Br, 25 °C, unless otherwise

stated). 1: δ 1.80 (C₅Me₅), 0.95 (CMe₃), -0.10 (ZrCH₂), -0.57 (ZrMe). 2: δ 5.92 (C₅H₅), 0.98 (CMe₃), 0.42 (ZrCH₂), 0.17 (ZrMe). **4a**: δ 3.31 (br, THF, averaged), 1.65 (C₅Me₅ and THF), 1.07 (ZrCH₂CMe₃), 0.75 (dr, HI), 4c: δ 1.64 (C₅*M*_{e5}), 1.06 (*M*_{e3}CN averaged), 0.84 (ZrCH*CM*_{e3}), 0.44 (ZrCH*2*). **5a**: ¹H NMR (C₇D₈, 25 °C) δ 5.63 (C₅*H*₅), 1.13 (ZrC*H*₂), 0.79 (C*M*_{e3}), 0.16 (br, B*M*_e); ¹³C NMR (C₇D₈, -25 °C) δ 101.8 (t, ¹*J*_{CH}) = 109 Hz, ZrCH₂), 2.21 (*C*Me₃), 33.9 (C*M*_{e3}); ¹⁹F NMR (C₇D₈, -50 °C) δ -135.12 (d), -159.76 (t), -165.16 (m), **5b**: δ 5.92 (C₅*H*₅), 1.12 (ZrC*H*₂), 0.85 (C*M*₂). **7a**: δ 5.97 (C₅*H*₅), 3.19 (THF), 1.47 (THF), 1.17 (ZrC*H*₂), 0.92 (C*M*₂). **8**: ¹H NMR (1:1 C₇D₈:C₆D₅Br, -60 °C) δ 5.16, 5.08 (C5H5), 2.79, 2.32 (allyl CH2), 1.52 (allyl Me), 1.37 (BMe); 13C NMR (C₂D₂Cl₄, -30 °C) δ 158.8 (allyl C), 67.5 (allyl CH₂), 29.7 (allyl Me). 9: ¹H NMR ($C_2D_2Cl_4$, -35 °C) δ 6.10, 5.87 (C_5H_5), 4.90 (1H, allyl CH), 3.10, 2.71 (1H, allyl C*H*₂), 2.63 (2H, C*H*₂), 2.16, 1.92, 1.68, 1.22 (1H, C*H*₂), 0.20 (B*Me*); ¹³C NMR (C₂D₂Cl₄, -10 °C) δ 152.4 (allyl C), 104.4 (allyl CH), 48.6 (allyl CH2).

served. In the case of **4c**, slow decomposition to unidentified organometallic species occurs over 24 h, with formation of CMe₄. These results are consistent with β -Me elimination proceeding via a cationic 14-electron species, formed by Lewis base or anion ([MeB(C₆F₅)₃]⁻) dissociation. Strong nitrile coordination to zirconium therefore totally suppresses β -elimination.

A significant increase in stability of cationic neopentyl complexes is observed for the cyclopentadienyl system. Selective methyl abstraction from **2** with $B(C_6F_5)_3$ rapidly generates $(C_5H_5)_2Zr(CH_2CMe_3)\{MeB(C_6F_5)_3\}$ (5a), which is stable in C₇D₈ solution at 0 °C (Scheme 2). The upfield location of the $B-Me^{1}H$ NMR resonance (C₇D₈, -25 °C) at δ 0.16 ppm (free anion: δ 1.1 ppm)¹⁴ and the characteristic large difference (5.4 ppm) in the chemical shifts of the meta- and para-fluorines of the anion (free anion: $\Delta\delta(m,p-F) = 2.7 \text{ ppm})^{16}$ are consistent with anion coordination to zirconium. Neither 5a (¹H NMR in range -50 to 25 °C; ¹³C NMR, -25 °C) nor the more electrophilic analogue $[(C_5H_5)_2Zr(CH_2CMe_3)]$ - $[B(C_6F_5)_4]$ (5b) (¹H NMR, -25 °C),¹⁷ obtained using the trityl reagent, show evidence for β -C–Me····Zr agostic stabilization of the zirconium center.¹⁸

On warming solutions of **5a** to 25 °C (C_6D_5Br , 0.03 M), resonances appear for isobutene and the methylzirconocene complex (C_5H_5)₂ZrMe{MeB(C_6F_5)₃} (**6**).¹³ In contrast to the pentamethylcyclopentadienyl analogue, β -Me elimination appears to be reversible,⁹ as shown Scheme 3

by the observation of a constant 1:3 molar ratio of **5a** and **6** after 20 min (Scheme 2). Indeed, exposure of a solution of **6** (C_6D_5Br , 0.02 M) to 20 equiv of isobutene affords a 4:1 mixture of **5a** and **6** at equilibrium. Lewis base coordination to the neopentyl cation again suppresses β -Me elimination: THF adduct **7a** (formed *in situ* by protonolysis using 1.2 equiv of Lewis base) and Me₃CCN adduct **7b** (1.5 equiv base) are stable in solution for 24 h. The greater stability of **7a**, compared to C_5Me_5 analogue **4a**, reflects the lower tendency toward THF dissociation in the less crowded system (distinct resonances for coordinated and free THF in **7a**; ¹H NMR, 25 °C).

The isobutene product of β -Me elimination from **5a** is partially consumed over several hours, giving the η^3 -(2-methylallyl) complex, **8**,^{1b,19,20} together with minor decomposition products (C₆D₅Br).²¹ The release of *both* methane and neopentane, in amounts related to the relative concentrations of the two complexes, suggests that allylic activation (via σ -bond metathesis)^{20a} involves both Zr-methyl and Zr-neopentyl complexes (Scheme 2). The more electon-deficient neopentyl cation, 5b, also undegoes β -Me elimination, followed by isobutene activation, but more rapidly than the $[MeB(C_6F_5)_3]^-$ adduct. In one experiment the ratio of the neopentyl, methyl, and the 2-methylallyl complexes after 35 min was 1:8: 11 (C₆D₅Br, 25 °C). Allyl formation is faster and cleaner in the presence of excess isobutene, and 8 may be isolated by treatment of 6 with a large excess of the alkene (Scheme 3).²²

Preliminary investigations of other 1,1-disubstituted alkenes, $CH_2=C(Me)(Et)$, $CH_2=C(Me)(n-Pr)$, and $CH_2=CEt_2$, have shown that reversible insertion in the Zr– Me bond of **6** and (slower) irreversible allylic activation form a general reactivity pattern. Formation of a mixture of **6** and insertion product $(C_5H_5)_2Zr\{CH_2CMe-(R^1)(R^2)\}\{MeB(C_6F_5)_3\}$ (ratio dependent on the alkene and the excess used) is followed by conversion to η^3 allyl complexes.^{1b,19,20} Methylenecyclopentane, in con-

⁽¹⁶⁾ The value of $\Delta\delta(m,p$ -F) (¹⁹F NMR) is a good probe of coordination of $[RB(C_6F_5)_3]^-$ (R = Me, CH₂Ph), to cationic d⁰ metals (values 3–6 ppm indicate coordination; <3 ppm indicates noncoordination): Horton, A. D. Unpublished results.

⁽¹⁷⁾ The complex reaction of **2** with $[PhMe_2NH][B(C_6F_5)_4]$, involving C–H activation of the Lewis base, will be published elsewhere.

^{(18) (}a) Gleiter, R.; Hyla-Kryspin, I.; Niu, S.; Erker, G. Organometallics **1993**, *12*, 3828. (b) Koga, N.; Kawamura-Kuribayashi, H. J. Am. Chem. Soc. **1988**, *110*, 108.

⁽¹⁹⁾ For examples of electrophilic allyl complexes of d⁰ metallocenes see ref 20 and the following: (a) Tjaden, E. B.; Casty, G. L.; Stryker, J. M. J. Am. Chem. Soc. **1993**, 115, 9814. (b) Horton, A. D. Organometallics **1992**, 11, 3271. (c) Jordan, R. F.; LaPointe, R. E.; Bradley, P. K.; Baenziger, N. Organometallics **1989**, 8, 2892.

⁽²⁰⁾ For well-defined cases of η³-allyl formation on activation of 1-alkenes by d⁰ metallocenes see the following: (a) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. **1987**, 109, 203.
(b) Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. **1985**, 107, 8091.

⁽²¹⁾ Solvent effects were significant. In less polar C_7D_8 (0.03 M), β -Me elimination is slower than in C_6D_5Br (1:4 ratio of **5a** and **6** after 3 h). Over longer periods unidentified decomposition products were observed, but η^3 -allyl formation was insignificant.

⁽²²⁾ Preparation of **8** and **9**: A large excess of isobutene (or 2.5 mmol of methylenecyclopentane) was added to a bromobenzene (4-7 mL) solution of **6** (0.60 mmol) at 25 °C. After 5–15 min, hexane addition afforded a yellow oil, which was washed with hexane; the resulting solid was dried *in vacuo* (NMR: **8**, 85% pure; **9**, >90% pure).

trast, undergoes virtually instantaneous and clean C–H bond activation (C₆D₅Br, 25 °C, <5 min, >90% selectivity), giving isolable η^3 -allyl product **9** (Scheme 3).²² The sterically accessible nature of the allylic hydrogens may facilitate this reaction, which contrasts to the ringopening polymerization reported for more strained methylenecyclobutane.³ Complexes **8** and **9** exhibit characteristic ¹H and ¹³C NMR resonances for the η^3 allyl ligand, and each undergoes a fluxional process involving η^3 , η^1 -allyl interconversion.²³

Given the wide use of neopentyl ligands, the demonstration of ligand degradation by β -Me elimination is of importance. The neopentyl cations undergo β -Me elimination without the competing β -hydrogen elimination, which has complicated previous studies of this process. The facility of β -Me elimination is strongly dependent on the ligand and anion environment, consistent with involvement of a coordinatively unsaturated 14-electron species. The rapid β -Me elimination observed for the more crowded metallocene presumably reflects labile anion/base/solvent coordination and is consistent with β -Me elimination as the major chain transfer step in propene oligomerization using [(C₅Me₅)₂-ZrR]⁺. The discovery that 1,1-disubstituted alkenes undergo allylic activation (in one case rapidly) provides support for allyl formation as a potential catalyst deactivation mechanism.^{1b,20}

Supporting Information Available: Text describing full details of the preparation and characterization of the compounds (11 pages). Ordering information is given on any current masthead page.

OM960089A

⁽²³⁾ The following approximate values of ΔG^{4} for the fluxional process involving η^{3}, η^{1} -allyl interconversion were determined. Complex **8**: 13.7 kcal mol⁻¹ ($C_{5}H_{5}$ coalescence, $T_{c} = 0$ °C) and 14.2 kcal mol⁻¹ (allyl syn/anti-hydrogen coalescence, $T_{c} = 10$ °C); the two values are effectively identical. Complex **9**: 11.7 kcal mol⁻¹ ($C_{5}H_{5}$ coalescence, $T_{c} = -30$ °C).