Direct Observation of *â***-Methyl Elimination in Cationic Neopentyl Complexes: Ligand Effects on the Reversible Elimination of Isobutene**

Andrew D. Horton

Shell Research and Technology Centre, Amsterdam, Postbus 38000, 1030 BN Amsterdam, The Netherlands

Received February 8, 1996^{\circ}

Summary: â-Me elimination from cationic neopentyl complexes, [Cp′*2Zr(CH2CMe3)]*⁺*, has been demonstrated. The more crowded complex* $(Cp' = C_5Me_5)$ *eliminates isobutene instantaneously at* -75 °*C, whereas the less crowded analogue* $(Cp' = C₅H₅)$ *is stable in solution at* 0° C but undegoes reversible β -Me elimination at 25 $^{\circ}$ C; *strong anion or Lewis base coordination suppresses â-Me elimination, consistent with involvement of a 14-electron species.*

â-Alkyl elimination, although much less common than *â*-hydrogen elimination/transfer in alkene polymerization catalysis, has recently been implicated in several processes using $[(C_5Me_5)_2ZrR]^+$ catalysts, including the formation of propene oligomers with vinyl end groups $(CH_2=CHCH_2^{-})^1$ and the cyclopolymerization of 2-methyl-1,5-hexadiene.² The propagation step in the ringopening polymerization of methylenecyclobutane involves a *â*-alkyl shift.3 *Direct observation* of *â*-Me elimination in d^0 complexes is, however, rare and limited to *in situ* generated isobutyl (and related) complexes which also undergo competing *â*-hydrogen elimination.4 Although widely used neopentyl ligands are known to decompose by α - or γ -hydrogen activation,⁵ we postulated that complexes of the form $[Cp'_{2}Zr(CH_{2}-C)$ CMe₃)]⁺ would undergo β -Me elimination.^{6,7} Here we report the first direct observations of β -Me elimination at a base-free d^0 metallocene, which also represent the first cases of neopentyl ligand decay by this process. $8-10$ Irreversible allylic activation of the isobutene elimina-

13, 1424. (b) Hajela, S.; Bercaw, J. E. Organometallics **1994**, *13*, 1147. (c) Watson, P. L.; Roe, D. C. *J. Am. Chem. Soc*. **1982**, *104*, 6471.

(5) (a) Schrock, R. R. *Acc. Chem. Res.* **1979**, *12*, 98. (b) Bruno, J.

(6) Thermochemical studies predict that *â*-Me elimination from a group 4 neopentyl complex is weakly exothermic and likely to be entropically driven: Schock, L. E.; Marks, T. J. *J. Am. Chem. Soc.* **1988**, *110*, 7701.

(7) Evidence for *â*-Me elimination from the (unobserved) neopentyl cation, $[(C_5H_5)_2Zr(CH_2CMe_3)]^+$, has been obtained from gas-phase studies: Christ, C. S., Jr.; Eyler, J. R.; Richardson, D. E. *J. Am. Chem. Soc*. **1990**, *112*, 596.

(8) Protonolysis of the Schiff-base complex $(R_6$ -acen) $Zr(CH_2CMe_3)_2$ gives cationic neopentyl complexes, which appear not to undergo *â*-Me elimination: Tjaden, E. B.; Swenson, D. C.; Jordan, R. F. *Organometallics* **1995**, *14*, 371.

tion product has been found to compete with the reversible insertion of isobutene in the Zr-Me bond.10

The proposed route to cationic metallocene neopentyl complexes relied on the hypothesis that the mixed complexes $Cp'_{2}ZrMe(CH_{2}CMe_{3})$ ($Cp' = C_{5}Me_{5}$, **1**; $Cp' =$ C_5H_5 , $2)^{11-13}$ would undergo selective abstraction of the sterically more accessible methyl ligand.¹⁴ This route was chosen due to the difficulty in synthesizing bis- (neopentyl) adducts of crowded metallocenes and the expected inertness of such crowded dialkyls toward alkyl abstraction (using Brönstead or, particularly, Lewis acids).8

Reaction of **1** with $B(C_6F_5)_3$ in C_6D_5Br or C_7D_8 solution at 25 °C cleanly generates $(C_5Me_5)_2ZrMe{MeB(C_6F_5)_3}$ (**3**), identified by 1H and 19F NMR spectroscopy and comparison to literature data,¹⁵ together with 1 equiv of isobutene (Scheme 1). The putative neopentyl intermediate, $(C_5Me_5)_2Zr(CH_2CMe_3){MeB(C_6F_5)_3}$, is not observed, even when the reaction is carried out at -75 °C in an NMR tube. Similarly, $[PhMe₂NH][B(C₆F₅)₄]$ or $[Ph_3C][B(C_6F_5)_4]$ cleanly and instantly afford $[(C_5Me_5)_2$ - $ZrMe$ [$B(C_6F_5)_4$] and isobutene.

Although the neopentyl cation is too unstable to be observed, even at low temperatures, preliminary results indicate that it may be trapped as Lewis base adducts, $[(C_5Me_5)_2Zr(CH_2CMe_3)(L)]^+$ (**4a**-**c**). Whereas the labile THF adduct **4a** (formed with 1.2 equiv of THF) undergoes β -Me elimination with a $t_{1/2}$ of about 5 min at 25 °C, the adducts formed with a 1.5-fold excess of RCN $(R = Me, Me₃C)$ are stable in solution for several hours

(14) Temme, B.; Erker, G. *J. Organomet. Chem.* **1995**, *488*, 177. (15) Yang, X.; Stern, C. L.; Marks, T. J. *J. Am. Chem. Soc.* **1994***, 116*, 10015.

[®] Abstract published in *Advance ACS Abstracts*, May 15, 1996.

(1) (a) Resconi, L.; Piemontesi, F.; Fraciscono, G.; Abis, L.; Fiorani,

T. *J. Am. Chem. Soc.* **1992**, *114*, 1025. (b) Eshuis, J. J. W.; Tan, Y. Y.;

(10 Meetsma, A.; Teuben, J. H.; Renkema, J.; Evens, G. G. *Organometallics* **1992**, *11*, 362.

⁽²⁾ Kesti, M. R.; Waymouth, R. M. *J. Am. Chem. Soc.* **1992**, *114*, 3565.

⁽³⁾ Yang, X.; Jia, L.; Marks, T. J. *J. Am. Chem. Soc*. **1993**, *115*, 3392. (4) (a) Guo, Z.; Swenson, D. C.; Jordan, R. F. *Organometallics* **1994**,

W.; Smith, G. M.; Marks, T. J.; Fair, C. K.; Schultz, A. J.; Williams, J. M. *J. Am. Chem. Soc*. **1986**, *108*, 40.

⁽⁹⁾ Evidence for reversible β -Me elimination involving a Pd-CH₂-SiMe₃ fragment has been obtained: Ankianiec, B. C.; Christou, V Hardy, D. T.; Thompson, S. K.; Young, G. B. *J. Am. Chem. Soc.* **1994**, *116*, 9963.

⁽¹⁰⁾ The first direct observation of reversible *â*-Me elimination/ migratory insertion (in a 3,3-dimethylruthenacyclobutane) was very recently reported: McNeill, K.; Andersen, R. A.; Bergman, R. *J. Am. Chem. Soc*. **1995**, *117*, 3625.

⁽¹¹⁾ Complexes **1** and **2** were synthesized by reaction of $[Cp'_{2}ZrMe-(THF)]^{+}[B(4-C_{6}H_{4}F)_{4}]^{-}$ (Cp' = C₅Me₅ or C₅H₅)¹² with LiCH₂CMe₃ in THF/Et₂O, followed by crystallization from hexane/toluene.

⁽¹²⁾ Horton, A. D.; Orpen, A. G. *Organometallics* **1991**, *10*, 3910. (13) Selected NMR data (1H NMR, C6D5Br, 25 °C, unless otherwise stated). **1**: *δ* 1.80 (C5*Me*5), 0.95 (C*Me*3), -0.10 (ZrC*H*2), -0.57 (Zr*Me*). **2**: *δ* 5.92 (C5*H*5), 0.98 (C*Me*3), 0.42 (ZrC*H*2), 0.17 (Zr*Me*). **4a**: *δ* 3.31 (br, THF, averaged), 1.65 (C5*Me*⁵ and THF), 1.07 (ZrCH2C*Me*3), 0.75 (ZrCH₂). **4c**: δ 1.64 (C₅Me₃), 1.06 (Me₃CN averaged), 0.84 (ZrCHCMe₃), 0.44 (ZrCH₂), 5a: ¹H NMR (C₇D₈, 25 °C) δ 5.63 (C₅H₃), 1.13 (ZrCH₂), 0.16 (br, BM₂); ¹²C NMR (C₇D₈, -25 °C) δ (ZrC*H*2), 0.92 (C*Me*3). **8**: 1H NMR (1:1 C7D8:C6D5Br, -60 °C) *δ* 5.16, 5.08 (C5*H*5), 2.79, 2.32 (allyl C*H*2), 1.52 (allyl Me), 1.37 (B*Me*); 13C NMR $(C_2D_2C_4, -30 °C)$ δ 158.8 (allyl C), 67.5 (allyl CH₂), 29.7 (allyl Me). 9:
¹H NMR (C₂D₂Cl₄, -35 °C) δ 6.10, 5.87 (C₅H₃), 4.90 (1H, allyl CH₁), 3.10, 2.71 (1H, allyl CH₂), 2.63 (2H, CH₂), 2.16, 1 C*H*₂), 0.20 (B*Me*); ¹³C NMR (C₂D₂Cl₄, -10 °C) δ 152.4 (allyl C), 104.4 (allyl *C*H), 48.6 (allyl *C*H2).

served. In the case of **4c**, slow decomposition to unidentified organometallic species occurs over 24 h, with formation of CMe₄. These results are consistent with *â*-Me elimination proceeding via a cationic 14 electron species, formed by Lewis base or anion $([MeB(C_6F_5)_3]^-)$ dissociation. Strong nitrile coordination to zirconium therefore totally suppresses *â*-elimination.

A significant increase in stability of cationic neopentyl complexes is observed for the cyclopentadienyl system. Selective methyl abstraction from **2** with $B(C_6F_5)$ ₃ rapidly generates $(C_5H_5)_2Zr(CH_2CMe_3){MeB(C_6F_5)_3}$ (5a), which is stable in C_7D_8 solution at 0 °C (Scheme 2). The upfield location of the $B-Me$ ¹H NMR resonance (C₇D₈, -25 °C) at δ 0.16 ppm (free anion: δ 1.1 ppm)¹⁴ and the characteristic large difference (5.4 ppm) in the chemical shifts of the *meta*- and *para*-fluorines of the anion (free anion: $\Delta \delta(m, p\text{-F}) = 2.7 \text{ ppm}^{16}$ are consistent with anion coordination to zirconium. Neither 5a (¹H) NMR in range -50 to 25 °C; ¹³C NMR, -25 °C) nor the more electrophilic analogue $[(C_5H_5)_2Zr(CH_2CMe_3)]$ - $[B(C_6F_5)_4]$ (5b) ⁽¹H NMR, -25 °C),¹⁷ obtained using the trityl reagent, show evidence for β -C-Me \cdots Zr agostic stabilization of the zirconium center.¹⁸

On warming solutions of $5a$ to 25 °C (C₆D₅Br, 0.03) M), resonances appear for isobutene and the methylzirconocene complex $(C_5H_5)_2ZrMe{MeB(C_6F_5)_3}$ (6).¹³ In contrast to the pentamethylcyclopentadienyl analogue, β -Me elimination appears to be reversible,⁹ as shown **Scheme 3**

by the observation of a constant 1:3 molar ratio of **5a** and **6** after 20 min (Scheme 2). Indeed, exposure of a solution of 6 (C_6D_5Br , 0.02 M) to 20 equiv of isobutene affords a 4:1 mixture of **5a** and **6** at equilibrium. Lewis base coordination to the neopentyl cation again suppresses *â*-Me elimination: THF adduct **7a** (formed *in situ* by protonolysis using 1.2 equiv of Lewis base) and Me3CCN adduct **7b** (1.5 equiv base) are stable in solution for 24 h. The greater stability of **7a**, compared to C5Me5 analogue **4a**, reflects the lower tendency toward THF dissociation in the less crowded system (distinct resonances for coordinated and free THF in **7a**; ¹H NMR, 25 $^{\circ}$ C).

The isobutene product of *â*-Me elimination from **5a** is partially consumed over several hours, giving the *η*3- (2-methylallyl) complex, **8**, 1b,19,20 together with minor decomposition products (C6D5Br).21 The release of *both* methane and neopentane, in amounts related to the relative concentrations of the two complexes, suggests that allylic activation (via σ -bond metathesis)^{20a} involves both Zr-methyl and Zr-neopentyl complexes (Scheme 2). The more electon-deficient neopentyl cation, **5b**, also undegoes *â*-Me elimination, followed by isobutene activation, but more rapidly than the $[MeB(C_6F_5)_3]$ ⁻ adduct. In one experiment the ratio of the neopentyl, methyl, and the 2-methylallyl complexes after 35 min was 1:8: 11 (C_6D_5Br , 25 °C). Allyl formation is faster and cleaner in the presence of excess isobutene, and **8** may be isolated by treatment of **6** with a large excess of the alkene (Scheme 3).22

Preliminary investigations of other 1,1-disubstituted alkenes, $CH_2=C(Me)$ (Et), $CH_2=C(Me)$ (*n*-Pr), and $CH_2=$ $CEt₂$, have shown that reversible insertion in the $Zr-$ Me bond of **6** and (slower) irreversible allylic activation form a general reactivity pattern. Formation of a mixture of 6 and insertion product $(C_5H_5)_2Zr\{CH_2CMe$ $(R¹)(R²)$ }{MeB(C₆F₅)₃} (ratio dependent on the alkene and the excess used) is followed by conversion to η^3 allyl complexes.^{1b,19,20} Methylenecyclopentane, in con-

⁽¹⁶⁾ The value of ∆*δ*(*m,p*-F) (19F NMR) is a good probe of coordination of $[RB(C_6F_5)_3]$ ⁻ (R = Me, CH₂Ph), to cationic d⁰ metals (values 3-6 ppm indicate coordination; <3 ppm indicates noncoordination): Horton, A. D. Unpublished results.

⁽¹⁷⁾ The complex reaction of **2** with $[PhMe₂NH][B(C₆F₅)₄]$, involving C-H activation of the Lewis base, will be published elsewhere.

^{(18) (}a) Gleiter, R.; Hyla-Kryspin, I.; Niu, S.; Erker, G. *Organometallics* **1993,** *12*, 3828. (b) Koga, N.; Kawamura-Kuribayashi, H. *J. Am. Chem. Soc*. **1988**, *110*, 108.

⁽¹⁹⁾ For examples of electrophilic allyl complexes of $d⁰$ metallocenes see ref 20 and the following: (a) Tjaden, E. B.; Casty, G. L.; Stryker, J. M. *J. Am. Chem. Soc.* **1993**, *115*, 9814. (b) Horton, A. D. *Organometallics* **1992**, *11*, 3271. (c) Jordan, R. F.; LaPointe, R. E.; Bradley, P. K.; Baenziger, N. *Organometallics* **1989**, *8*, 2892.

⁽²⁰⁾ For well-defined cases of η^3 -allyl formation on activation of 1-alkenes by d^0 metallocenes see the following: (a) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. *J. Am. Chem. Soc.* **1987**, *109*, 203. (b) Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.; Marks, T. J. *J. Am. Chem. Soc*. **1985**, *107*, 8091.

⁽²¹⁾ Solvent effects were significant. In less polar C_7D_8 (0.03 M), β -Me elimination is slower than in C₆D₅Br (1:4 ratio of 5a and 6 after 3 h). Over longer periods unidentified decomposition products were observed, but *η*3-allyl formation was insignificant.

⁽²²⁾ Preparation of **8** and **9**: A large excess of isobutene (or 2.5 mmol of methylenecyclopentane) was added to a bromobenzene $(4-7$ mL) solution of $6(0.60 \text{ mmol})$ at 25 °C. After $5-15$ min, hexane addition afforded a yellow oil, which was washed with hexane; the resulting solid was dried *in vacuo* (NMR: **8**, 85% pure; **9**, >90% pure).

trast, undergoes virtually instantaneous and clean C-H bond activation (C_6D_5Br , 25 °C, <5 min, >90% selectivity), giving isolable η^3 -allyl product **9** (Scheme 3).²² The sterically accessible nature of the allylic hydrogens may facilitate this reaction, which contrasts to the ringopening polymerization reported for more strained methylenecyclobutane.3 Complexes **8** and **9** exhibit characteristic 1H and 13C NMR resonances for the *η*3 allyl ligand, and each undergoes a fluxional process involving η^3 , η^1 -allyl interconversion.²³

Given the wide use of neopentyl ligands, the demonstration of ligand degradation by *â*-Me elimination is of importance. The neopentyl cations undergo *â*-Me elimination without the competing *â*-hydrogen elimination, which has complicated previous studies of this process. The facility of *â*-Me elimination is strongly dependent on the ligand and anion environment, consistent with involvement of a coordinatively unsaturated 14-electron species. The rapid *â*-Me elimination observed for the more crowded metallocene presumably reflects labile anion/base/solvent coordination and is consistent with β -Me elimination as the major chain transfer step in propene oligomerization using $[(C_5Me_5)_2$ - ZrR ⁺. The discovery that 1,1-disubstituted alkenes undergo allylic activation (in one case rapidly) provides support for allyl formation as a potential catalyst deactivation mechanism.^{1b,20}

Supporting Information Available: Text describing full details of the preparation and characterization of the compounds (11 pages). Ordering information is given on any current masthead page.

OM960089A

⁽²³⁾ The following approximate values of ΔG^* for the fluxional process involving η^3 , η^1 -allyl interconversion were determined. Complex **8**: 13.7 kcal mol⁻¹ (C₅*H*₅ coalescence, $T_c = 0$ °C) and 14.2 kcal m effectively identical. Complex 9: 11.7 kcal mol⁻¹ (C₅H₅ coalescence, $T_c = -30$ °C).