ΣÀ

Molybdenum and Tungsten Cyclopentadienone Complexes. 2. Regio- and Stereospecific Nucleophilic Addition Reactions

Christian Slugovc,^{1a} Klaus Mauthner,^{1a} Kurt Mereiter,^{1b} Roland Schmid,^{1a} and Karl Kirchner*,1a

Institute of Inorganic Chemistry and Institute of Mineralogy, Crystallography, and Structural Chemistry, Technical University of Vienna, Getreidemarkt 9, A-1060 Vienna, Austria

Received March 5, 1996[®]

The cationic complexes $[M(\eta^4-C_5H_4O)(CO)_2(HB(pz)_3)]PF_6$ (1a, 2) and $[M(\eta^4-C_5H_4O)(CO)_2$ -(bipy)Br]PF₆ (3, 4) (M = Mo, W) have been shown to react with a wide variety of carbon, nitrogen, phosphorus, and sulfur nucleophiles in a regio- and stereoselective fashion to afford functionalized *η*3-cyclopentenoyl complexes in high yields. Single-crystal studies have been carried out for [Mo(η³-C₅H₄OPBu₃ⁿ)(CO)₂(HB(pz)₃)]PF₆ (5a) and [W(η³-C₅H₄O-PMe₃)(bipy)- $(CO)_2$]PF₆ (8a). The reaction of $[Mo(\eta^4-C_5H_3O-2-Me)(CO)_2(HB(pz)_3)]PF_6$ (1b) with strong bases like MeLi, NHEt₂, or pyridine results in the clean deprotonation of the methyl group to afford $Mo(\eta^3-C_5H_3OCH_2)(CO)_2(HB(pz)_3)$ (**9b**). This process is reversible, and **9b** is quantitatively converted to **1b** on treatment with strong acids such as CF_3SO_3H or CF_3 -COOH. **9b** has been characterized by X-ray crystallography. Liberation of cyclopentenone from $Mo(\eta^3-C_5H_5O)(CO)_2(HB(pz)_3)$ was attempted. Unfortunately, the various methods of demetalation well established for the C_5H_5 analog systems proved to be unsuccessful.

Introduction

 $\frac{1}{2}$ The development of new electrophilic transition-metal *π*-complexes participating in regio- and stereocontrolled bond formations is an attractive goal of organometallic research. With respect to diene functionalization reactions cationic cyclopentadienyl-based molybdenum diene **in**termediates have been explored in recent years (in one example also with cyclopentadienone as the diene2) and $\bar{\mathrm{g}}$ und to be very useful. 3 Other metal–ligand sets such as molybdenum tris(pyrazolyl)borate (HB(pz)3), 2,2′ bipyridyl (bipy), or bis(diphenylphosphino)-methane (dppm), respectively, have received little attention.4 Moreover, only a restricted range of nucleophiles, primarily carbon nucleophiles, have been considered. As part of our current interest in the chemistry of giclopentadienone, we have undertaken the study of molybdenum and tungsten complexes containing HB- $(pz)_3$ and bipy as the spectator ligands.⁵ This study is aimed at utilizing such compounds for the regio- and Downloaded by CARLI CONSORTIUM on June 30, 2009 \pm SUO9640/120101 ::0P | \overline{w} QN3t \overline{w} qtubs.doi: 02.031 | doi: 10.10215; 10.1021

Semones M. A.; Liebeskind, L. S. *Organometallics* **1995**, *14*, 4132. (b) Ipaktschi, J.; Hartman, A. *J. Organomet. Chem*. **1992**, *431*, 303. (c) Ipaktschi, J.; Hartman, A.; Boese, R. *J. Organomet. Chem*. **1992**, *434*, 303 (d) Joshi, V. S.; Sathe, K. M.; Nandi, M.; Chakrabarti, P.; Sarkar, A. *J. Organomet. Chem*. **1995**, *485*, C1. (5) Mauthner, K.; Slugovc, C.; Mereiter, K.; Schmid, R.; Kirchner,

K. *Organometallics* **1996**, *15*, 181.

stereoselective synthesis of functionalized *η*3-cyclopentenoyl molybdenum and tungsten complexes as synthetic precursors for new cyclopentenones. Here we report the results of nucleophilic additions of a range of carbon, nitrogen, phosphorus, and sulfur nucleophiles to complexes of the types $[M(\eta^4-C_5H_4O)(CO)_2(HB(pz)_3)]^+$ $(1a, 2)$ and $[M(\eta^4-C_5H_4O)(CO)_2(bipy)Br]^+$ (3, 4). X-ray structures of representative products are given.

Experimental Section

General Information. Manipulations were performed under an inert atmosphere of purified nitrogen by using standard Schlenk techniques and/or a glovebox at room temperature unless otherwise noted. All chemicals were standard reagent grade and used without further purification. The solvents were purified according to standard procedures.⁶ The deuterated solvents were purchased from Aldrich and dried over 4 Å molecular sieves. ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker AC 250 spectrometer operating at 250.13 and 62.86 MHz, respectively, and were referenced to residual solvent protons. IR spectra were recorded on a Mattson RS 2 spectrometer. Microanalyses were done by the Microanalytical Laboratories, University of Vienna. [M(η^4 - C_5H_4O)($C\tilde{O}_2$ (HB(pz)₃)] ⁺ (**1a**, **2**), [Mo(η^4 -C₅H₃O-2-Me)(CO)₂(HB- $(pz)_{3}$] + (**1b**), and $[M(\eta^{4} - C_{5}H_{4}O)(CO)_{2}$ (bipy)Br]⁺ (**3**, **4**) have been synthesized according to the literature.⁵ Mo($η$ ³-C₅H₅O)(CO)₂- $(HB(pz)₃)$ for demetalation experiments has been prepared as previously described.5

Synthesis. [Mo(η ³-C₅H₄OPBu₃ⁿ)(CO)₂(HB(pz)₃)]PF₆ (5a). A solution of $1a$ (250 mg, 0.424 mmol), in CH₃CN (5 mL) was treated with PBu₃ⁿ (0.2 mL, 0.807 mmol), and the mixture was stirred for 1 h. On addition of diethyl ether a yellow solid was formed, which was collected on a glass frit, washed with diethyl ether, and dried under vacuum. Yield: 322 mg (96%). Anal. Calcd for $C_{28}H_{41}BF_6MoN_6O_3P_2$: C, 42.44; H, 5.22; N, 10.61. Found: C, 42.38; H, 5.18; N, 10.76. 1H NMR (*δ*, acetone-*d*6, 20 °C): 8.70 (d, 1H), 8.06 (d, 1H), 8.01 (d, 1H), 7.87

[®] Abstract published in *Advance ACS Abstracts*, June 15, 1996. (1) (a) Institute of Inorganic Chemistry. (b) Institute of Mineralogy, Crystallography, and Structural Chemistry.

⁽²⁾ Liebeskind, L. S.; Bombrun, A. *J. Am. Chem. Soc.* **1991**, *113*, 8736.

^{(3) (}a) Rubio, A.; Liebeskind, L. S. *J. Am. Chem. Soc.* **1993**, *115*, 891. (b) Hansson, S.; Miller, J. F.; Liebeskind, L. S. *J. Am. Chem. Soc.* **1990**, *112*, 9660. (c) Pearson, A. J.; Mallik, S.; Pinkerton, A. A.; Adams, J. P.; Zheng, S. *J. Org. Chem.* **1992**, *57*, 2910. (d) Pearson, A. J.; Mallik, S.; Mortezaei, R.; Perry, M. W. D.; Shively, R. J., Jr.; Youngs, W. J. *J. Am. Chem. Soc.* **1990**, *112*, 8034. (e) Pearson, A. J.; Blystone, S. L.; Nar, H.; Pinkerton, A. A.; Roden, B. A.; Yoon, J. *J. Am. Chem. Soc.* **1989**, *111*, 134. (f) Pearson, A. J.; Khan, M. N. I.; Clardy, J. C.; Ciu-Heng, H. *J. Am. Chem. Soc.* **1985**, *107*, 2748. (g) Faller, J. W.; Murray,
H. H.; White, D. L.; Chao, K. H. *Organometallics* **1983**, *2*, 400.
(4) (a) Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Payne, S. C.;

⁽⁶⁾ Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*, 3rd ed.; Pergamon: New York, 1988.

(m, 3H), 6.50 (t, 1H), 6.33 (t, 2H), 5.28 (m, 1H), 5.02-4.95 (m, 2H), 3.49 (d, 1H, ² J_{HP} = 12.9 Hz), 2.63 (m, 6H), 1.78 (m, 6H), 1.55 (m, 6H), 0.98 (t, 9H). 13C{1H} NMR (*δ*, acetone-*d*6, 20 $°C$: 226.1 (CO), 221.7 (CO), 194.5 (C=O), 148.3, 145.2, 143.4, 137.9, 137.7, 136.6, 107.8, 107.1, 107.0, 83.6, 73.3, 66.5, 61.1 $(d, {}^2J_{CP} = 3.1 \text{ Hz})$, 46.7 $(d, {}^1J_{CP} = 30.4 \text{ Hz})$, 24.3, 18.3, 13.5. IR (diffuse reflectance (cm⁻¹)): 1994 (s, *ν*co), 1927 (s, *ν*co), 1685 $(s, \nu_{C=0}).$

 $[Mo(\eta^3-C_5H_4OPCy_3)(CO)_2(HB(pz)_3)]PF_6$ (5b). This complex was synthesized analogously to **5a** with **1a** (250 mg, 0.424 mmol) and PCy_3 (119 mg, 0.424 mmol) as starting materials. Yield: 303 mg (82%). Anal. Calcd for $C_{34}H_{47}BF_6MoN_6O_3P_2$: C, 46.91; H, 5.44; N, 9.65. Found: C, 47.03; H, 5.40; N, 9.58. 1H NMR (*δ*, acetone-*d*6, 20 °C): 8.70 (d, 1H), 8.08 (d, 1H), 8.00 (d, 1H), 7.88 (m, 3H), 6.51 (t, 1H), 6.33 (t, 2H), 5.44 (m, 1H), 5.04 (m, 2H), 3.61 (d, 1H, ² J_{HP} = 14.1 Hz), 3.08 (m, 3H), 2.20-1.45 (m, 30H). 13C{1H} NMR (*δ*, acetone-*d*6, 20 °C): 227.0 (CO) , 221.3 (CO) , 195.4 $(C=O)$, 149.6, 148.3, 143.5, 138.0, 137.7, 136.6, 107.9, 107.1, 107.1, 84.3, 73.3, 66.0, 62.5 (d, *2JCP* $=$ 3.1 Hz), 43.2 (d, ¹J_{CP} $=$ 23.9 Hz), 31.7, 30.2, 27.8, 27.4, 26.9, 26.0. IR (diffuse reflectance (cm⁻¹)): 1992 (s, *ν*_{CO}), 1926 (s, $ν_{CO}$), 1683 (s, $ν_{C=O}$).

 $[Mo(\eta^3-C_5H_4OPPh_3)(CO)_2(HB(pz)_3)]PF_6$ (5c). This complex was synthesized analogously to **5a** with **1a** (310 mg, 0.525 mmol) and $PPh₃$ (140 mg, 0.534 mmol) as starting materials. Yield: 413 mg (92%). Anal. Calcd for $C_{34}H_{29}BF_6MoN_6O_3P_2$: C, 47.91; H, 3.43; N, 9.86. Found: C, 47.40; H, 3.43; N, 9.76. 1H NMR (*δ*, acetone-*d*6, 20 °C): 8.73 (d, 1H), 8.15-7.83 (m, $\frac{20}{3}$ $\frac{40}{3}$ H, HB(pz)₃/PPh₃), 6.50 (t, 1H), 6.26 (t, 1H), 6.23 (t, 1H), 5.01 $(d, 1H, {}^{2}J_{HP} = 12.0 \text{ Hz})$, 4.85 (m, 2H), 4.55 (m, 1H). ¹³C{¹H} NMR (*δ*, acetone-*d*6, 20 °C): 226.0 (CO), 221.3 (CO), 192.4 $\stackrel{12}{\cancel{+}}$ (C $=$ O), 149.3, 145.2, 143.2, 138.0, 137.3, 136.7, 136.2, 135.6, $\stackrel{12}{\cancel{+}}$ (EXI 1 118.6, 107.9, 107.0, 107.0, 83.7, 73.1, 60.8, 49.2 (d, $\stackrel{1}{\cancel{+}}$ $\stackrel{1}{\cancel{+}}$ **t**β1.1, 118.6, 107.9, 107.0, 107.0, 83.7, 73.1, 60.8, 49.2 (d, ¹J_{CP} = 29.9 Hz). IR (diffuse reflectance (cm⁻¹)): 1980 (s, *ν*_{CO}), 1916

 \sum = 29.9 Hz). IR (diffuse

El (§, *ν*_{Co}), 1684 (s, *ν*_{C=0}).

El (§, *ν*_{Co}), 1684 (s, *ν*_{C=0}).

El (§ 60 mg, 0.441 mmol) in

Z (**δ**,5 mg, 1.00 mmol), a

C lines by the materials we $\frac{3}{2}$ **Mo(** η ³-C₅H₄OCN)(CO)₂(HB(pz)₃) (5d). A solution of **1a** $(260 \text{ mg}, 0.441 \text{ mmol})$ in CH₃CN (5 mL) was treated with KCN (65 mg, 1.00 mmol), and the mixture was stirred for 2 h. Insoluble materials were removed by filtration, and the crude $\bf \breve{\rm \bf \overline{\rm \bf} }$ roduct was purified via flash chromatography (silica gel/CH $_2$ - $Cl₂$ as eluent). The volume of the solution was reduced to about 2 mL, and diethyl ether was added. The resulting precipitate was collected on a glass frit, washed with diethyl ether, and dried under vacuum. Yield: 200 mg (96%). Anal. Galcd for $C_{17}H_{14}BMoN_7O_3$: C, 43.34; H, 3.00; N, 20.81. Found: C, 43.51; H, 2.98; N, 20.72. 1H NMR (*δ*, acetone-*d*6, 20 °C): 8.68 (d, 1H), 8.10 (d, 1H), 8.07 (d, 1H), 7.87 (m, 3H), 6.48 (t, 1H), 6.66 (t, 1H), 6.32 (t, 1H), 5.00 (m, 1H), 4.94 (m, 1H), 4.79 (m, 1H), 3.25 (s, 1H). 13C{1H} NMR (*δ*, acetone-*d*6, $\sharp 0$ °C): 224.9 (CO), 221.6 (CO), 192.1 (C=O), 148.2, 145.0, 143.3, 137.8, 137.6, 136.4, 120.0 (CN), 107.7, 106.9, 106.7, 81.2, 70.8, 64.9, 42.5. IR (diffuse reflectance (cm⁻¹)): 2232 (m, *ν*_{CN}), 1992 (s, *ν*_{CO}), 1891 (s, *ν*_{CO}), 1687 (s, *ν*_{C=O}). Published on June 26, 1996 on the Later of August 10.1021/om960165401654016540165+1021

Mo(*η***3-C5H4OMe)(CO)2(HB(pz)3) (5e). 1a** (217 mg, 0.368 mmol) in 5 mL of dry tetrahydofuran was treated at -40 °C with 0.13 mL (0.390 mmol) of MeMgBr (3.0 M in diethyl ether). The mixture was stirred for 1 h without further cooling. The reaction mixture was evaporated to dryness, and the residue was purified by flash chromatography (neutral Al₂O₃/CH₂Cl₂ as eluent). The volume of the solvent was reduced to about 2 mL, and diethyl ether was added. The resulting precipitate was collected on a glass frit, washed with diethyl ether, and dried under vacuum. Yield: 95 mg (56%). Anal. Calcd for $C_{17}H_{17}BM_0N_6O_3$: C, 44.38; H, 3.72; N, 18.27. Found: C, 44.21; H, 3.66; N, 18.09. ¹H NMR (δ, CDCl₃, 20 °C): 8.53 (d, 1H), 7.69 (d, 1H), 7.63-7.61 (m, 3H), 7.54 (d, 1H), 6.30 (t, 1H), 6.22 (t, 1H), 6.19 (t, 1H), 4.78 (m, 1H), 4.37 (m, 2H), 2.44 (q, 1H), 1.21 (d, 3H, Me). ¹³C{¹H} NMR (δ , CDCl₃, 20 °C): 226.4 (CO), 222.2 (CO), 205.5 (C=O), 147.9, 144.0, 141.5, 136.8, 136.6, 135.3, 106.9, 106.3, 106.3, 82.6, 72.8, 71.6, 48.5, 23.4 (Me). IR (diffuse reflectance (cm⁻¹)): 1974 (s, *ν*_{CO}), 1889 (s, *ν*_{CO}), 1687 $(s, \nu_{C=0}).$

 $Mo(\eta^3-C_5H_4OSPh)(CO)_2(HB(pz)_3)$ (5f). A solution of **1a** (245 mg, 0.415 mmol) in tetrahydrofuran (5 mL) was treated at -20 °C with LiSPh (245 mg, 0.415 mmol), and the mixture was stirred for 1 h without further cooling. The solution was evaporated to dryness and dissolved in 2 mL of CH_2Cl_2 . Insoluble materials were removed by filtration, and on addition of *n*-hexane a yellow precipiate was formed, which was collected on a glass frit, washed with *n*-hexane, and dried under vacuum. Yield: 200 mg (87%). Anal. Calcd for $C_{22}H_{19}BMoN_6O_3S$: C, 47.68; H, 3.46; N, 15.16. Found: C, 47.82; H, 3.54; N, 15.01. 1H NMR (*δ*, acetone-*d*6, 20 °C): 8.64 (d, 1H), 8.02 (d, 1H), 7.98 (d, 1H), 7.82 (m, 3H), 7.59 (m, 2H, Ph), 7.40-7.30 (m, 3H, Ph), 6.46 (t, 1H), 6.31 (t, 1H), 6.28 (t, 1H), 4.85 (m, 1H), 4.62 (m, 1H), 4.51 (m, 1H), 3.62 (s, 1H). ¹³C{¹H} NMR (δ , acetone- d_6 , 20 °C): 226.0 (CO), 222.5 (CO), 196.9 (C=O), 148.2, 144.8, 143.3, 137.6, 137.5, 136.3, 135.0, 133.5, 129.8, 128.2, 107.6, 106.9, 106.8, 81.8, 70.9, 69.3, 57.9. IR (diffuse reflectance (cm⁻¹)): 1978 (s, *ν*_{CO}), 1880 (s, *ν*_{CO}), 1684 $(s, \nu_{C=0}).$

Mo($η$ **³-C₅H₄ONHPrⁱ)(CO)₂(HB(pz)₃) (5g).** To a solution of **1a** (350 mg, 0.593 mmol) in CH3CN (5 mL) was added isopropylamine (500 mg, 9.940 mmol), and the mixture was stirred for 1 h, whereupon a yellow precipitate was formed which was collected on a glass frit, washed with diethyl ether, and dried under vacuum. Yield: 282 mg (95%). Anal. Calcd for C19H22BMoN7O3: C, 45.35; H, 4.41; N, 19.49. Found: C, 45.56; H, 4.55; N, 19.52. ¹H NMR (δ , CDCl₃, 20 °C): 8.49 (d, 1H), 7.70 (d, 1H), 7.66 (d, 1H), 7.60 (d, 2H), 7.53 (d, 1H), 6.43 (t, 1H), 6.38 (t, 1H), 6.27 (t, 1H), 4.74 (m, 1H), 4.46 (m, 1H), 4.40 (m, 1H), 3.25 (m, 1H, NC*H*(Me)₂), 3.14 (s, 1H), 1.14 (d, 3H, diastereotopic CH₃), 1.09 (d, 3H, diastereotopic CH₃). ¹³C-{1H} NMR (*δ*, CDCl3, 20 °C): 225.2 (CO), 221.7 (CO), 202.0 (C=O), 147.8, 144.2, 141.9, 137.0, 136.8, 135.5, 107.1, 106.6, 106.5, 82.4, 72.0, 70.0, 64.5 (CH2), 48.4, 24.1 (Me), 23.7 (Me). IR (diffuse reflectance (cm⁻¹)): 1971 (s, *ν*_{CO}), 1885 (s, *ν*_{CO}), 1687 $(s, v_{C=0}).$

 $Mo(\eta^3-C_5H_4ONEt_2)(CO)_2(HB(pz)_3)$ (5h). This complex was synthesized analogously to **5g** with **1a** (315 mg, 0.534 mmol) and diethylamine (500 mg, 6.836 mmol). Yield: 230 mg (83%). Anal. Calcd for C₂₀H₂₄BMoN₇O₃: C, 46.45; H, 4.68; N, 18.96. Found: C, 46.72; H, 4.54; N, 18.73. 1H NMR (*δ*, acetone-*d*6, 20 °C): 8.61 (d, 1H), 8.03 (d, 1H), 8.00 (d, 1H), 7.85-7.83 (m, 3H), 6.46 (t, 1H), 6.31 (t, 1H), 6.28 (t, 1H), 4.88 (m, 1H), 4.65 (m, 1H), 4.49 (m, 1H), 3.19 (s, 1H), 2.91-2.63 (m, 4H, N(C*H*2Me)2), 1.05 (t, 6H, Me). 13C{1H} NMR (*δ*, acetone-*d*₆, 20 °C): 226.6 (CO), 221.3 (CO), 203.0 (C=O), 148.0, 144.7, 143.1, 137.6, 137.3, 136.2, 107.5, 106.8, 106.7, 83.8, 72.5, 69.6, 69.3 (N*C*H2), 44.6, 14.2 (Me). IR (diffuse reflectance (cm⁻¹)): 1980 (s, *ν*_{CO}), 1894(s, *ν*_{CO}), 1684 (s, *ν*_{C=O}).

 $[Mo(\eta^3-C_5H_4ONC_5H_5)(CO)_2(HB(pz)_3)]PF_6$ (5i). This complex was synthesized analogously to **5a** using **1a** (209 mg, 0.354 mmol) and pyridine (37 mg, 0.468 mmol) as starting materials. Yield: 214 mg (90%). Anal. Calcd for $C_{21}H_{19}$ -BF6MoN7O3P: C, 37.69; H, 2.86; N, 14.65. Found: C, 37.56; H, 2.89; N, 14.84. 1H NMR (*δ*, acetonitrile-*d*3, 20 °C): 8.99 (d, 2H, py), 8.65 (d, 1H, HB(pz)3), 8.55 (t, 1H, py), 8.08 (t, 2H, py), 7.88-7.78 (m, 5H), 6.45 (t, 1H), 6.35 (t, 1H), 6.30 (t, 1H), 5.10 (m, 1H), 5.04 (s, 1H), 4.96 (m, 1H), 4.90 (m, 1H). 13C- {1H} NMR (*δ*, acetonitrile-*d*3, 20 °C): 223.2 (CO), 220.8 (CO), 201.4 (CdO), 148.3, 147.5, 145.3, 143.7, 143.0, 138.4, 138.3, 137.1, 129.1, 108.0, 107.3, 107.2, 82.3, 76.6, 70.4, 62.6. IR (diffuse reflectance (cm⁻¹)): 1978 (s, *ν*co), 1903 (s, *ν*co), 1662 $(s, \nu_{C=0}).$

Mo($η$ ³-C₅H₄O(2-NH-C₅H₄N))(CO)₂(HB(pz)₃) (5j) and [Mo- $(\eta^3-C_5H_4O-5-(NC_5H_4-2-NH_2))(CO)_2(HB(pz)_3)[PF_6(5k).$ Following the protocol above, treatment of **1a** (350 mg, 0.593 mmol) in acetonitrile (5 mL) with 2-aminopyridine (165 mg, 1.752 mmol) led to a mixture of **5j**,**k** in a ratio of about 1:1. Purification by flash chromatography (basic Al2O3/acetonitrile as eluent) afforded a pure sample of **5j**. **5k** could not be isolated in pure form. Yield: 140 mg (44%). Anal. Calcd for C21H19BMoN8O3: C, 46.87; H, 3.56; N, 20.82. Found: C, 46.76;

H, 3.67; N, 20.57. 1H NMR (*δ*, acetonitrile-*d*3, 20 °C): 8.60 (d, 1H), $7.91 - 7.74$ (m, 5H, HB(pz)₃/2H, py), 7.20 (bs, 1H, NH), 6.96 (t, 1H, py), 6.87 (t, 1H, py), 6.43 (t, 1H), 6.38 (t, 1H), 6.27 $(t, 1H)$, 4.80 (m, 1H), 4.67 (m, 2H), 4.15 (s, 1H). ¹³C{¹H} NMR (δ, acetonitrile-*d*₃, 20 °C): 224.5 (CO), 222.1 (CO), 198.7 (C=O), 154.5, 148.3, 147.2, 145.2, 143.4, 138.7, 138.2, 137.1, 136.9, 114.9, 114.5, 107.9, 107.3, 107.1, 82.3, 70.1, 66.3, 61.5. IR (diffuse reflectance (cm⁻¹)): 1974 (s, *ν*_{CO}), 1891 (s, *ν*_{CO}), 1672 (s, *ν*_{C=0}). ¹H NMR for **5k** (*δ*, acetonitrile-*d*₃, 20 °C): 9.02 (d, 1H), 8.56 (d, 1H), 7.96-7.64 (m, 7H), 7.20 (t, 1H), 6.45-6.26 (m, 3H), 5.02 (s, 1H), 4.73-4.65 (m, 2H), 4.15 (m, 1H).

Attempted Reaction of 1a with Alkoxides. Following the protocol above, treatment of **1a** (350 mg, 0.593 mmol) in tetrahydrofuran (5 mL) with either NaOEt or LiOPh (1.1 equiv) for 2 h did not yield *η*3-cyclopentenoyl complexes but afforded only intractable materials.

 $[W(\eta^3-C_5H_4OPBu_3^n)(CO)_2(HB(pz)_3)]PF_6$ (6a). This complex was synthesized analogously to **5a** with **2** (260 mg, 0.384 mmol) and PBu₃ⁿ (0.3 mL, 1.210 mmol) as starting materials. Yield: 301 mg (89%). Anal. Calcd for $C_{28}H_{41}BF_6N_6O_3P_2W$: C, 38.21; H, 4.69; N, 9.55. Found: C, 38.46; H, 4.57; N, 9.98. 1H NMR (*δ*, acetone-*d*6, 20 °C): 8.73 (d, 1H), 8.14 (d, 2H), 8.10 (d, 2H), 7.92 (d, 1H), 6.50 (t, 1H), 6.36 (t, 1H), 4.77 (m, 1H), 4.68 (m, 1H), 4.43 (m, 1H), 4.00 (d, 1H, $^2J_{HP} = 12.1$ Hz, H⁴), 2.61 (m, 6H), 1.75 (m, 6H), 1.55 (m, 6H), 0.96 (t, 9H). $^{13}C\{^1H\}$ NMR (δ, acetone-d₆, 20 °C): 218.8 (CO), 214.8 (CO), 195.6 $(E=0)$, 149.5, 146.0, 143.9, 138.2, 137.9, 137.0, 108.5, 107.6, $\overline{207.5}$, 74.2, 66.1, 52.0, 47.4 (d, ¹J_{CP} = 30.3 Hz), 24.5, 24.1, **β**.4, 13.5. IR (diffuse reflectance (cm⁻¹)): 1992 (s, *ν*_{CO}), 1912 (g, ν_{CO}) , 1685 (s, $\nu_{\text{C}=0}$).

Published on June 25, 1996 on http://published on http://published.com/published in the community of th Downloaded by CARLI CONSORTIUM on June 30, 2009 30, $[W(\eta^3-C_5H_4OPPh_3)(CO)_2(HB(pz)_3)]PF_6$ (6b). This com- $\frac{2}{3}$ **plex was synthesized analogously to 5a** with **2** (240 mg, 0.354) mmol) and PPh3 (200 mg, 0.763 mmol) as starting materials**.** $\overline{5}$ $\overline{\mathbf{\hat{Y}}}$ ield: 291 mg (87%). Anal. Calcd for C₃₄H₂₉BF₆N₆O₃P₂W: C, 43.43; H, 3.11; N, 8.94. Found: C, 43.14; H, 2.98; N, 8.75. 1H NMR (*δ*, acetone-*d*6, 20 °C): 8.76 (d, 1H), 8.14-7.75 (m, 20H, **HB**(pz)₃/Ph), 6.52 (t, 1H), 6.30 (t, 1H), 6.27 (t, 1H), 5.42 (d, \overline{H} , R^2 , J_{HP} = 11.0 Hz), 4.55 (m, 1H), 4.38 (m, 1H), 3.01 (m, 1H). 13C{1H} NMR (*δ*, acetone-*d*6, 20 °C): 218.7 (CO), 214.4 (CO), CARLI $E93.5$ (C=O), 149.4, 146.0, 143.6, 138.2, 138.0, 137.1, 136.1, 135.6, 131.5, 118.6, 108.6, 107.6, 107.4, 74.3, 65.8, 51.6, 50.4 $\mathfrak{F}J_{\rm CP} = 28.8$ Hz). IR (diffuse reflectance (cm⁻¹)): 1977 (s, $v_{\rm CO}$), \geq 1911 (s, *v*_{CO}), 1684 (s, *v*_{C=0}).

W(*η*³-C₅H₄OCN)(CO)₂(HB(pz)₃) (6c). This complex was synthesized analogously to **5d** with **2** (376 mg, 0.555 mmol) and KCN (170 mg, 2.571 mmol) as starting materials**.** Yield: 290 mg (94%). Anal. Calcd for C₁₇H₁₄BN₇O₃W: C, 36.53; H, 2.52; N, 17.54. Found: C, 36.51; H, 2.49; N, 17.60. 1H NMR (*δ*, CDCl3, 20 °C): 8.52 (d, 1H), 7.76 (d, 1H), 7.68-7.66 (m. 3H), 7.60 (d, 1H), 6.35 (t, 1H), 6.30 (t, 1H), 6.27 (t, 1H), 4.37 (m, 1H), 4.18 (m, 1H), 3.97 (m, 1H), 3.74 (s, 1H). 13C{1H} NMR (δ, CDCl₃, 20 °C): 216.7 (CO), 213.1 (CO), 193.1 (C=O), 149.1, 145.0, 142.4, 137.5, 137.3, 136.1, 123.8 (CN), 108.1, 107.4, 107.3, 71.7, 64.1, 54.9, 43.8. IR (diffuse reflectance $(cm⁻¹))$: 2230 (m, v_{CN}), 1968 (s, v_{CO}), 1872 (s, v_{CO}), 1686 (s, $v_{C=0}$).

 $W(\eta^3-C_5H_4ONEt_2)(CO)_2(HB(pz)_3)$ (6d). This complex was synthesized analogously to **5g** with **2** (240 mg, 0.354 mmol) and HNEt₂ (500 mg, 6.836 mmol) as the nucleophile. Yield: 195 mg (91%). Anal. Calcd for $C_{20}H_{24}BN_7O_3W$: C, 39.70; H, 4.00; N, 16.20. Found: C, 39.86; H, 3.95; N, 16.01. 1H NMR (*δ*, acetone-*d*6, 20 °C): 8.64 (d, 1H), 8.10 (d, 1H), 8.07 (d, 1H), 7.89-7.88 (m, 3H), 6.47 (t, 1H), 6.35 (t, 1H), 6.33 (t, 1H), 4.32- 4.28 (m, 2H), 4.09 (m, 1H), 3.63 (s, 1H), 2.84-2.65 (m, 4H, Et), 1.08 (t, 6H, Et). 13C{1H} NMR (*δ*, acetone-*d*6, 20 °C): 219.0 (CO) , 216.1 (CO) , 203.4 $(C=O)$, 149.2, 145.4, 143.4, 137.8, 137.6, 136.6, 108.2, 107.2, 74.8, 70.5, 65.2, 61.0 (CH₂CH₃), 44.7, 14.3 (CH₂CH₃). IR (diffuse reflectance (cm⁻¹)): 1956 (s, *ν*co), 1864 (s, v_{CO}), 1684 (s, $v_{\text{C=O}}$).

 $[\text{Mo}(\eta^3\text{-}C_5\text{H}_4\text{OPMe}_3)(\text{bipy})(\text{CO})_2\text{Br}]\text{PF}_6$ (7a). To a suspension of **3** (250 mg, 0.408 mmol) in acetonitrile (5 mL) was added PMe₃ (200 mg, 2.817 mmol), and the reaction mixture was stirred for 3 h. Insoluble materials were removed by

+ +

filtration, and the volume of the solution was reduced to about 2 mL. On addition of diethyl ether a red precipitate was slowly formed, which was collected on a glass frit, washed with diethyl ether, and dried under vacuum. Yield: 267.1 mg (95%). Anal. Calcd for $C_{20}H_{21}BrF_6MoN_2O_3P_2$: C, 34.86; H, 3.07; N, 4.06. Found: C, 34.98; H, 2.98; N, 3.94. 1H NMR (*δ*, CD3CN, 20 °C): 8.68 (d, 2H), 8.42 (d, 2H), 8.18 (t, 2H), 7.59 (t, 2H), 4.54 (m, 1H), 4.16 (m, 2H), 3.33 (d, 1H, $^{2}J_{HP} = 10.7$ Hz), 1.77 (d, 9H, ² J_{HP} = 14.2 Hz). ¹³C{¹H} NMR (δ, CD₃CN, 20 $°C$: 223.5 (CO), 221.0 (CO), 193.7 (C=O), 154.5, 153.4, 153.2, 141.1, 127.7, 124.7, 81.9, 55.2 (d, ¹J_{CP} = 5.9 Hz), 50.5, 49.9, 7.3 (d, $^{1}J_{CP} = 51.9$ Hz). IR (diffuse reflectance (cm⁻¹)): 1990 (s, ν_{CO}) , 1920 (s, ν_{CO}), 1685 (s, $\nu_{\text{C}=0}$).

 $[Mo(\eta^3-C_5H_4OPCy_3)(bipy)(CO)_2Br]PF_6$ (7b). This complex was synthesized analogously to **7a** with **3** (260 mg, 0.424 mmol) and 123.4 mg (0.440 mmol) of PCy_3 as the starting materials. Yield: 356.1 mg (94%). Anal. Calcd for C₃₅H₄₅- $BrF_6MoN_2O_3P_2$: C, 47.05; H, 3.14; N, 5.08. Found: C, 46.97; H, 3.13; N, 5.08. 1H NMR (*δ*, CD2Cl2, 20 °C): 8.56 (d, 2H), 8.22 (d, 2H), 8.13 (t, 2H), 7.55 (t, 2H), 4.56 (m, 1H), 4.10 (m, 2H), 3.43 (d, ² J_{HP} = 11.6 Hz), 2.65 (m, 3H), 2.00-1.24 (m, 30H). IR (diffuse reflectance (cm⁻¹)): 1992 (s, *ν*_{CO}), 1910 (s, *ν*_{CO}), 1684 $(s, v_{C=0}).$

 $[Mo(\eta^3-C_5H_4OPPh_3)(bipy)(CO)_2Br]PF_6$ (7c). This complex was synthesized analogously to **7a** with **3** (260 mg, 0.424 mmol) and 111 mg (0.424 mmol) of PPh₃ as the starting materials. Yield: 148.5 mg (40%). Anal. Calcd for C₃₅H₂₇- $BrF_6MoN_2O_3P_2$: C, 28.71; H, 2.81; N, 3.72. Found: C, 28.75; H, 2.94; N, 3.63. 1H NMR (*δ*, CD3NO2, 20 °C): 8.66 (d, 2H), 8.44 (d, 2H), 8.17 (t, 2H), 7.90-7.65 (m, 15H, Ph), 7.53 (t, 2H), 4.69 (d, ²J_{HP} = 11.2 Hz, 1H), 4.33 (m, 1H), 4.24 (m, 1H), 3.19 (m, 1H). IR (diffuse reflectance (cm⁻¹)): 1980 (s, *ν*co), 1905 (s, *ν*_{CO}), 1684 (s, *ν*_{C=O}).

 $[W(\eta^3-C_5H_4OPMe_3)(bipy)(CO)_2Br]PF_6$ (8a). This complex was synthesized analogously to **7a** with **4** (240 mg, 0.342 mmol) and $PMe₃$ (200 mg, 2.817 mmol) as starting materials. Yield: 255.1 mg (96%) Anal. Calcd for $C_{20}H_{21}BrF_6N_2O_3P_2W$: C, 30.91; H, 2.72; N, 3.60. Found: C, 31.00; H, 2.75; N, 3.54. ¹H NMR (δ, CD₃NO₂, 20 °C): 8.87 (d, 2H), 8.57 (d, 2H), 8.31 (t, 2H), 7.69 (t, 2H), 4.12 (m, 1H), 3.91 (m, 2H), 3.80 (m, 1H), 1.91 (d, 9H, $^2J_{HP} = 14.0$ Hz). IR (diffuse reflectance (cm⁻¹)): 1991 (s, *ν*_{CO}), 1902 (s, *ν*_{CO}), 1686 (s, *ν*_{C=O}).

 $[W(\eta^3-C_5H_4OPCy_3)(bipy)(CO)_2Br]PF_6$ (8b). This complex was synthesized analogously to **7a** with **4** (285 mg, 0.407 mmol) and PCy₃ (120.3 mg, 0.429 mmol) as starting materials. Yield: 366.3 mg (94%). Anal. Calcd for $C_{35}H_{45}BrF_6N_2$ -O3P2W: C, 42.83; H, 4.62; N, 2.85. Found: C, 42.76; H, 4.66; N, 2.93. ¹H NMR (δ, CD₃NO₂, 20 °C): 8.85 (d, 2H), 8.57 (d, 2H), 8.31 (t, 2H), 7.68 (t, 2H), 4.33 (m, 1H), 4.22 (m, 1H), 3.96 (m, 1H), 3.90 (d, ²J_{HP} = 11.6 Hz), 2.75 (m, 3H), 2.09-1.32 (m, 30H). IR (diffuse reflectance (cm⁻¹)): 1990 (s, *ν*_{CO}), 1899 (s, *ν*_{CO}), 1680 (s, *ν*_{C=O}).

W(*η***3-C5H4OSMe)(bipy)(CO)2Br (8c).** This complex was synthesized in similar fashion to **7a** with **4** (300 mg, 0.428 mmol) and LiSMe (23.2 mg, 0.429 mmol) used as starting materials**.** The crude product was purified via flash chromatography (neutral Al₂O₃/acetonitrile as eluent). Yield: 143.8 mg (58%). Anal. Calcd for $C_{18}H_{15}BrN_2O_3SW: C$, 35.85; H, 2.51; N, 4.84. Found: C, 35.74; H, 2.56; N, 4.68. 1H NMR (*δ*, CD3NO2, 20 °C): 8.86 (d, 2H), 8.52 (d, 2H), 8.27 (t, 2H), 7.67 (t, 2H), 3.88 (m, 1H), 3.78 (m, 1H), 3.70 (m, 1H), 3.58 (s, 1H), 2.14 (s, 3H). IR (diffuse reflectance (cm⁻¹)): 1978 (s, *ν*co), 1879 $(s, \nu_{\text{CO}}), 1683$ (s, $\nu_{\text{C}=0}$).

 $W(n^3-C_5H_4OSPh)(bipy)(CO)_2Br (8d)$. This complex was synthesized analogously to **7a** with **4** (295 mg, 0.421 mmol) and LiSPh (49.1 mg, 0.423 mmol) as starting materials**.** Yield: 170.1 mg (63%). Anal. Calcd for $C_{23}H_{17}BrN_2O_3SW: C$, 41.53; H, 2.58; N, 4.21. Found: C, 41.56; H, 2.70; N, 4.54. 1H NMR (δ, CD₃NO₂, 20 °C): 8.82 (d, 2H), 8.50 (d, 2H), 8.25 (t, 2H), 7.64 (t, 2H), 7.45 (m, 2H), 7.26 (m, 3H), 4.21 (m, 1H), 3.93 (m, 1H), 3.80 (m, 2H). IR (diffuse reflectance (cm^{-1})): 1976 (s, *ν*_{CO}), 1876 (s, *ν*_{CO}), 1684 (s, *ν*_{C=0}).

 $W(\eta^3-C_5H_4OCH(COOEt)_2)$ (bipy)(CO)₂Br (8e). This complex was synthesized analogously to **7a** with **4** (310 mg, 0.442 mmol) and $LiCH(COOEt)_{2}$ (74.1 mg, 0.446 mmol) as starting materials in tetrahydrofuran as the solvent. Yield: 183.3 mg (60%). Anal. Calcd for $C_{24}H_{23}BrN_2O_7W$: C, 40.31; H, 3.24; N, 3.92. Found: C, 40.11; H, 3.31; N, 4.05. ¹H NMR (δ , CD₃-NO2, 20 °C): 8.85 (d, 2H), 8.52 (d, 2H), 8.26 (t, 2H), 7.66 (t, $2H$), 4.12 (two overlapping quartets, diastereotopic CH₂, $4H$), 3.88 (m, 2H), 3.49 (m, 2H), 3.32 (d, 1H, ${}^{3}J_{HH} = 6.7$ Hz, CH(COOEt)₂), 1.21 (two overlapping triplets, diastereotopic CH₃, 6H). IR (diffuse reflectance (cm⁻¹)): 1979 (s, *ν*_{CO}), 1889 (s, ν_{CO}) , 1713 (s, ν_{COOH}), 1701(s, ν_{COOH}), 1690 (s, $\nu_{\text{C=O}}$).

[**W(***η***3-C5H4OPPh2CH2CH2NMe2)(bipy)(CO)2Br]PF6 (8f).** This complex was synthesized analogously to **7a** with **4** (300 mg, 0.428 mmol) and *N,N*-dimethyl-2-(diphenylphosphino) ethanamine (185 mg, 1.000 mmol) as starting materials and acetonitrile as the solvent (0.5 mL). Yield: 319.9 mg (80%). Anal. Calcd for $C_{33}H_{32}BrF_6N_3O_3P_2W$: C, 41.36; H, 3.37; N, 4.38. Found: C, 41.41; H, 3.50; N, 4.36. ¹H NMR (δ , CD₃-NO2, 20 °C): 8.78 (d, 2H), 8.46 (d, 2H), 8.21 (t, 2H), 7.89- 7.55 (m, 10H, Ph/2H bipy), 5.28 (d, 1H, ² J_{HP} = 12.5 Hz), 3.97 (m, 1H), 3.67 (m, 1H), 3.43 (m, 1H), 3.24 (m, 1H), 3.02 (m, 1H), 2.60-2.32 (m, 2H), 2.15 (s, 6H). IR (diffuse reflectance (cm⁻¹)): 1971 (s, *ν*_{CO}), 1900 (s, *ν*_{CO}), 1679 (s, *ν*_{C=O}).

[Mo(η ³-C₅H₃O-2-Me-5-PPh₂CH₂CH₂NMe₂)(CO)₂(HB(pz)₃)]-**PF6 (9a).** This complex was synthesized analogously to **5a** using **1b** (300 mg, 0.497 mmol) and *N*,*N*-dimethyl-2-(diphenylphosphino)ethanamine (185 mg, 1.000 mmol) as starting $\frac{1}{2}$ materials. Yield: 356 mg (91%). Anal. Calcd for $C_{33}H_{36}$ - $\widetilde{R}F_6M_0N_7O_3P_2$: C, 42.60; H, 4.60; N, 10.54. Found: C, 42.67; H, 4.63; N, 10.48. 1H NMR (*δ*, acetone-*d*6, 20 °C): 8.63 (d, 1H), 8.13-7.79 (m, 15H, HB(pz)3/Ph), 6.44 (t, 1H), 6.28 (t, 2H), **4. 4.86** − 4.78 (m, 3H), 3.76 − 3.28 (m, 2H, CH₂), 2.97 (d, 1H, ² J_{HP}

⇒ 11.0 Hz), 2.74 − 2.49 (m, 2H, CH₂), 2.17 (s, 3H, NMe), 2.08 (s, 3H, NMe), 1.45 (s, 3H, Me). 13C{1H} NMR (*δ*, acetone-*d*6, $\tilde{20}$ °C): 232.3 (CO), 222.1 (CO), 192.2 (C=O), 148.5, 147.8, 143.5, 139.5, 138.2, 137.0, 136.6, 135.9, 132.2-130.7, 118.9, \overline{H} 7.6, 108.1, 107.9, 107.5, 92.2, 73.3, 73.2, 54.1 (¹ $J_{CP} = 26.8$) Hz), 45.8 (N*Me*2), 44.5 (N*C*H2), 22.8 (P*C*H2), 14.9 (Me). IR (diffuse reflectance (cm⁻¹)): 1969 (s, *ν*_{CO}), 1902 (s, *ν*_{CO}), 1674 $(5, \nu_{C=0}).$ Downloaded by CARLI CONSORTIUM on June 30, 2009 Published on June 25, 1996 on http://pubs.ac.org/index.org/index.org/index.org/index.org/index.org/index.org/i

Mo($η$ **³-C₅H₃OCH₂)(CO)₂(HB(pz)₃) (9b). Method 1. A 300** \geq mg amount of **1b** (0.497 mmol) dissolved in 5 mL of CH₃CN was treated with a 5-fold excess of either pyridine, NEt $_{\rm 3}$, or $\mathbb K$ HEt $_2$, and the mixture was stirred for 2 h. The solvent was removed under vacuum, and the air-stable residue was purif \rm{fed} via flash chromatography (silica gel/CH $\rm{_2}Cl_{2}$ as eluent). The when was reduced to about 2 mL and *n*-hexane was added whereupon a precipitate was formed, which was collected on a glass frit, washed with *n*-hexane, and dried under vacuum. Yield: 212 mg (93%).

Method 2. A 300 mg amount of **1b** (0.497 mmol) dissolved in 5 mL of THF was treated with 1.1 equiv of MeLi (1.6 M in diethyl ether) at -78 °C. The mixture was stirred for 1 h without further cooling. The reaction mixture was evaporated to dryness, and the residue was purified as described above for method 1. Yield: 102 mg (45%). Anal. Calcd for $C_{17}H_{15}$ -BMoN6O3: C, 44.57; H, 3.30; N, 18.35. Found: C, 44.51; H, 3.28; N, 18.37. 1H NMR (*δ*, CDCl3, 20 °C): 8.64 (d, 1H), 8.07 (d, 1H), 8.05 (d, 1H), 7.95-7.83 (m, 3H), 6.46 (t, 1H), 6.33 (t, 1H), 6.30 (t, 1H), 5.42 (m, 1H), 4.90 (m, 1H), 4.80 (m, 1H), 4.76 (s, 1H, =CH₂), 4.68 (s, 1H, =CH₂). ¹³C{¹H} NMR (δ , CDCl₃, 20 °C): 225.4 (CO), 223.5 (CO), 192.0 (C=O), 149.0, 148.0 (*C*=CH₂), 145.5, 144.4, 138.3, 138.2, 137.0, 108.3, 107.5, 107.5, 101.1 ($=CH_2$), 81.3, 74.3, 72.6. IR (diffuse reflectance (cm⁻¹)): 1978 (s, *ν*_{CO}), 1891 (s, *ν*_{CO}), 1672 (s, *ν*_{C=0}).

Attempted Demetalations with Trifluoroacetic Acid. A solution of $Mo(\eta^3-C_5H_5O)(CO)_2(HB(pz)_3)$ (200 mg, 0.506) mmol) in CHCl₃ (10 mL) was treated with trifluoroacetic acid (ca. 5 equiv), and the mixture was refluxed for 24 h. It was then quenched with saturated sodium bicarbonate solution (5 mL) and extracted with CH_2Cl_2 (2 \times 10 mL). Drying over

sodium sulfate, filtration, and evaporation resulted in the quantitative recovery of the starting material.

Attempts of Oxidative Demetalation by I2, I⁺**CF3COO**-**, Br₂, and NO⁺PF₆⁻. I₂. A solution of Mo(** η **³-C₅H₅O)-** $(CO)_2(HB(pz)_3)$ (200 mg, 0.506 mmol) in CH_2Cl_2 (10 mL) was treated with 1.1 equiv of I_2 at -78 °C. Neither at low temperature nor after warming up to room temperature and stirring for additional 2 h nor even at refluxing conditions was observed any liberation of cyclopentenone as checked by TLC.

I⁺**CF3COO**-**.** A solution of I⁺CF3COO- was prepared in situ according to the literature² and was transferred via canula into a solution of $Mo(\eta^3-C_5H_5O)(CO)_2(HB(pz)_3)$ in CH_2Cl_2 (10 mL) at -78 °C and stirred for 1 h. According to TLC monitoring no reaction took place even at room temperature and stirring for additional 3 h.

Br₂. Treatment of $Mo(\eta^3-C_5H_5O)(CO)_2(HB(pz)_3)$ (200 mg, 0.506 mmol) in CH_2Cl_2 (10 mL) with 1.1 equiv of Br₂ at -78 °C caused complete decomposition of the starting material to several intractable materials.

NO⁺PF₆⁻. A solution of $Mo(\eta^3-C_5H_5O)(CO)_2(HB(pz)_3)$ (200 mg, 0.506 mmol) in either dimethoxyethane, CH₃CN, acetone, or $\rm CH_3NO_2$ was treated with 1.1 equiv of solid $\rm NO^+PF_6^-$ at 0 °C and stirred for 1 h. Again, TLC monitoring (every 5 min) did not reveal any changes in the reaction mixture.

X-ray Structure Determination for 5a, 8a, and 9b. Crystal data and experimental details are given in Table 1. X-ray data were collected on a Philips PW 1100 four-circle diffractometer using graphite-monochromated Mo K α (λ = 0.710 69 Å) radiation and the *θ*-2*θ* scan technique. Three representative reference reflections were measured every 120 min and used to correct for crystal decay and system instability. Corrections for Lorentz and polarization effects and for absorption (**8a**) were applied. The structures were solved by direct methods.7 All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were included in idealized positions.⁸ The structures were refined against F^2 .

Results and Discussion

Nucleophilic Addition Reactions. The electrophilicity of the cationic cyclopentadienone complexes **1a** and **2**-**4** has been surveyed by reacting them with a variety of carbon, nitrogen, oxygen, sulfur, and phosphorus nucleophiles in CH_2Cl_2 as the solvent. Only with the alkoxides NaOEt and LiOPh no clean reaction occurs with only intractable decomposition products encountered. All other nucleophiles led to functionalized η^3 -cyclopentenoyl complexes **5–8**, respectively, in high yields (Tables 2 and 3). Complexes **1a** and **2**-**4** were treated typically with 1 equiv of the nucleophile. Only primary and secondary amines were used in excess in order to quantitatively deprotonate the initially formed quaternary ammonium salts to afford the neutral complexes **5g**, **5h**, **5j**, and **6d**. Attack at the cyclopentadienone ligand took place *anti* to the coordinated metal and exclusively α to the ketonic functional group. Confirmation of the regioselectivity of the nucleophilic addition was readily apparent from the 1H and ${}^{13}C[{^1}H]$ NMR spectroscopic characterization of the products. Further, proof of the stereospecific *anti* addition and the conformation of the allyl moiety with respect to the CO ligands was obtained by X-ray crystallography. Structural views of complexes **5a** and **8a** are shown in Figures 1 and 2 with important bond

⁽⁷⁾ Hall, S. R.; Flack, H. D.; Stuart, J. M. XTAL3.2: Integrated system of computer programs for crystal structure determination, Universities of Western Australia, Geneva (Switzerland), and Maryland, 1992.

⁽⁸⁾ Sheldrick, G. M. SHELXL93. Program for crystal structure refinement, University of Göttingen, Germany, 1993.

+ +

Table 2. Nucleophilic Additions to Cyclopentadienone Complexes 1a and 2

lengths and angles reported in the captions. The ¹H NMR spectra of complexes **5**-**8** bear no unusual features, with the characteristic allyl resonances of the cyclopentenoyl moiety giving rise to three multiplets in the range of $5.4-3.2$ ppm. The methylene proton $H⁴$ (see Table 2) appears as a singlet and in case of the phosphine substituents as a doublet with $^2J_{\text{HP}} = 10.7-$ 14.1 Hz. It is worth noting that no coupling between $H⁴$ and $H³$ could be observed pointing to a dihedral angle

Table 3. Nucleophilic Additions to Cyclopentadienone Complexes 3 and 4

close to 90° between these atoms. Further, the resonances of the coligands $HB(pz)_3$ and bipy are in the expected ranges. Where solubility has permitted (**5ak**, $6a-d$, $7a$ ⁾ ¹³C{¹H} NMR spectra have also been recorded and do not contain any surprising features. Thus, the resonance of the ketonic "carbonyl" carbon was observed in the range of 205.5-192.0 ppm typical of nonconjugated ketones. In **1a** and **2**-**4**, for comparison, the resonance of the ketonic "carbonyl" carbon is in the range $176.0-172.4$ ppm.⁵ Although the HB(pz)₃ ligand might be a somewhat weaker electron donor than C_5H_5 as judged from the higher v_{CO} in **1a** vs [Mo(η^4 - C_5H_4O)(η^5 -C₅H₅)(CO)₂]⁺,^{2,5} the electrophilicity of the cyclopentadienone ligand is rather similar in both

Figure 1. Structural view of $[Mo(\eta^3-C_5H_4O-PBu_3^n)(CO)_2$ - $(E_HB(pz)₃)$]PF₆ (**5a**). Only one of the two different Buⁿ chain orientations is shown. Selected bond lengths (Å) and angles $(d$ eg): Mo-C(1) 2.182(4), Mo-C(2) 2.334(4), Mo-C(5) $\&$ 329(4), Mo-C(6) 1.982(5), Mo-C(7) 1.969(5), Mo-N(2) $\hat{\mathbb{Z}}$ 263(3), Mo-N(4) 2.259(3), Mo-N(6) 2.187(4), C(1)-C(2) $E[411(6), C(2)-C(3)$ 1.457(6), C(3)-C(4) 1.536(6), C(4)-C(5) $\hat{\mathbf{1}}$ 524(6), C(1)-C(5) 1.415(6), C(3)-O(1) 1.215(5), C(4)-P(1) \pm 832(4), N(6)-Mo-C(6) 87.1(2), N(6)-Mo-C(7) 86.0(2), $C(6)-Mo-C(7)$ 84.4(2), N(2)-Mo-N(4) 84.4(1), N(2)-Mo- $\frac{1}{2}(6)$ 80.5(1). $+$ 9109610/1201 (http://pubs.acs.org/doi: 10.1021/om960165+10.1021/om960165+10.1021/om960165+10.1021

complexes. Both are excellent scaffolds for the regioand stereoselective synthesis of functionalized *η*3-cyclopentenoyl complexes.

The use of heteronucleophiles like amines or other strongly basic nucleophiles is uncommon for functionlizations since most diene ligands investigated include aliphatic hydrogens undergoing facile deprotonation rather than nucleophilic addition.^{3d,4c} In the case of cyclopentadienone a wider range of nucleophiles can be used since no aliphatic hydrogen is present. On the other hand, 2-methylcyclopentadienone as a ligand is readily deprotonated by strong bases (see below).

Reactions of $Mo(\eta^4-C_5H_3O-2-Me)(CO)_2(HB(pz)_3)$ **(1b) with Strong Nucleophiles.** The reaction of **1b** with strong bases like Me^- (introduced as the lithium salt), NHEt₂, NEt₃, or pyridine results in the clean deprotonation of the methyl group to afford **9b** in up to 93% isolated yield (Scheme 1). This process is reversible, and **9b** is quantitatively converted to **1b** on treatment with strong acids such as CF_3SO_3H or CF_3 -COOH. Hence, the exocyclic methylene group exhibits nucleophilic behavior. **9b** has been characterized by a combination of elemental analysis and ¹H and ¹³C{¹H} NMR spectroscopy. The ¹H NMR spectrum exhibits two characteristic singlets assigned to the methylene protons at 4.76 and 4.68 ppm. The structure of **9b** has been

+ +

Figure 2. Structural view of $[W(\eta^3-C_5H_4OPMe_3)(bipy)$ - $(CO)_{2}$]PF₆ (8a). Selected bond lengths (Å) and angles (deg) : W-C(1) 2.162(3), W-C(2) 2.325(3), W-C(5) 2.290- (3) , W-C (9) 1.998 (3) , W-C (10) 1.976 (3) , W-N (1) 2.216-(3), W-N(2) 2.222(3), W-Br 2.582(1), C(1)-C(2) 1.433(4), C(2)-C(3) 1.464(5), C(3)-C(4) 1.543(4), C(4)-C(5) 1.532-(4), $C(1)-C(5)$ 1.425(5), $C(3)-O(1)$ 1.211(4), $C(4)-P(1)$ 1.811(3), N(1)-W-N(2) 73.3(1), C(9)-W-Br 86.0(1), C(10)-W-Br 84.5(1), C(9)-W-C(10) 81.3(1), N(1)-W-Br 82.7- $(1), N(2)-W-Br 81.6(1).$

confirmed by X-ray crystallography (Figure 3). By contrast, **1b** reacts with the bifunctional nucleophile PPh2CH2CH2NMe2 solely to produce the *η*3-cyclopentenoyl compound **9a** where the phosphine donor is attached to the cyclopentenoyl moiety as established by 1H NMR spectroscopy. The methylene proton gives rise to a doublet centered at 2.97 ppm ($^2J_{\text{HP}}$ = 11.0 Hz) due to coupling with 31P of the adjacent phosphine moiety. Since no deprotonation has been observed, it is suggested that nucleophilic attack at the α -carbon atom is more facile than the deprotonation of $CH₃$ by the more basic nitrogen donor site of $\text{PPh}_2\text{CH}_2\text{CH}_2\text{NMe}_2$ under this reaction conditions.

Attempted Demetalation Reactions. After the ability of complexes $1-4$ to function as a synthetic equivalent of an α electrophilic cyclopentadienone was established, liberation of a cyclopentenone was attempted from $Mo(\eta^3-C_5H_5O)(CO)_2(HB(pz)_3)$. Unfortunately, the various methods of demetalation well established for the C_5H_5 analog systems proved to be unsuccessful. Thus, on protonation of $Mo(\eta^3-C_5H_5O)$ - $(CO)₂(HB(pz)₃)$ with trifluoroacetic acid in CHCl₃ at reflux the starting material was regained. The attempt of oxidative decomplexation of $Mo(\eta^3-C_5H_5O)(CO)_2$ -(HB(pz)₃) by means of I_2 , I⁺CF₃COO⁻, and Br₂ was just as unsuccessful. While with I_2 and $I^+CF_3COO^-$ no reaction took place at all, reaction of $Mo(\eta^3-C_5H_5O)$ - $(CO)₂(HB(pz)₃)$ with Br₂ gave several intractable mate-

Figure 3. Structural view of $Mo(\eta^3-C_5H_3OCH_2)(CO)_2(HB (pz)$ ₃) (**9b**). Selected bond lengths (Å) and angles (deg): Mo-C(1) 2.194(5), Mo-C(2) 2.344(6), Mo-C(5) 2.372(5), Mo-C(6) 1.969(6), Mo-C(7) 1.969(5), Mo-N(2) 2.282(4), Mo- $N(4)$ 2.252(4), Mo- $N(6)$ 2.185(4), C(1)-C(2) 1.400(8), C(2)-C(3) 1.460(7), C(3)-C(4) 1.478(9), C(4)-C(5) 1.467(8), C(4)- $C(17)$ 1.282(7), C(1)-C(5) 1.415(8), C(3)-O(1) 1.254(7), $\overleftrightarrow{B}(6)-M_0-C(6)$ 84.1(2), N(6)-Mo-C(7) 88.1(2), C(6)-Mo- $\mathcal{L}(7)$ 82.8(2), N(2)-Mo-N(4) 82.5(2), N(2)-Mo-N(6) 80.1- $\frac{2}{3}$.

June 30, rials. Finally, activation of Mo(*η*3-C5H5O)(CO)2 (HB- $\overline{p}(pz)_3$) by $CO \rightarrow NO$ replacement also failed.

Published on June 25, 1996 on http://published.org/indust.org/indust.org/indust.org/indust.org/indust.org/indust.org/indust.org/indust.org/indust.org/indust.org/indust.org/indust.org/indust.org/indust.org/indust.org/indust Downloaded by CARLI CONSORTIUM on June 30, 2009 $\rm \overline{5}$ $\frac{3}{2}$ Although HB(pz)₃ complexes behave similarly to their $\mathbb{G}_5\mathrm{H}_5$ analogs with respect to functionalization reactions of coordinated dienes, several differences in the reactivity patterns are particularly noteworthy with regard to practical applications. First, the steric bulk of the HB- $\hat{\Phi}$ z)₃ ligand obviously disfavors the availability of higher \bar{c} ordination numbers. As to this, compare the high $\mathop{\mathfrak{G}}$ ne angle of the HB(pz) $_3$ ligand close to 180° with about $\text{\AA}00^{\circ}$ calculated for C₅H₅.⁹ Second, the Mo(CO)₂(HB-(pz)3) fragment is strongly hybridized to bind to one additional group for a six-coordinate structure. By eontrast, the diffuse electron cloud of the $\rm{C_5H_5}$ ligand is ineffective in promoting strongly directional frontier $\tilde{\mathbf{q}}$ bitals of the Mo(CO)₂(η ⁵-C₅H₅) fragment. Both effects, relief of steric congestion and orbital hybridization, favor the formation of six- rather than seven-coordinate species. Consequently, demetalation reactions proceeding via a seven-coordinate transition state (e.g., associative displacement of CO by $NO⁺$) or resulting in the formation of a seven-coordinate species (e.g., oxidative addition of I_2 or Br_2 , electrophilic attack of I^+) are unlikely to occur. As a matter of fact, seven-coordinate molybdenum complexes containing $HB(pz)_3$ as the coligand are rare and restricted to sterically little demanding ligands such as $X = H$, Cl, Br, and I in Mo(HB- $(pz)_3$)(CO)₃X.¹⁰ For X = Me and Ph, spontaneous rearrangement takes place to give the quasi sixcoordinate *η*²-acyl complexes Mo(HB(pz)₃)(CO)₂(*η*²-COX).11 Such facile alkyl migrations are not observed in analogous C_5H_5 chemistry.¹²

Crystal Structures of [Mo(*η***3-C5H4O-5-PBu3 n)- (CO)2(HB(pz)3)]PF6 (5a), [W(***η***3-C5H4O-5-PMe3)(bipy)-** $(CO)_2$ Br]PF₆ (8a), and Mo(η^3 -C₅H₃OCH₂)(CO)₂(HB-**(pz)3) (9b).** Structural views of complexes **5a**, **8a**, and **9b** are shown in Figures $1-3$. Selected bond lengths of complexes **5a**, **8a**, and **9b** are given in the captions. These molecules can be described as pseudooctahedral with the assumption that the *η*3-cyclopentenoyl moiety occupies one coordination site. An equatorial plane can be defined to include for complexes **5a** and **9b** the two carbonyls $(C(6)-O(2), C(7)-O(3))$ and two of the nitrogen atoms $(N(2), N(4)$ of the HB(pz)₃ ligand) and for complex **8a** the two carbonyls $(C(9)-O(2), C(10)-O(3))$ and the two nitrogen atoms (N(1) and N(2)). The η^3 cyclopentenoyl ligand and the third coordinating nitrogen $(N(6))$ of HB(pz)₃ and the halogen (Br), respectively, lie trans to one another in apical positions above and below the equatorial plane. In the solid state, complexes **5a**, **8a**, and **9b** are found to adopt exclusively the *exo* conformation with respect to the orientation of the allyl moiety. The cyclopentenoyl moieties of **5a**, **8a**, and **9b** are distinctly bent and can be subdivided by two planes, one defined by $C(1)$, $C(2)$, and $C(5)$ (allyl fragment) and the other defined by $C(2)$, $C(3)$, $C(4)$, and $C(5)$. The angle between this plane is 26.7(5), 28.0(4), and 23.1- $(4)^\circ$, respectively. The M-CO and C-O distances are both within the range reported for other molybdenum and tungsten carbonyl complexes. No structural features in complexes **5a**, **8a**, and **9b** indicate unusual deviations or distortions.

Conclusions. $[M(\eta^4-C_5H_4O)(CO)_2(HB(pz)_3)]PF_6(1a)$ **2**) and $[M(\eta^4-C_5H_4O)(CO)_2(bipy)Br]PF_6$ (3, 4) (M = Mo, W) react with a wide variety of carbon, nitrogen, phosphorus, and sulfur nucleophiles in a regio- and stereoselective fashion to functionalized *η*3-cyclopentenoyl complexes in high yields. Unfortunately, decomplexation of the form functionalized cyclopentenones by common methods involving intermediate seven-coordinate species failed. Apparently, steric as well as electronic effects would promote six-coordination in the $HB(pz)_3$ complexes in contrast to their C_5H_5 analogues.

Acknowledgment. Financial support by the "Jubiläumsfond der österreichischen Nationalbank" is gratefully acknowledged (Project 5305).

Supporting Information Available: Listings of atomic coordinates and *U* values, anisotropic temperature factors, complete bond lengths and angles, and least-squares planes for complexes **5a**, **8a**, and **9b** (33 pages). Ordering information is given on any current masthead page.

OM960165+

⁽⁹⁾ Curtis, M. D.; Shiu, K. B.; Butler, W. M.; Huffman, J. C. *J. Am. Chem. Soc.* **1986**, *108,* 3335.

⁽¹⁰⁾ Curtis, M. D.; Shiu, K. B. *Inorg. Chem.* **1985**, *24*, 1213.

⁽¹¹⁾ Curtis, M. D.; Shiu, K. B.; Butler, W. M. *J. Am. Chem. Soc.* **1986**, *108*, 1550.

^{(12) (}a) Wojcicki, A. *Adv. Organomet. Chem.* **1973**, *11*, 87. (b) Calderazzo, F. *Angew. Chem., Int. Ed. Engl*. **1977**, *16*, 229. (c) King, R. B. *Acc. Chem. Res.* **1970**, *3*, 417.