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Summary: The reaction of thiophene with the rhodium
compound [Tp*Rh(C,H4)(PMe3)] (1a; Tp* = hydrotris-
(3,5-dimethyl-1-pyrazolyl)borate) leads to a mixture of
the C—H and C—S activation products [Tp*Rh(H)(2-

C4H3S)(PMes)] (2a) and [Tp*Rh(CHCHCHCHS)(PMes)]
(3a), respectively. In contrast to previous observations,
the former is the thermodynamically preferred isomer.
For the PEt; derivative [Tp*Rh(C,H,4)(PEt3)] (1b), an
even higher selectivity toward C—H activation is ob-
served.

Many synthetic and reactivity studies on model
complexes that contain coordinated or chemically trans-
formed thiophenes have been undertaken in recent
years with the aim of gaining valuable information on
the mechanism of the hydrodesulfurization reaction.:2
While thiophenes can be activated by different metals,3
unusual and very often unexpected reactivity patterns
have emerged from the use of Rh and Ir complexes of
cyclopentadienyl* and other ligands.> Thienyl deriva-
tives resulting from C—H activation® at the o-position
of the thiophene ring, as well as products derived from
C—S bond scission, are thought to be key intermediates
in the process of sulfur removal.

Recent work points out that the o-2-thienyl systems
constitute an opening entry to the C—S insertion
products. This is suggested by the observation of only
C—S bond cleavage in a number of reactions of this type’
and above all by the irreversible conversion of some o-2-
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thienyls into the corresponding metallacyclic products.*8
Here we wish to communicate that the unsaturated
Tp*Rh(PMe;3) fragment (Tp* = hydrotris(3,5-dimethyl-
1-pyrazolyl)borate) reverses the order of thermodynamic
stability to favor the C—H oxidative-addition product
[Tp*Rh(H)(2-C4H3S)(PMej3)] (2a) versus the heteromet-

allacycle [Tp*RIh(CHCHCHCHIS)(PMeg)] (3a). More-
over, a substantial increase of the selectivity of this
transformation can be brought about by use of the PEt;
derivative, which yields predominantly (>95%) the
thienyl derivative 2b.

Low-temperature (—20 °C) addition of 1 equiv of PMes
to solutions of [Tp*Rh(C;H,),]° allows the isolation of
the phosphine adduct la in almost quantitative yield
(eq 1). This mixed phosphine—ethylene derivative is a

[Tp*Rh(C2H4)2] + PMes —— [Tp*Rh(C2H,)(PMes)] + CoHy (1)
1a

yellow microcrystalline solid which can be readily
identified by spectroscopy.1® A characteristic feature is
the observation of a 3'P{'H} NMR doublet at 6 14.6
(1Jp7Rh = 152 HZ).

Irradiation of a solution of 1a in neat thiophene for 3
h furnishes an orange solution which is shown by NMR
to contain complexes 2a and 3a in a ca. 1:3 ratio
(Scheme 1), together with a third, minor (<20%),
unidentified species. Fractional crystallization from
ether/petroleum ether mixtures permits the isolation of
pure 3a. Strong support for the formulation of this
complex as the C—S insertion adduct can be gained from
NMR studies.!! The observation of thiophene-derived
multiplets at 6 8.01 (1 H), 6.42 (2 H), and 6.16 (1 H) in
the 'H NMR spectrum and of 13C{*H} methyne signals
at 6 121.1, 125.3, 126.4, and 143.2 (dd, *Jc_grn Or 2Jc-p
= 16 or 27 Hz) argues in favor of a localized metalla-
cyclic structure!? of the kind shown in Scheme 1.

NMR monitoring of the photolysis reaction reveals 2a
and 3a are maintained in about the same ratio through-
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out the irradiation period. Either pure complex 3a, or
alternatively the photolysis mixture, remain practically
unaltered in solution upon standing at 20 °C. At higher
temperatures (=60 °C), however, the proportion of 2a
to 3a in thiophene solution gradually changes to a final
value of ca. 5.6:1. This same ratio is achieved when
complex 1a is heated at 90 °C in thiophene for 6 h. Pure
crystalline 2a can be separated from this mixture by
crystallization and characterized by NMR.'1 Due to
restricted rotation around the Rh—C bond, the proton
resonances associated with the Tp*, PMes, and 2-C4H3S
ligands are broad at room temperature, although they
become sharper at 60 °C. The observation of a high-
field IH resonance (0 —16.55, dd, 1Jy—_rn = 22.6, 2Jy-p
= 31.1 Hz) is in accord with formulation of this
compound as the C—H bond oxidative-addition adduct.
In good agreement with other C—H activation reactions
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of thiophene which have been reported in the literature,
only the 2-thienyl derivative seems to form.

The related [Tp*Rh(C2H,)(PEt3)] species 1b, which
can be prepared similarly to 1a, provides upon photoly-
sis at either 0 or 20 °C a ca. 1:1 mixture of the C—H
and C—S activation complexes 2b and 3b, respectively,
again accompanied by 20—30% of an unidentified spe-
cies. Interestingly, increased selectivity toward C—H
bond rupture is observed during the thermal activation
of 1b (eq 2), the hydrido 2-thienyl product 2b being

S
\_/ H s
[Tp*Rh(C,H,)(PEt;)] —————  Tp*R
e ) @
1b PEts
2b

formed almost exclusively (>95%) upon heating a solu-
tion of 1b in thiophene at 90 °C. Heating the photolysis
mixture of 2b and 3b gives similar results.

In summary, it has been shown for the first time that
the relative thermodynamic stability of the C—H and
C—S bond activation products of thiophene by transi-
tion-metal complexes depends drastically upon the
nature of the ancillary ligands. Thus, while in the
system derived from the Cp*RhL metal fragments (L
= PMegz,*d C,H,4*) the C—S oxidative-addition products
are preferred, for the somewhat similar Tp*Rh(PMej)
moiety the C—H activation product clearly predomi-
nates. The observation of even higher selectivity for the
Tp*Rh(PEts) unit seems to suggest that appropriate
tuning of the electronic and steric properties of the
metal environment may drive the reaction toward one
or the other type of product in other metal systems. Part
of our present efforts in this area of research are
directed toward ascertaining the veracity of this as-
sumption.
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