Synthesis and Structure of the {(2-Phosphinoethyl)silyl}tris(tertiary phosphine)iridium(I) Complex $Ir{\eta^2-Me_2Si(CH_2)_2PPh_2}(PMe_3)_3$

Masaaki Okazaki, Hiromi Tobita,* and Hiroshi Ogino*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-77, Japan

Received February 20, 1996[®]

The hydridomethyl(silyl)iridium(III) complex $Ir(H)(Me)\{\eta^2-Me_2Si(CH_2)_2PPh_2\}(PMe_3)_2$ (2) reacted quantitatively with PMe₃ at 60 °C to give the {(2-phosphinoethyl)silyl}tris(tertiary phosphine)iridium(I) complex Ir{ η^2 -Me₂Si(CH₂)₂PPh₂}(PMe₃)₃ (**3**) as reddish orange crystals through the reductive elimination of methane. X-ray crystal structure analysis revealed that **3** adopts a slightly distorted five-coordinate, trigonal-bipyramidal geometry with the silyl ligand occupying an axial site. Complex 3 generates the 16e silyliridium(I) complex $Ir{\eta^2-Me_2Si(CH_2)_2PPh_2}(PMe_3)_2$ (**A**) easily at room temperature.

Introduction

Interest in transition-metal-catalyzed hydrosilation,¹ silane oligomerization,² and redistribution of substituents on silicon atoms³ has promoted the studies on transition-metal silyl complexes. Silyliridium and -rhodium complexes make one of the most important classes of compounds among them, because many iridium and rhodium complexes are known to become active catalysts for these reactions,⁴ and silyliridium and -rhodium complexes are assumed to play important roles in the catalytic cycles. However, stable silyliridium(I) or -rhodium(I) complexes have been rare. The first structurally characterized silylrhodium(I) complex was Rh-(tripsi)(CO) $(tripsi = Si(CH_2CH_2PPh_2)_3).^5$ In 1990, Thorn and Harlow reported the first synthesis of a 16e silylrhodium(I) complex, Rh(SiPh₃)(PMe₃)_{3.6} As for 16e silyliridium(I) complexes, the 16e species L₃Ir(SiR₃) (L = π -acidic two-electron-donor ligand) are attracting increasing attention as key intermediates in some stoichiometric reactions.^{7–9} However, only very recently has a 16e silyliridium(I) complex, Ir{Si(SiMe₃)₃}(PMe₃)₃, been detected in solution at -80 °C by ³¹P NMR spectrocopy.⁹ Several 18e five-coordinate silyliridium(I) complexes have been reported, but all of them are stabilized by the coordination of strongly π -acidic carbonyl ligands.^{8,10} We report here the synthesis and crystal structure of the first silyliridium(I) complex containing no strongly π -acidic ligands, Ir{ η^2 -Me₂Si-

S0276-7333(96)00131-8 CCC: \$12.00

 $(CH_2)_2PPh_2$ (PMe₃)₃. Moreover, this paper describes that $Ir{\eta^2-Me_2Si(CH_2)_2PPh_2}(PMe_3)_3$ liberates one molecule of PMe₃ under very mild conditions to generate the 16e silyliridium(I) complex $Ir{\eta^2-Me_2Si(CH_2)_2PPh_2}$ - $(PMe_3)_2$.

Experimental Section

All manipulations were carried out under a dry nitrogen atmosphere. Reagent-grade toluene and hexane were distilled from sodium-benzophenone ketyl immediately before use. Benzene- d_6 and toluene- d_8 were dried over a potassium mirror and transferred into NMR tubes under vacuum. HMe2Si- $(CH_2)_2PPh_2$,¹¹ PMe₃,¹² [Ir(CO)(PMe_3)_4]Cl,¹³ and P(CD_3)_3¹⁴ were prepared according to literature methods. Other chemicals were purchased from Wako Pure Chemical Industries, Ltd., and used as received. All NMR spectra were recorded on a Bruker ARX-300 spectrometer. ²⁹Si NMR spectra were obtained by the DEPT pulse sequence. IR spectra were recorded on a Bruker IFS66v spectrometer.

Ir(Cl)(H){ η^2 -Me₂Si(CH₂)₂PPh₂}(PMe₃)₂ (1). A Pyrex tube (20 mm o.d.) was charged with [Ir(CO)(PMe₃)₄]Cl (1.03 g, 1.84 mmol) and HMe₂Si(CH₂)₂PPh₂ (0.503 g, 1.85 mmol), and toluene (10 mL) was introduced into this tube under high vacuum by the trap-to-trap-transfer technique. The Pyrex tube was flame-sealed. The sealed tube was placed in an oil bath, where the sample was kept at 80 °C. After 36 h, the tube was unsealed in a N2 glovebox. Removal of the volatiles under reduced pressure resulted in a pale yellow oily residue, which was extracted by toluene and hexane (2:1), and the extract was filtered through a Celite pad. The solvent was removed from the filtrate under reduced pressure. Recrystallization of the residue from toluene-hexane yielded Ir(Cl)- $(H){\eta^2-Me_2Si(CH_2)_2PPh_2}(PMe_3)_2$ (1; 0.88 g, 1.35 mmol, 73%) as colorless crystals. ¹H NMR (300 MHz, C_6D_6): δ 8.28–8.22, 8.09-8.03 (m, 4H, o-PPh2), 7.14-7.07, 7.04-6.92 (m, 6H, mand p-PPh₂), 2.27, 1.98 (m, 1H \times 2, PCH₂), 1.58 (dd, J(HP) = 2.3, 9.4 Hz, 9H, PMe₃ (*trans* to PPh₂)), 0.90 (d, J(HP) = 7.8 Hz, 9H, PMe₃ (trans to IrH)), 0.83, 0.71 (m, 1H \times 2, SiCH₂),

© 1996 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, May 15, 1996.

⁽¹⁾ See, for example: Ojima, I. In The Chemistry of Silicon Compounds; Patai, S., Rappoprt, Z., Eds.; Wiley: New York, 1989; p 1479. (2) See, for example, Corey, J. Y. In Advances in Silicon Chemistry,

Larson, G., Ed.; JAI Press: Greenwich, CT, 1991; Vol. 1, p 327. (3) See, for example: Curtis, M. D.; Epstein, P. S. Adv. Organomet.

Chem. 1981, 19, 213.

⁽⁴⁾ See, for example: Vaska, L. Acc. Chem. Res. **1968**, *1*, 335. Halpern, J. Acc. Chem. Res. **1970**, *3*, 386. (5) Joslin, F. L.; Stobart, S. R. J. Chem. Soc., Chem. Commun. **1989**,

^{504.} (6) Thorn, D. L.; Harlow, R. L. Inorg. Chem. 1990, 29, 2017.

⁽⁷⁾ Aizenberg, M.; Milstein, D. Angew. Chem., Int. Ed. Engl. 1994,

^{33, 317.} Aizenberg, M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 6456. (8) Esteruelas, M. A.; Lahoz, F. J.; Oliván, M.; Oñate, E.; Oro, L. A. Organometallics 1994, 13, 4246.

⁽⁹⁾ Mitchell, G. P.; Tilley, T. D.; Yap, G. P. A.; Rheingold, A. L. Organometallics 1995, 14, 5472.

⁽¹⁰⁾ Auburn, M. J.; Grundy, S. L.; Stobart, S. R.; Zaworotko, M. J. J. Am. Chem. Soc. **1985**, 107, 266.

⁽¹¹⁾ Holmes-Smith, R. D.; Osei, R. D.; Stobart, S. R. J. Chem. Soc., Perkin Trans. 1983, 861.

⁽¹²⁾ Gibson, V. C.; Graimann, C. E.; Hare, P. M.; Green, M. L. H.; Bandy, J. A.; Grebenik, P. D.; Prout, K. J. Chem. Soc., Dalton Trans. 1985, 2025.

⁽¹³⁾ Labinger, J. A.; Osborn, J. A. Inorg. Synth. 1978, 18, 62.

⁽¹⁴⁾ Our method of preparation is essentially the same as that previously reported by Green et al.,¹² except that we use CD₃I instead of CH₃I.

0.50, 0.33 (s, $3H \times 2$, $SiMe_2$), -10.04 (dt, J(HP trans) = 126.7, J(HP cis) = 17.5 Hz, 1H, IrH). ¹³C NMR (75.5 Hz, C_6D_6): δ 139.7, 137.6, 134.7, 132.1, 129.5, 128.7, 128.4, 127.9 (Ar), 30.0 (d, J(CP) = 38.9 Hz, PCH_2), 20.0 (dd, J(CP) = 3.4, 22.2 Hz, SiCH₂), 19.8 (dt, J(CP) = 34.8, 3.5 Hz, PMe_3), 17.7 (dt, J(CP) = 27.5, 2.5 Hz, PMe_3), 10.0 (dd, J(CP) = 5.4, 2.1 Hz, SiMe), 4.9 (d, J(CP) = 4.2 Hz, SiMe). ³¹P NMR (121.5 Hz, C_6D_6): δ 26.6 (dd, J(PP trans) = 334.6 Hz, J(PP cis) = 18.2 Hz, PMe_3 , (trans to PPh₂)), -42.1 (dd, J(PP trans) = 334.6 Hz, J(PP cis) = 20.9 Hz, PMe_3 (trans to PPh₂)), -49.9 (dd, PMe_3 (trans to IrH)). ²⁹Si NMR (59.6 MHz, C_6D_6): δ 5.8 (ddd, J(SiP cis) = 8.7, 5.7, 2.8 Hz). IR (KBr): 2048 cm⁻¹ (ν (IrH)). MS (70 eV, DEI): m/z 652 (80, M⁺), 650 (100, M⁺ - 2H), 616 (11, M⁺ - HC). Anal. Calcd for C₂₂H₃₉CIIrP₃Si· $1/_2$ (C₆H₅CH₃): C, 43.86; H, 6.21; Cl, 5.08. Found: C, 44.01; H, 6.05; Cl, 4.64.

Ir(H)(Me){ η^2 -Me₂Si(CH₂)₂PPh₂}(PMe₃)₂ (2). A diethyl ether solution (2.7 mL) of MeLi (0.75 M, 2.0 mmol) was added to the toluene (20 mL) solution of $\mathbf{1}$ (0.44 g, 0.67 mmol) at -48 °C, and the mixture was warmed to room temperature. The reaction mixture was stirred at room temperature for 2 h. Volatile material was removed under reduced pressure, and the residue was extracted with a mixture of toluene and hexane (2:1). The extract was filtered through an alumina column. The solvent was removed from the filtrate under reduced pressure. Recrystallization of the residue from toluene-hexane gave $Ir(H)(Me)\{\eta^2-Me_2Si(CH_2)_2PPh_2\}(PMe_3)_2$ (2; 0.29 g, 0.46 mmol, 69%) as colorless crystals. ¹H NMR (300 MHz, C₆D₆): δ 7.90-7.84, 7.59-7.52 (m, 4H, *σ*-PPh₂), 7.13-7.07, 7.04–6.96 (m, 6H, m- and p-PPh₂), 2.68, 1.63 (m, 1H \times 2, PCH₂), 1.46 (dd, J(HP) = 2.3, 8.8 Hz, 9H, PMe₃ (*trans* to PPh₂)), 0.82 (d, J(HP) = 7.5 Hz, 9H, PMe₃ (trans to IrH)), 1.08, 0.61 (m, 1H \times 2, SiCH₂), 0.72, 0.58 (s, 3H \times 2, SiMe₂), 0.27 (q, J(HP) = 4.4 Hz, 3H, IrMe), -12.60 (ddd, J(HP trans) = 120.6, J(HPcis) = 23.4, 17.7 Hz, 1H, IrH). ¹³C NMR (75.5 Hz, C₆D₆): δ 140.6, 137.8, 134.2, 131.8, 129.2, 128.4, 127.9, 127.5 (Ar), 36.3 (dd, *J*(CP) = 39.5, 1.9 Hz, PCH₂), 21.6 (dd, *J*(CP) = 20.5, 4.1 Hz, SiCH₂), 21.2 (dt, J(CP) = 33.4, 4.0 Hz, PMe₃), 18.7 (dt, J(CP) = 27.3, 2.4 Hz, PMe₃), 11.8 (d, J(CP) = 6.0 Hz, SiMe), 6.6 (d, J(CP) = 2.2 Hz, SiMe), -38.3 (ddd, J(CP) = 14.8, 8.2, 6.5 Hz, IrMe). ³¹P NMR (121.5 Hz, C₆D₆): δ 35.2 (dd, $J(PP trans) = 349.7 \text{ Hz}, J(PP cis) = 19.2 \text{ Hz}, PPh_2), -48.4 (dd,$ $J(PP trans) = 349.7 \text{ Hz}, J(PP cis) = 20.7 \text{ Hz}, PMe_3 (trans to$ PPh2)), -61.2 (dd, PMe3 (trans to IrH)). ²⁹Si NMR (59.6 MHz, C₆D₆): δ 10.5 (ddd, *J*(SiP*cis*) = 17.7, 9.6, 8.1 Hz). IR (KBr): 2044 cm⁻¹ (v(IrH)). MS (70 eV, DEI): m/z 632 (1, M⁺), 617 $(100, M^+ - CH_3)$, 616 (71, $M^+ - CH_4$). Anal. Calcd for $C_{23}H_{42}$ -IrP₃Si·¹/₈(C₆H₅CH₃): C, 44.57; H, 6.74. Found: C, 44.69; H, 6.54.

 $Ir{\eta^2-Me_2Si(CH_2)_2PPh_2}(PMe_3)_3$ (3). A Pyrex tube (12) mm o.d.) was charged with 2 (0.20 g, 0.32 mmol) and PMe₃ (163 μ L, 1.58 mmol), and toluene (2 mL) was introduced into this tube under high vacuum by the trap-to-trap-transfer technique. The Pyrex tube was flame-sealed. The sealed tube was placed in the oil bath, where it was kept at 60 °C for 8 h. The sample was cooled to -30 °C to allow the growing of redorange crystals, which were collected by filtration to give Ir- ${\eta^2-Me_2Si(CH_2)_2PPh_2}(PMe_3)_3$ (3; 0.17 g, 0.25 mmol, 78%). ¹H NMR (300 MHz, C₆D₆, T = -60 °C) δ 7.80–7.74 (m, 4H, o-PPh₂), 7.26-6.94 (m, 6H, m- and p-PPh₂), 2.59 (q, J = 5.8Hz, 2H, PCH₂), 1.49 (br s, 9H \times 2, PMe₃ \times 2 (equatorial)), 0.91 (s, 6H, SiMe₂), 0.80 (d, 9H, J = 6.3 Hz, PMe₃ (axial)), 0.68 (dt, J = 34.1, 6.9 Hz, 2H, SiCH₂). ¹H NMR (300 MHz, C₆D₆, T = 50 °C): δ 7.70–7.64 (m, 4H, o-PPh₂), 7.13–7.00 (m, 6H, *m*- and *p*-PPh₂), 2.38 (q, J = 7.6 Hz, 2H, PCH₂), 1.33 (br, 9H \times 3, PMe₃ \times 3), 0.57 (dt, J = 32.0, 7.6 Hz, 2H, SiCH₂), 0.56 (s, 6H, SiMe₂). ¹³C NMR (75.5 Hz, C₆D₆, T = -60 °C): δ 143.4, 134.7, 127.7, 127.4 (Ar), 36.9 (d, *J*(CP) = 25.8 Hz, PCH₂), 27.8 (br, $PMe_3 \times 2$ (equatorial)), 24.5 (br, PMe_3 (axial)), 22.0 (d, J(CP) = 29.4, SiCH₂), 9.4 (q, J(CP) = 6.7 Hz, SiMe₂). ¹³C NMR (75.5 Hz, C₆D₆, T = 50 °C): δ 144.6, 134.2, 128.1, 127.2 (Ar), 37.4 (dd, J(CP) = 33.5, 3.5 Hz, PCH₂), 27.7 (br s, PMe₃ × 3), 22.2 (dd, J(CP) = 34.4, 3.3 Hz, SiCH₂), 9.6 (q, J(CP) = 6.2 Hz,

Table 1. Crystallographic Data for $Ir{\eta^2-Me_2Si(CH_2)_2PPh_2}(PMe_3)_3$ (3)

-		
formula	C ₂₅ H ₄₇ IrP ₄ Si	
fw	691.85	
cryst syst	orthorhombic	
space group	Pnaa (variant of No. 56)	
a/Å	14.176(2)	
b/Å	36.042(5)	
c/Å	11.884(3)	
V/Å ³	6072(2)	
Ζ	8	
$d_{ m calcd}/ m g~ m cm^{-3}$	1.51	
μ (Mo K α)/cm ⁻¹	49.1	
cryst size/mm	0.30 imes 0.25 imes 0.20	
<i>T</i> /°C	20	
reflns measd	$\pm h, k, l$	
2θ range/deg	3-50	
no. of unique data	9708	
no. of data used with $ F_0 > 3\sigma(F_0)$	3182	
no. of params refined	281	
R^a	0.071	
R_w^b	0.083	

^a $R = \sum ||F_0| - F_c|| \sum |F_0|$. ^b $R_w = \sum w(|F_0| - F_c|)^2 \sum w|F_0|^2 |I^2|$; $w = [\sigma^2(|F_0|) + aF_0^2]^{-1}$, where a = 0.001.

Scheme 1

SiMe₂). ³¹P NMR (121.5 MHz, C₆D₆, T = -60 °C): δ 43.6 (m, PPh₂), -55, -56 (m, PMe₃). ³¹P NMR (121.5 MHz, C₆D₆, T = 80 °C): δ 44.3 (br q, *J*(PP) = 79 Hz, PPh₂), -57.0 (br, d, *J*(PP) = 79 Hz, PMe₃). MS (70 eV, DEI): m/z 692 (0.3, M⁺), 616 (100, M⁺ - PMe₃). Anal. Calcd for C₂₅H₄₇IrP₄Si: C, 43.40; H, 6.85. Found: C, 43.66; H, 6.58.

X-ray Crystal Structural Determination of 3. Intensity data for X-ray crystal structure analysis were collected at 20 °C on a Rigaku AFC-6A diffractometer with graphite-mono-chromated Mo K α radiation. A single crystal of **3** was sealed in a glass capillary under a N₂ atmosphere. The crystal structure was solved by direct methods and refined anisotropically using UNICS-III. A total of 9708 unique reflections were collected by ω -scan in the range $3^{\circ} < 2\theta < 50^{\circ}$, with 3182 ($|F_o| > 3\sigma(F_o)$) used in calculations. None of the hydrogen atoms were found. Crystallographic data for **3** are listed in Table 1.

Reaction of 3 with P(CD₃)₃. A Pyrex NMR tube (5 mm o.d.) was charged with **3** (15 mg, 0.022 mmol) and P(CD₃)₃ (11 μ L, 0.11 mmol), and benzene- d_6 (0.7 mL) was introduced into this tube under high vacuum by the trap-to-trap-transfer technique. The NMR tube was flame-sealed. The reaction was monitored by ¹H and ³¹P NMR spectroscopy.

Results and Discussion

Synthesis of $Ir(H)(Me){\eta^2-Me_2Si(CH_2)_2PPh_2}$ -(PMe₃)₂ (2). The hydrido methyl complex Ir(H)(Me)- ${\eta^2-Me_2Si(CH_2)_2PPh_2}(PMe_3)_2$ (2) can be readily prepared by the reactions shown in Scheme 1. Thermolysis of the toluene solution of the ligand precursor HMe₂Si-(CH₂)₂PPh₂ and the cationic iridium(I) complex [Ir(CO)-(PMe₃)₄]Cl in a sealed tube at 80 °C for 36 h gave the chlorohydridoiridium(III) complex $Ir(Cl)(H){\eta^2-Me_2Si (CH_2)_2PPh_2$ (PMe₃)₂ (1) as colorless crystals in 73% yield. The geometry of 1 can be uniquely determined by the ¹H, ³¹P, and ²⁹Si NMR spectra. Addition of MeLi to 1 in toluene at -48 °C resulted in the formation of complex 2. Workup and recrystallization from toluenehexane afforded colorless crystals of 2 in 69% yield. The ¹H, ³¹P, ¹³C, and ²⁹Si NMR spectral data establish that 2 possesses hydrido, methyl, and silyl ligands in a mer relationship. The ¹³C resonance of Ir-Me appears at -38.3 ppm as a ddd coupled with three *cis*-³¹P (*J*(CP*cis*) = 6.5, 8.2, 14.8 Hz). This chemical shift is characteristic of the carbon directly bound to a transition metal through a σ bond. In the complex *fac*-Ir(H)(Me)(SiR₃)-(PMe₃)₃ previously reported by Aizenberg and Milstein,⁷ a strongly trans-influencing silyl ligand¹⁵ is located *trans* to the PMe₃ ligand. In contrast, surprisingly the silyl ligand in **3** is located *trans* to the strongly *trans*influencing methyl ligand.

Synthesis of $Ir\{\eta^2-Me_2Si(CH_2)_2PPh_2\}(PMe_3)_3$ (3). Reaction of 2 with 5 equiv of PMe₃ in toluene at 60 °C for 8 h resulted in an orange solution, from which reddish orange crystals of $Ir\{\eta^2-Me_2Si(CH_2)_2PPh_2\}$ - $(PMe_3)_3$ (3) were obtained in 78% yield (eq 1). The

structure of **3** has been determined by spectroscopic and analytical methods and by X-ray crystal structure analysis.

The five-coordinate complex **3** is fluxional in C_6D_5 -CD₃ at room temperature. In the ¹H NMR spectrum at 50 °C, the three (one axial and two equatorial) PMe₃ ligands appear equivalently at δ 1.33 ppm as a very broad singlet. At -60 °C, the signals of one axial and two equatorial PMe₃ ligands appear nonequivalently at δ 0.80 ppm as a doublet (J = 6.3 Hz) and at 1.49 ppm as a slightly broad singlet in the intensity ratio of 1:2, respectively. At 80 °C, the ³¹P resonance of the PPh₂ moiety appears at 44.3 ppm as a broad quartet coupled with the ³¹P nuclei of three PMe₃ ligands (J(PP) = 79Hz), which is consistent with the intramolecular exchange of three PMe₃ ligands.¹⁶ It is known that the analogous iridium(I) complex Ir(Me)(PMe₃)₄ exhibits an intramolecular exchange process of PMe₃ ligands.¹⁷

Structure of 3. The ORTEP drawing for 3 is shown in Figure 1. Selected bond distances and angles of 3 are listed in Table 2. The complex 3 takes a fivecoordinate, slightly distorted trigonal-bipyramidal arrangement in which the silicon atom and a PMe₃ ligand occupy axial positions while the PPh₂ moiety and two PMe₃ ligands are located in equatorial sites. The Ir-Si bond length lies in the normal range (2.447(5) Å)¹⁸ and is close to that of the previously reported silyliri-

Figure 1. ORTEP drawing of $Ir{\eta^2-Me_2Si(CH_2)_2PPh_2}$ -(PMe₃)₃ (3).

Table 2. Selected Interatomic Distances (Å) and Angles (deg) for $Ir{\eta^2-Me_2Si(CH_2)_2PPh_2}(PMe_3)_3$ (3)

Distances			
Ir-P1	2.279(5)	Ir-P2	2.289(5)
Ir-P3	2.290(5)	Ir-P4	2.347(4)
Ir–Si	2.447(5)		
Angles			
P1-Ir-P2	130.4(2)	P1-Ir-P3	118.5(2)
P1-Ir-P4	91.4(2)	P1-Ir-Si	80.6(2)
P2–Ir–P3	109.5(2)	P2–Ir–P4	92.7(2)
P2-Ir-Si	87.1(2)	P3–Ir–P4	98.8(2)
P3-Ir-Si	91.4(2)	P4-Ir-Si	169.2(2)

dium(I) complex Ir(PPh₂CH₂CH₂SiMe₂)(PPh₃)(CO)₂ (2.454(6) Å.¹⁰ The Ir-P(PPh₂) bond length (2.279(5) Å) of 3 is shorter than that of Ir(PPh₂CH₂CH₂SiMe₂)(PPh₃)-(CO)₂ (2.342(5) Å).¹⁰ This indicates that back-donation of d electrons from the iridium center to the phosphorus atom in the former is more effective than that in the latter because of the more electron-rich metal center in the former. The overall structural features of 3 are similar to those of structurally determined Ir(I) complexes: Ir(PPh₂CH₂CH₂SiMe₂)(PPh₃)(CO)₂,¹⁰ Ir(H)(CO)₂-(PPh₃)₂,¹⁹ and Ir(COEt)(CO)₂(dppe).²⁰ All of these complexes adopt distorted-trigonal-bipyramidal geometry with a σ -donor ligand occupying an axial position. There is only one 18e silylrhodium(I) complex that has been structurally characterized by an X-ray diffraction study, Rh(tripsi)(CO) (tripsi = $Si(CH_2CH_2PPh_2)_3$), reported by Joslin and Stobart, which also takes a distorted-trigonal-bipyramidal geometry with the silyl fragment and carbonyl ligand occupying the axial sites.⁵ We should mention that only two types of silyliridium(I) compounds have been synthesized previously. One is Ir(PPh2CH2CH2SiMe2)(PPh3)(CO)2,10 with two carbonyl ligands in the equatorial plane. The other is Ir(SiR₃)- $(PCy_3)(CO)_3$ (R = Et, Ph),⁸ with three carbonyl ligands all in the equatorial plane according to the IR and NMR spectroscopic data. Therefore, complex 3 is the first example of a silyliridium(I) complex with no carbonyl ligands. Complex 3 is expected to be more electron-rich than other silyliridium(I) complexes previously reported

⁽¹⁵⁾ Holmes-Smith, R. D.; Stobart, S. R.; Vefghi, R.; Zaworotko, M. J.; Jochem, K.; Cameron, T. S. *J. Chem. Soc., Dalton Trans.* **1987**, 969. (16) Price, R. T.; Andersen, R. A.; Muetterties, E. L. J. Organomet. Chem. 1989, 376, 407.

⁽¹⁷⁾ Thorn, D. L. J. Am. Chem. Soc. 1980, 102, 7109. Thorn, D. L. Organometallics 1982, 1, 197.

⁽¹⁸⁾ See for example: Tilley, T. D. In The Silicon-Heteroatom Bond; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1991; pp 264, 343. Hays, M. K.; Eisenberg, R. Inorg. Chem. 1991, 30, 2623.

⁽¹⁹⁾ Ciechanowicz, M.; Skapski, S. C.; Troughton, P. G. H. Acta Crystallogr. 1976, B32, 1673.

⁽²⁰⁾ Deutsch, P. P.; Eisenberg, R. Organometallics 1990, 9, 709.

due to the coordination of four electron-releasing phosphine ligands and thus to be more reactive.

Lability of PMe₃ Ligands in 3. To investigate the lability of PMe₃ ligands in complex **3**, 5 equiv of $P(CD_3)_3$ was vacuum-transferred into the C_6D_6 solution of **3**. Instantly, the intensity of the ¹H NMR signal of PMe₃ ligands in **3** decreased at room temperature and the signal of free PMe₃ with the corresponding intensity appeared. The intensity ratio of the ³¹P NMR resonances of free PMe₃ to free $P(CD_3)_3$ after 10 min was 5:4. After 30 min, the ³¹P NMR intensity ratio reached ca. 3:5 and no further change of the ratio was observed after this. This apparently means that a statistical fraction, i.e. ⁵/₈, of the PMe₃ ligands in **3** was replaced by $P(CD_3)_3$ at room temperature to give a mixture of $L'Ir(PMe_3)_{3-m}(P(CD_3)_3)_m$ (**3**-*d*: L' = SiMe₂(CH₂)₂PPh₂, m = 1-3) with the same geometry as that of **3** (eq 2).

These observations are consistent with the facile generation of the 16e silyliridium(I) complex $Ir\{\eta^2-Me_2Si-(CH_2)_2PPh_2\}(PMe_3)_2$ (A) from complex 3 even at room temperature. The analogous Rh complex Rh(SiPh_3)-(PMe_3)_3 was isolated by the reaction of Rh(Me)(PMe_3)_3 with HSiPh_3 at room temperature.⁶ They proposed the

silylrhodium(III) complex Rh(H)(Me)(SiPh₃)(PMe₃)₃ as an intermediate, which eliminated methane to give Rh-(SiPh₃)(PMe₃)₃. Recently, Aisenberg and Milstein reported that thermolysis of *fac*-(Me₃P)₃Ir(Me)(H)(SiPh₃) in C₆D₆ under relatively severe conditions (100 °C for 24 h) led to the formation of *ortho*-metalated product (Me₃P)₃Ir{(C₆H₄)SiPh₂}(H), and they assumed the generation of the 16e silyliridium(I) complex (Me₃P)₃Ir(SiPh₃) as a key intermediate by methane reductive elimination from the hydrido methyl complex.⁷ Owing to the unprecedentedly mild conditions for the dissociation of PMe₃ from **3**, the complex **3** could be a convenient precursor for generating a highly reactive 16e silyliridium(I) species.

Conclusions

We have prepared the novel silyliridium(I) complex **3** with no carbonyl ligand. X-ray crystal structure analysis revealed that **3** takes a slightly distorted trigonal bipyramidal geometry with the silyl and a PMe₃ ligand occupying the axial positions. Complex **3** undergoes an intramolecular fluxional process of PMe₃ ligands and also dissociates a PMe₃ ligand under mild conditions to generate a reactive 16e silyliridium(I) species.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research on Priority Area of Reactive Organometallics (No. 07216206) from the Ministry of Education, Science and Culture of Japan. We thank Shin-Etsu Chemical Co., Ltd., and Toray Dow Corning Silicone Co., Ltd., for the gifts of silicon compounds.

Supporting Information Available: Text giving details of the X-ray structure determination and tables of crystal data, atomic positional and thermal parameters, and bond distances and angles for **3** (6 pages). Ordering information is given on any current masthead page.

OM9601312