Downloaded by CARLI CONSORTIUM on June 30, 2009
Published on June 11, 1996 on http://pubs.acs.org | doi: 10.1021/om9601312 Published on June 11, 1996 on http://pubs.acs.org | doi: 10.1021/om9601312Downloaded by CARLI CONSORTIUM on June 30, 2009

Synthesis and Structure of the {**(2-Phosphinoethyl)silyl**} **tris(tertiary phosphine)iridium(I) Complex** $Irr{n^2-Me_2Si(CH_2)_2PPh_2}{(PMe_3)_3}$

Masaaki Okazaki, Hiromi Tobita,* and Hiroshi Ogino*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-77, Japan

Received February 20, 1996^{\circ}

The hydridomethyl(silyl)iridium(III) complex Ir(H)(Me){*η*²-Me₂Si(CH₂)₂PPh₂}(PMe₃)₂ (**2**) reacted quantitatively with PMe₃ at 60 °C to give the $\{(2\text{-phosphinoethyl})\text{silyl}\}\text{tris}$ (tertiary phosphine)iridium(I) complex Ir{*η*2-Me2Si(CH2)2PPh2}(PMe3)3 (**3**) as reddish orange crystals through the reductive elimination of methane. X-ray crystal structure analysis revealed that **3** adopts a slightly distorted five-coordinate, trigonal-bipyramidal geometry with the silyl ligand occupying an axial site. Complex **3** generates the 16e silyliridium(I) complex Ir $\{\eta^2\text{-Me}_2\text{Si}(\text{CH}_2)_2\text{PPh}_2\}(\text{PMe}_3)_2$ (A) easily at room temperature.

Introduction

Interest in transition-metal-catalyzed hydrosilation, silane oligomerization,² and redistribution of substituents on silicon atoms³ has promoted the studies on transition-metal silyl complexes. Silyliridium and -rhodium complexes make one of the most important classes of compounds among them, because many iridium and rhodium complexes are known to become active catalysts for these reactions,⁴ and silyliridium and -rhodium complexes are assumed to play important roles in the catalytic cycles. However, stable silyliridium(I) or -rhodium(I) complexes have been rare. The first structurally characterized silylrhodium(I) complex was Rh- (tripsi)(CO) (tripsi = $Si(CH_2CH_2PPh_2)_3$).⁵ In 1990, Thorn and Harlow reported the first synthesis of a 16e silylrhodium(I) complex, Rh(SiPh₃)(PMe₃)₃.⁶ As for 16e silyliridium(I) complexes, the 16e species $L_3Ir(SiR_3)$ (L $=$ π -acidic two-electron-donor ligand) are attracting increasing attention as key intermediates in some stoichiometric reactions.⁷⁻⁹ However, only very recently has a 16e silyliridium(I) complex, $Ir{Si(SiMe₃)₃}$ (PMe₃)₃, been detected in solution at -80 °C by ³¹P NMR spectrocopy.9 Several 18e five-coordinate silyliridium(I) complexes have been reported, but all of them are stabilized by the coordination of strongly *π*-acidic carbonyl ligands.8,10 We report here the synthesis and crystal structure of the first silyliridium(I) complex containing no strongly *π*-acidic ligands, Ir{*η*2-Me2Si $(CH₂)₂PPh₂$ $(PMe₃)₃$. Moreover, this paper describes that $Ir\{\eta^2\text{-Me}_2\}$ ($CH_2\}$)₂ PPh_2 }(PMe_3)₃ liberates one molecule of PMe₃ under very mild conditions to generate the 16e silyliridium(I) complex $Ir\{\eta^2\text{-Me}_2\}$ $[CH_2)_2$ PPh₂ $\}$ - $(PMe₃)₂$.

Experimental Section

All manipulations were carried out under a dry nitrogen atmosphere. Reagent-grade toluene and hexane were distilled from sodium-benzophenone ketyl immediately before use. Benzene-*d*⁶ and toluene-*d*⁸ were dried over a potassium mirror and transferred into NMR tubes under vacuum. HMe₂Si- $(CH_2)_2$ PPh₂,¹¹ PMe₃,¹² [Ir(CO)(PMe₃)₄]Cl,¹³ and P(CD₃)₃¹⁴ were prepared according to literature methods. Other chemicals were purchased from Wako Pure Chemical Industries, Ltd., and used as received. All NMR spectra were recorded on a Bruker ARX-300 spectrometer. ²⁹Si NMR spectra were obtained by the DEPT pulse sequence. IR spectra were recorded on a Bruker IFS66v spectrometer.

 $I_r(Cl)(H){\eta^2 \text{-}Me}_2Si(CH_2)_2PPh_2{\Omega^2PMe}_3$ (1). A Pyrex tube (20 mm o.d.) was charged with $[Ir(CO)(PMe₃)₄]Cl$ (1.03 g, 1.84 mmol) and $HMe₂Si(CH₂)₂PPh₂$ (0.503 g, 1.85 mmol), and toluene (10 mL) was introduced into this tube under high vacuum by the trap-to-trap-transfer technique. The Pyrex tube was flame-sealed. The sealed tube was placed in an oil bath, where the sample was kept at 80 °C. After 36 h, the tube was unsealed in a N_2 glovebox. Removal of the volatiles under reduced pressure resulted in a pale yellow oily residue, which was extracted by toluene and hexane (2:1), and the extract was filtered through a Celite pad. The solvent was removed from the filtrate under reduced pressure. Recrystallization of the residue from toluene-hexane yielded Ir(Cl)- (H){*η*2-Me2Si(CH2)2PPh2}(PMe3)2 (**1**; 0.88 g, 1.35 mmol, 73%) as colorless crystals. 1H NMR (300 MHz, C6D6): *δ* 8.28-8.22, 8.09-8.03 (m, 4H, *o*-PPh2), 7.14-7.07, 7.04-6.92 (m, 6H, *m*and p -PPh₂), 2.27, 1.98 (m, 1H \times 2, PCH₂), 1.58 (dd, J(HP) = 2.3, 9.4 Hz, 9H, PMe₃ (*trans* to PPh₂)), 0.90 (d, $J(HP) = 7.8$ Hz, 9H, PMe3 (*trans* to IrH)), 0.83, 0.71 (m, 1H × 2, SiCH2),

[®] Abstract published in *Advance ACS Abstracts*, May 15, 1996.

⁽¹⁾ See, for example: Ojima, I. In *The Chemistry of Silicon Compounds*; Patai, S., Rappoprt, Z., Eds.; Wiley: New York, 1989; p 1479. (2) See, for example, Corey, J. Y. In *Advances in Silicon Chemistry*;

Larson, G., Ed.; JAI Press: Greenwich, CT, 1991; Vol. 1, p 327. (3) See, for example: Curtis, M. D.; Epstein, P. S. *Adv*. *Organomet*.

Chem. **1981**, *19*, 213. (4) See, for example: Vaska, L. *Acc*. *Chem*. *Res*. **1968**, *1*, 335. Halpern, J. *Acc*. *Chem*. *Res*. **1970**, *3*, 386.

⁽⁵⁾ Joslin, F. L.; Stobart, S. R. *J*. *Chem*. *Soc*., *Chem*. *Commun*. **1989**, 504.

⁽⁶⁾ Thorn, D. L.; Harlow, R. L. *Inorg*. *Chem*. **1990**, *29*, 2017.

⁽⁷⁾ Aizenberg, M.; Milstein, D. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1994**,

³³, 317. Aizenberg, M.; Milstein, D. *J*. *Am*. *Chem*. *Soc*. **1995**, *117*, 6456. (8) Esteruelas, M. A.; Lahoz, F. J.; Oliva´n, M.; On˜ ate, E.; Oro, L. A. *Organometallics* **1994**, *13*, 4246.

⁽⁹⁾ Mitchell, G. P.; Tilley, T. D.; Yap, G. P. A.; Rheingold, A. L. *Organometallics* **1995**, *14*, 5472.

⁽¹⁰⁾ Auburn, M. J.; Grundy, S. L.; Stobart, S. R.; Zaworotko, M. J. *J*. *Am*. *Chem*. *Soc*. **1985**, *107*, 266.

⁽¹¹⁾ Holmes-Smith, R. D.; Osei, R. D.; Stobart, S. R. *J*. *Chem*. *Soc*., *Perkin Trans*. **1983**, 861.

⁽¹²⁾ Gibson, V. C.; Graimann, C. E.; Hare, P. M.; Green, M. L. H.; Bandy, J. A.; Grebenik, P. D.; Prout, K. *J*. *Chem*. *Soc*., *Dalton Trans*. **1985**, 2025.

⁽¹³⁾ Labinger, J. A.; Osborn, J. A. *Inorg*. *Synth*. **1978**, *18*, 62.

⁽¹⁴⁾ Our method of preparation is essentially the same as that previously reported by Green et al.,¹² except that we use CD_3I instead $_{\rm 0f}$ CH₃I.

0.50, 0.33 (s, $3H \times 2$, SiMe_2), -10.04 (dt, $J(\text{HP trans}) = 126.7$, $J(HP*cis*) = 17.5 Hz$, 1H, IrH). ¹³C NMR (75.5 Hz, C₆D₆): *δ* 139.7, 137.6, 134.7, 132.1, 129.5, 128.7, 128.4, 127.9 (Ar), 30.0 (d, $J(CP) = 38.9$ Hz, PCH₂), 20.0 (dd, $J(CP) = 3.4$, 22.2 Hz, SiCH₂), 19.8 (dt, $J(CP) = 34.8$, 3.5 Hz, PMe₃), 17.7 (dt, $J(CP)$ $= 27.5, 2.5$ Hz, PMe₃), 10.0 (dd, $J(CP) = 5.4, 2.1$ Hz, SiMe), 4.9 (d, $J(CP) = 4.2$ Hz, SiMe). ³¹P NMR (121.5 Hz, C₆D₆): δ 26.6 (dd, $J(PP trans) = 334.6$ Hz, $J(PP cis) = 18.2$ Hz, PPh_2), -42.1 (dd, *J*(PP*trans*) = 334.6 Hz, *J*(PP*cis*) = 20.9 Hz, PMe₃ (*trans* to PPh₂)), -49.9 (dd, PMe₃ (*trans* to IrH)). ²⁹Si NMR $(59.6 \text{ MHz}, \text{C}_6\text{D}_6)$: δ 5.8 (ddd, *J*(SiP*cis*) = 8.7, 5.7, 2.8 Hz). IR (KBr): 2048 cm-¹ (*ν*(IrH)). MS (70 eV, DEI): *m/z* 652 (80, M^+), 650 (100, $M^+ - 2H$), 616 (11, $M^+ - HCl$). Anal. Calcd for C₂₂H₃₉ClIrP₃Si^{,1}/₂(C₆H₅CH₃): C, 43.86; H, 6.21; Cl, 5.08. Found: C, 44.01; H, 6.05; Cl, 4.64.

 $\text{Ir}(H)(Me){\eta^2\text{-}Me_2}\text{Si}(CH_2)_2\text{PPh}_2$ }(PMe₃)₂ (2). A diethyl ether solution (2.7 mL) of MeLi (0.75 M, 2.0 mmol) was added to the toluene (20 mL) solution of 1 (0.44 g, 0.67 mmol) at -48 °C, and the mixture was warmed to room temperature. The reaction mixture was stirred at room temperature for 2 h. Volatile material was removed under reduced pressure, and the residue was extracted with a mixture of toluene and hexane (2:1). The extract was filtered through an alumina column. The solvent was removed from the filtrate under reduced pressure. Recrystallization of the residue from toluene-hexane gave Ir(H)(Me){*η*2-Me2Si(CH2)2PPh2}(PMe3)2 (**2**; 0.29 g, 0.46 mmol, 69%) as colorless crystals. 1H NMR (300 MHz, C6D6): *δ* 7.90-7.84, 7.59-7.52 (m, 4H, *o*-PPh2), 7.13- 7.07, 7.04–6.96 (m, 6H, m- and p -PPh₂), 2.68, 1.63 (m, 1H \times 2, PCH₂), 1.46 (dd, *J*(HP) = 2.3, 8.8 Hz, 9H, PMe₃ (*trans* to PPh₂)), 0.82 (d, $J(HP) = 7.5$ Hz, 9H, PMe₃ (*trans* to IrH)), 1.08, 0.61 (m, $1H \times 2$, SiCH₂), 0.72, 0.58 (s, $3H \times 2$, SiMe₂), 0.27 (q, $J(HP) = 4.4$ Hz, 3H, IrMe), -12.60 (ddd, $J(HP trans) = 120.6$, $J(HP*cis*) = 23.4, 17.7 Hz, 1H, IrH.$ ¹³C NMR (75.5 Hz, C₆D₆): *δ* 140.6, 137.8, 134.2, 131.8, 129.2, 128.4, 127.9, 127.5 (Ar), 36.3 (dd, *J*(CP) = 39.5, 1.9 Hz, PCH₂), 21.6 (dd, *J*(CP) = 20.5, 4.1 Hz, SiCH₂), 21.2 (dt, $J(CP) = 33.4$, 4.0 Hz, PMe₃), 18.7 (dt, $J(CP) = 27.3$, 2.4 Hz, PMe₃), 11.8 (d, $J(CP) = 6.0$ Hz, SiMe), 6.6 (d, $J(CP) = 2.2$ Hz, SiMe), -38.3 (ddd, $J(CP) = 14.8$, 8.2, 6.5 Hz, IrMe). 31P NMR (121.5 Hz, C6D6): *δ* 35.2 (dd, $J(PP trans) = 349.7$ Hz, $J(PP cis) = 19.2$ Hz, $PPh₂$, -48.4 (dd, *J*(PP*trans*) = 349.7 Hz, *J*(PP*cis*) = 20.7 Hz, PMe₃ (*trans* to PPh2)), -61.2 (dd, PMe3 (*trans* to IrH)). 29Si NMR (59.6 MHz, C_6D_6): δ 10.5 (ddd, $J(SiP*cis*) = 17.7, 9.6, 8.1 Hz$). IR (KBr): 2044 cm-¹ (*ν*(IrH)). MS (70 eV, DEI): *m/z* 632 (1, M⁺), 617 $(100, M⁺ - CH₃), 616 (71, M⁺ - CH₄).$ Anal. Calcd for C₂₃H₄₂-IrP₃Si⁻¹/₈(C₆H₅CH₃): C, 44.57; H, 6.74. Found: C, 44.69; H, 6.54.

 I_r ⁷ \cdot **Me₂Si(CH₂)₂PPh₂**}(PMe₃)₃ (3). A Pyrex tube (12 mm o.d.) was charged with **2** (0.20 g, 0.32 mmol) and PMe3 (163 μ L, 1.58 mmol), and toluene (2 mL) was introduced into this tube under high vacuum by the trap-to-trap-transfer technique. The Pyrex tube was flame-sealed. The sealed tube was placed in the oil bath, where it was kept at 60 °C for 8 h. The sample was cooled to -30 °C to allow the growing of redorange crystals, which were collected by filtration to give Ir- {*η*2-Me2Si(CH2)2PPh2}(PMe3)3 (**3**; 0.17 g, 0.25 mmol, 78%). 1H NMR (300 MHz, C_6D_6 , $T = -60$ °C) δ 7.80-7.74 (m, 4H, *o*-PPh₂), 7.26-6.94 (m, 6H, *m*- and *p*-PPh₂), 2.59 (q, *J* = 5.8 Hz, 2H, PCH₂), 1.49 (br s, 9H \times 2, PMe₃ \times 2 (equatorial)), 0.91 (s, 6H, SiMe₂), 0.80 (d, 9H, $J = 6.3$ Hz, PMe₃ (axial)), 0.68 (dt, $J = 34.1, 6.9$ Hz, 2H, SiCH₂). ¹H NMR (300 MHz, C₆D₆, *T*) 50 °C): *δ* 7.70-7.64 (m, 4H, *o*-PPh2), 7.13-7.00 (m, 6H, *m*- and *p*-PPh₂), 2.38 (q, *J* = 7.6 Hz, 2H, PCH₂), 1.33 (br, 9H \times 3, PMe₃ \times 3), 0.57 (dt, *J* = 32.0, 7.6 Hz, 2H, SiCH₂), 0.56 (s, 6H, SiMe₂). ¹³C NMR (75.5 Hz, C₆D₆, *T* = -60 °C): *δ* 143.4, 134.7, 127.7, 127.4 (Ar), 36.9 (d, $J(CP) = 25.8$ Hz, PCH₂), 27.8 (br, PMe₃ \times 2 (equatorial)), 24.5 (br, PMe₃ (axial)), 22.0 (d, $J(CP) = 29.4$, SiCH₂), 9.4 (q, $J(CP) = 6.7$ Hz, SiMe₂). ¹³C NMR $(75.5 \text{ Hz}, \text{C}_6\text{D}_6, T = 50 \text{ °C})$: δ 144.6, 134.2, 128.1, 127.2 (Ar), 37.4 (dd, $J(CP) = 33.5, 3.5$ Hz, PCH₂), 27.7 (br s, PMe₃ \times 3), 22.2 (dd, $J(CP) = 34.4$, 3.3 Hz, SiCH₂), 9.6 (q, $J(CP) = 6.2$ Hz,

Table 1. Crystallographic Data for $Irr{^2Me_2Si(CH_2)_2PPh_2}$ }(PMe₃)₃ (3)

formula	$C_{25}H_{47}IrP_{4}Si$
fw	691.85
cryst syst	orthorhombic
space group	<i>Pnaa</i> (variant of No. 56)
a/À	14.176(2)
b/Å	36.042(5)
$c/\text{\AA}$	11.884(3)
$W\AA^3$	6072(2)
Z	8
$d_{\rm{calcd}}$ /g cm ⁻³	1.51
$μ$ (Mo Kα)/cm ⁻¹	49.1
cryst size/mm	$0.30 \times 0.25 \times 0.20$
$T^{\circ}C$	20
reflns measd	$\pm h. k. l$
2θ range/deg	$3 - 50$
no. of unique data	9708
no. of data used with $ F_0 \geq 3\sigma(F_0)$	3182
no. of params refined	281
Ra	0.071
$R_w^{\ b}$	0.083

 $R = \sum_{l} ||F_{0}| - F_{c}||/\sum_{l} |F_{0}|$. *b* $R_{w} = \sum_{l} w(|F_{0}| - F_{c}|)^{2}/\sum_{l} w|F_{0}|^{2}]^{1/2}$; *w* $= [\sigma^2(|F_0|) + aF_0^2]^{-1}$, where $a = 0.001$.

Scheme 1

SiMe₂). ³¹P NMR (121.5 MHz, C_6D_6 , $T = -60$ °C): δ 43.6 (m, PPh₂), -55, -56 (m, PMe₃). ³¹P NMR (121.5 MHz, C₆D₆, *T* = 80 °C): δ 44.3 (br q, *J*(PP) = 79 Hz, PPh₂), -57.0 (br, d, *J*(PP) $= 79$ Hz, PMe₃). MS (70 eV, DEI): m/z 692 (0.3, M⁺), 616 (100, M^+ – PMe₃). Anal. Calcd for C₂₅H₄₇IrP₄Si: C, 43.40; H, 6.85. Found: C, 43.66; H, 6.58.

X-ray Crystal Structural Determination of 3. Intensity data for X-ray crystal structure analysis were collected at 20 °C on a Rigaku AFC-6A diffractometer with graphite-monochromated Mo K α radiation. A single crystal of 3 was sealed in a glass capillary under a N_2 atmosphere. The crystal structure was solved by direct methods and refined anisotropically using UNICS-III. A total of 9708 unique reflections were collected by *ω*-scan in the range 3° < 2*θ* < 50°, with 3182 $(|F_{o}| > 3\sigma(F_{o})$ used in calculations. None of the hydrogen atoms were found. Crystallographic data for **3** are listed in Table 1.

Reaction of 3 with P(CD3)3. A Pyrex NMR tube (5 mm o.d.) was charged with $3(15 \text{ mg}, 0.022 \text{ mmol})$ and $P(CD_3)_3(11)$ μ L, 0.11 mmol), and benzene- d_6 (0.7 mL) was introduced into this tube under high vacuum by the trap-to-trap-transfer technique. The NMR tube was flame-sealed. The reaction was monitored by 1H and 31P NMR spectroscopy.

Results and Discussion

Synthesis of Ir(H)(Me) $\{\eta^2\text{-Me}_2\text{Si}(\text{CH}_2)_2\text{PPh}_2\}$ **(PMe₃)₂** (2). The hydrido methyl complex $Ir(H)(Me)$ -{*η*2-Me2Si(CH2)2PPh2}(PMe3)2 (**2**) can be readily prepared by the reactions shown in Scheme 1. Thermolysis of the toluene solution of the ligand precursor $HMe₂Si (CH₂)₂PPh₂$ and the cationic iridium(I) complex [Ir(CO)- $(PMe₃)₄|Cl$ in a sealed tube at 80 °C for 36 h gave the

chlorohydridoiridium(III) complex Ir(Cl)(H){*η*2-Me2Si- $(CH₂)₂PPh₂$ $(PMe₃)₂$ (1) as colorless crystals in 73% yield. The geometry of **1** can be uniquely determined by the ¹H, ³¹P, and ²⁹Si NMR spectra. Addition of MeLi to 1 in toluene at -48 °C resulted in the formation of complex **2**. Workup and recrystallization from toluenehexane afforded colorless crystals of **2** in 69% yield. The ¹H, ³¹P, ¹³C, and ²⁹Si NMR spectral data establish that **2** possesses hydrido, methyl, and silyl ligands in a *mer* relationship. The 13 C resonance of Ir-Me appears at -38.3 ppm as a ddd coupled with three *cis*-31P (*J*(CP*cis*) $= 6.5, 8.2, 14.8$ Hz). This chemical shift is characteristic of the carbon directly bound to a transition metal through a σ bond. In the complex *fac*-Ir(H)(Me)(SiR₃)-(PMe3)3 previously reported by Aizenberg and Milstein,7 a strongly *trans*-influencing silyl ligand¹⁵ is located *trans* to the PMe₃ ligand. In contrast, surprisingly the silyl ligand in **3** is located *trans* to the strongly *trans*influencing methyl ligand.

Synthesis of Ir{ $η$ ²-Me₂Si(CH₂)₂PPh₂}(PMe₃)₃ (3). Reaction of 2 with 5 equiv of PMe₃ in toluene at 60 °C for 8 h resulted in an orange solution, from which reddish orange crystals of $Ir{n^2-Me_2Si(CH_2)_2PPh_2}$ $(PMe₃)₃$ (3) were obtained in 78% yield (eq 1). The

structure of **3** has been determined by spectroscopic and analytical methods and by X-ray crystal structure analysis.

The five-coordinate complex **3** is fluxional in C_6D_5 - $CD₃$ at room temperature. In the ¹H NMR spectrum at 50 °C, the three (one axial and two equatorial) $PMe₃$ ligands appear equivalently at *δ* 1.33 ppm as a very broad singlet. At -60 °C, the signals of one axial and two equatorial PMe₃ ligands appear nonequivalently at δ 0.80 ppm as a doublet (J = 6.3 Hz) and at 1.49 ppm as a slightly broad singlet in the intensity ratio of 1:2, respectively. At 80 $^{\circ}$ C, the ³¹P resonance of the PPh₂ moiety appears at 44.3 ppm as a broad quartet coupled with the $31P$ nuclei of three PMe₃ ligands ($J(PP) = 79$ Hz), which is consistent with the intramolecular exchange of three $PMe₃$ ligands.¹⁶ It is known that the analogous iridium(I) complex $Ir(Me)(PMe_3)_4$ exhibits an intramolecular exchange process of $PMe₃$ ligands.¹⁷

Structure of 3. The ORTEP drawing for **3** is shown in Figure 1. Selected bond distances and angles of **3** are listed in Table 2. The complex **3** takes a fivecoordinate, slightly distorted trigonal-bipyramidal arrangement in which the silicon atom and a PMe₃ ligand occupy axial positions while the PPh_2 moiety and two $PMe₃$ ligands are located in equatorial sites. The Ir-Si bond length lies in the normal range $(2.447(5)$ Å)¹⁸ and is close to that of the previously reported silyliri-

Figure 1. ORTEP drawing of $Ir{\lbrace \eta^2 \text{-}Me_2 \text{Si}(\text{CH}_2)_2 \text{PPh}_2 \rbrace}$ - $(PMe₃)₃$ (3).

Table 2. Selected Interatomic Distances (Å) and Angles (deg) for Ir{ η^2 -Me₂Si(CH₂)₂PPh₂}(PMe₃)₃ (3)

Distances				
$Ir-P1$	2.279(5)	$Ir-P2$	2.289(5)	
$Ir-P3$	2.290(5)	$Ir-P4$	2.347(4)	
$Ir-Si$	2.447(5)			
Angles				
$P1 - Ir - P2$	130.4(2)	$P1 - Ir - P3$	118.5(2)	
$P1 - Ir - P4$	91.4(2)	$P1-Ir-Si$	80.6(2)	
$P2-Ir-P3$	109.5(2)	$P2-Ir-P4$	92.7(2)	
P2–Ir–Si	87.1(2)	$P3-Ir-P4$	98.8(2)	
P3–Ir–Si	91.4(2)	$P4-Ir-Si$	169.2(2)	

dium(I) complex $Ir(PPh₂CH₂CH₂SiMe₂)(PPh₃)(CO)₂$ $(2.454(6)$ Å.¹⁰ The Ir-P(PPh₂) bond length $(2.279(5)$ Å) of **3** is shorter than that of Ir(PPh₂CH₂CH₂SiMe₂)(PPh₃)- $(CO)_2$ (2.342(5) Å).¹⁰ This indicates that back-donation of d electrons from the iridium center to the phosphorus atom in the former is more effective than that in the latter because of the more electron-rich metal center in the former. The overall structural features of **3** are similar to those of structurally determined Ir(I) complexes: Ir(PPh₂CH₂CH₂SiMe₂)(PPh₃)(CO)₂,¹⁰ Ir(H)(CO)₂- $(PPh₃)₂$, ¹⁹ and Ir(COEt)(CO)₂(dppe).²⁰ All of these complexes adopt distorted-trigonal-bipyramidal geometry with a *σ*-donor ligand occupying an axial position. There is only one 18e silylrhodium(I) complex that has been structurally characterized by an X-ray diffraction study, Rh(tripsi)(CO) (tripsi = $SiCH_2CH_2PPh_2$)₃), reported by Joslin and Stobart, which also takes a distorted-trigonal-bipyramidal geometry with the silyl fragment and carbonyl ligand occupying the axial sites.⁵ We should mention that only two types of silyliridium(I) compounds have been synthesized previously. One is Ir(PPh₂CH₂CH₂SiMe₂)(PPh₃)(CO)₂,¹⁰ with two carbonyl ligands in the equatorial plane. The other is $Ir(SiR₃)$ - $(PCy_3)(CO)_3$ $(R = Et, Ph)⁸$ with three carbonyl ligands all in the equatorial plane according to the IR and NMR spectroscopic data. Therefore, complex **3** is the first example of a silyliridium(I) complex with no carbonyl ligands. Complex **3** is expected to be more electron-rich than other silyliridium(I) complexes previously reported

⁽¹⁵⁾ Holmes-Smith, R. D.; Stobart, S. R.; Vefghi, R.; Zaworotko, M. J.; Jochem, K.; Cameron, T. S. *J*. *Chem*. *Soc*., *Dalton Trans*. **1987**, 969. (16) Price, R. T.; Andersen, R. A.; Muetterties, E. L. *J*. *Organomet*. *Chem*. **1989**, *376*, 407.

⁽¹⁷⁾ Thorn, D. L. *J*. *Am*. *Chem*. *Soc*. **1980**, *102*, 7109. Thorn, D. L. *Organometallics* **1982**, *1*, 197.

⁽¹⁸⁾ See for example: Tilley, T. D. In *The Silicon-Heteroatom Bond*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1991; pp 264, 343. Hays, M. K.; Eisenberg, R. *Inorg*. *Chem*. **1991**, *30*, 2623.

⁽²⁰⁾ Deutsch, P. P.; Eisenberg, R. *Organometallics* **1990**, *9*, 709.

due to the coordination of four electron-releasing phosphine ligands and thus to be more reactive.

Lability of PMe₃ Ligands in 3. To investigate the lability of PMe₃ ligands in complex 3, 5 equiv of P(CD₃)₃ was vacuum-transferred into the C_6D_6 solution of 3. Instantly, the intensity of the ${}^{1}H$ NMR signal of PMe₃ ligands in **3** decreased at room temperature and the signal of free PMe₃ with the corresponding intensity appeared. The intensity ratio of the 31P NMR resonances of free PMe₃ to free P(CD₃)₃ after 10 min was 5:4. After 30 min, the 31P NMR intensity ratio reached ca. 3:5 and no further change of the ratio was observed after this. This apparently means that a statistical fraction, i.e. $\frac{5}{8}$, of the PMe₃ ligands in **3** was replaced by $P(CD_3)_3$ at room temperature to give a mixture of $L'Ir(PMe₃)_{3-m}(P(CD₃)₃)_m$ (**3**-*d*[:] L' = SiMe₂(CH₂)₂PPh₂, $m = 1-3$) with the same geometry as that of **3** (eq 2).

These observations are consistent with the facile generation of the 16e silyliridium(I) complex Ir{*η*2-Me2Si- (CH2)2PPh2}(PMe3)2 (**A**) from complex **3** even at room temperature. The analogous Rh complex $Rh(SiPh₃)$ - $(PMe₃)₃$ was isolated by the reaction of $RhMe₃(PMe₃)₃$ with $HSiPh₃$ at room temperature.⁶ They proposed the silylrhodium(III) complex $Rh(H)(Me)(SiPh_3)(PMe_3)_3$ as an intermediate, which eliminated methane to give Rh- $(SiPh₃)(PMe₃)₃$. Recently, Aisenberg and Milstein reported that thermolysis of *fac*-(Me3P)3Ir(Me)(H)(SiPh3) in C_6D_6 under relatively severe conditions (100 °C for 24 h) led to the formation of *ortho*-metalated product $(Me_3P)_3Ir{(C_6H_4)}SiPh_2{(H)}$, and they assumed the generation of the 16e silyliridium(I) complex $(MegP)_{3}Ir(SiPh₃)$ as a key intermediate by methane reductive elimination from the hydrido methyl complex.7 Owing to the unprecedentedly mild conditions for the dissociation of PMe3 from **3**, the complex **3** could be a convenient precursor for generating a highly reactive 16e silyliridium(I) species.

Conclusions

We have prepared the novel silyliridium(I) complex **3** with no carbonyl ligand. X-ray crystal structure analysis revealed that **3** takes a slightly distorted trigonal bipyramidal geometry with the silyl and a PMe₃ ligand occupying the axial positions. Complex **3** undergoes an intramolecular fluxional process of PMe₃ ligands and also dissociates a PMe₃ ligand under mild conditions to generate a reactive 16e silyliridium(I) species.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research on Priority Area of Reactive Organometallics (No. 07216206) from the Ministry of Education, Science and Culture of Japan. We thank Shin-Etsu Chemical Co., Ltd., and Toray Dow Corning Silicone Co., Ltd., for the gifts of silicon compounds.

Supporting Information Available: Text giving details of the X-ray structure determination and tables of crystal data, atomic positional and thermal parameters, and bond distances and angles for **3** (6 pages). Ordering information is given on any current masthead page.

OM9601312