Synthesis, Characterization, and X-ray Structural Study of a Dinuclear Organoindium Phosphide Complex with **Two Different Phosphide Moieties**,

(Me₃CCH₂)₂InP(t-Bu)₂In(CH₂CMe₃)₂PPh₂

O. T. Beachley, Jr.,* Sun-Hua Leonard Chao, Melvyn Rowen Churchill,* and Charles H. Lake

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260

Received December 27, 1995[⊗]

Summary: An organoindium phosphide which incorporates two phosphido moieties in the same molecule, (Me3-

CCH₂)₂InP(t-Bu)₂In(CH₂CMe₃)₂PPh₂ (1), has been syn-Bresized in good yield from [(Me3CCH2)2InP(t-Bu)2]2 and Me₃CCH₂)₂InPPh₂ in pentane solution and fully char-

 $Me_3CCH_2)_2InPPh_2$ in pentane solution and fully char-acterized. The compound exists as a single compound in the solid state according to an X-ray structural study but is in equilibrium with the starting compounds in Benzene solution according to ¹H and ³¹P NMR spectral data. ⁹⁰ Organoindium phosphide dimers with four-membered data. ⁹⁰ Organoindium phosphide dimers with four-membered fings provide interesting challenges for the syntheses of isomers as well as of compounds which have different substituents on the two phosphorus atoms, i.e. $R_2InPR_2^1$ - $InR_2PR_2^2$, or on the two indium atoms, i.e., $R_2InPR_2^2$ - $InR_2^2PR_2$. To our knowledge, there is only one example of an indium-phosphorus dimer with either the two phosphorus atoms or the two indium atoms with dif- $InP(SiMe_3)_2In(CH_2 InP(SiMe_3)_2P(H)(SiMe_3)$. This compound was apparently

 $\mathbf{\mathcal{E}}$ Me₃)₂P(H)(SiMe₃). This compound was apparently formed serendipitously as a minor product (ca. ${\sim}2\%$ Reld) from a reaction mixture of (Me₃CCH₂)₂InCl and $\tilde{P}(SiMe_3)_3$ in a 1:1 mole ratio. The compound was reported to be unstable at room temperature under an inert atmosphere or upon standing in hydrocarbon solution. The products of decomposition were not described. In this paper, the synthesis and complete characterization of an organoindium phosphide dimer with different substituents on each of the two phospho-

rus atoms is described. The compound (Me₃CCH₂)₂InP(t- $Bu_2In(CH_2CMe_3)_2PPh_2$, (1) was synthesized by refluxing a pentane solution of $(Me_3CCH_2)_2InP(t-Bu)_2^2$ and (Me₃CCH₂)₂InPPh₂^{3,4} in equimolar quantities for 18 h and was isolated by recrystallization. Characterization

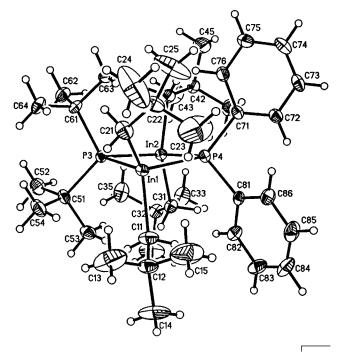


Figure 1. Labeling of atoms in the (Me₃CCH₂)₂InP(t-Bu)₂In(CH₂CMe₃)₂PPh₂ molecule. Note the slight puckering of the four-membered In₂P₂ ring (ORTEP-II diagram; 30% probability ellipsoids).

data for the product include C, H analysis, physical properties, ¹H and ³¹P NMR spectra, and an X-ray structural study.

An X-ray structural study of 1 (Figure 1) confirms the presence of two different PR_2 (R = t-Bu, Ph) moieties in the same organoindium phosphide molecule. The unit cell consists of two molecules of 1 with puckered In-P-In-P rings. Selected interatomic distances and angles within the molecule are listed in Tables 1 and 2.

The In₂P₂ core of **1** consists of a puckered ring with a fold angle of 12.2° about the In(1)…In(2) axis (as defined by the dihedral angle between the In(1)-P(3)-In(2) and In(1)-P(4)-In(2) planes) and a fold angle of 10.7° about the P(3)...P(4) axis. The compound (Me₃CCH₂)₂-InP(SiMe₃)₂In(CH₂CMe₃)₂PH(SiMe₃)¹ is the only other organoindium phosphide which has a puckered In₂P₂ ring; this has a much larger fold angle (24.7°) across

ã

[®] Abstract published in Advance ACS Abstracts, June 1, 1996

⁽¹⁾ Wells, R. L.; McPhail, A. T.; Self, M. F. Organometallics 1993, 12, 3363.

⁽²⁾ Beachley, O. T., Jr.; Chao, S.-H. L.; Churchill, M. R.; Lake, C. H. Organometallics **1993**, *12*, 3992.

⁽³⁾ Beachley, O. T., Jr.; Kopasz, J. P.; Zhang, H.; Hunter, W. E.;
Atwood, J. L. *J. Organomet. Chem.* **1987**, *325*, 69.
(4) Banks, M. A.; Beachley, O. T., Jr.; Buttrey, L. A.; Churchill, M. R.; Fettinger, J. C. Organometallics **1991**, *10*, 1901.

Table 1. Selected Distances (Å) for

(Me₃CCH₂)₂InP(t-Bu)₂In(CH₂CMe₃)₂PPh₂

(A) Indium–Phosphorus Distances				
In(1)-P(3)	2.674(1)	In(2)-P(3)	2.689(1)	
In(1)-P(4)	2.685(1)	In(2)-P(4)	2.710(1)	
(B) Indium–Carbon Distances				
In(1)-C(11)	2.193(5)	In(2)-C(31)	2.197(4)	
In(1)-C(21)	2.174(5)	In(2)-C(41)	2.200(4)	
(C) Phosphorus-Carbon Distances				
P(3)-C(51)	1.897(4)	P(4)-C(71)	1.833(4)	
P(3)-C(61)	1.898(5)	P(4)-C(81)	1.830(5)	
(D) Cross-Ring Contacts				
In(1)…In(2)	4.028	P(3)P(4)	3.631	

Table 2. Selected Angles (deg) for

(Me₃CCH₂)₂InP(t-Bu)₂In(CH₂CMe₃)₂PPh₂

(A) Angles around Indium Atoms				
P(3)-In(1)-P(4)	82.8(1)	P(3)-In(2)-P(4)	82.1(1)	
P(3)-In(1)-C(11)	106.3(2)	P(3)-In(2)-C(31)	114.8(1)	
P(3)-In(1)-C(21)	114.8(2)	P(3)-In(2)-C(41)	107.6(1)	
P(4)-In(1)-C(11)	98.6(1)	P(4)-In(2)-C(31)	108.2(1)	
P(4)-In(1)-C(21)	125.4(1)	P(4)-In(2)-C(41)	101.7(1)	
C(11)-In(1)-C(21)	121.5(2)	C(31)-In(2)-C(41)	130.5(2)	
(B) Angles around Phosphorus Atoms				
f(1) - P(3) - In(2)	97.4(1)	In(1) - P(4) - In(2)	96.6(1)	
2n(1) - P(3) - C(51)	111.6(2)	In(1) - P(4) - C(71)	126.9(1)	
$\underline{A}n(1) - P(3) - C(61)$	110.4(1)	In(1) - P(4) - C(81)	102.5(1)	
S ∰n(2)−P(3)−C(51)	116.2(1)	In(2) - P(4) - C(71)	107.5(1)	
$ \underset{\sim}{\overset{6}{=}} \underset{=}{\overset{6}{=}} n(2) - P(3) - C(51) $	110.8(1)	In(2)-P(4)-C(81)	121.1(1)	
	109.9(2)	C(71)-P(4)-C(81)	103.9(2)	
	ed Angles a	round Carbon Atoms		
$-\frac{3}{2}$ $\cdot \pm n(1) - C(11) - C(12)$	126.7(4)	In(2)-C(31)-C(32)	122.2(3)	
5 In(1) - C(21) - C(22)	126.5(4)	In(2) - C(41) - C(42)	122.5(3)	
$\geq \mathbb{P}(3) - C(51) - C(52)$	113.6(3)	P(3)-C(51)-C(53)	106.1(3)	
P(3) - C(51) - C(54)	111.0(3)	P(3)-C(61)-C(62)	113.1(3)	
₩ (3)-C(61)-C(63)	105.6(3)	P(3)-C(61)-C(64)	111.8(3)	
$2^{\circ} = (4) - C(71) - C(72)$	121.5(3)	P(4) - C(71) - C(76)	120.6(3)	
$ \begin{array}{c} & \mathbb{P}(3) - C(51) - C(52) \\ & \mathbb{P}(3) - C(51) - C(54) \\ & \mathbb{P}(3) - C(61) - C(63) \\ & \mathbb{P}(3) - C(61) - C(63) \\ & \mathbb{P}(3) - C(71) - C(72) \\ & \mathbb{P}(4) - C(81) - C(82) \\ & \mathbb{P}(4) - C(81) - C(81) \\ & \mathbb{P}(4) - C(81) - C($	121.4(4)	P(4) - C(81) - C(86)	120.3(3)	
tp://c				
Tagene In…In vector	. The P-	In-P angles for 1	average	
\checkmark $\$$ 2° and are slip	htly smal	lor than the 83.1°	found in	
$\frac{1}{2}$ $\frac{1}$	4 D) 1 2			
$\geq \mathbb{K}Me_3CCH_2)_2InP(i$	<i>t</i> -Би) ₂] ₂ , ²	while the In-P-	in bond	
$\frac{1}{3}$ angles average 97.0° and are slightly larger than the				
	IN COT	$T \setminus T D ((D)) = 2 $	1	

The In…In vector. The P–In–P angles for **1** average 2.5° and are slightly smaller than the 83.4° found in 460° (Me_3CCH_2)₂InP(t-Bu)₂]₂,² while the In–P–In bond angles average 97.0° and are slightly larger than the $96.6(1)^{\circ}$ found for [(Me_3CCH_2)₂InP(t-Bu)₂]₂.² The average In–P bond distance for the P(t-Bu)₂ moiety is 2.682 4° and is slightly shorter than the average In–P distances of 2.698 Å for the PPh₂ moiety. (There is, However, some overlap and no clean separation into finequivalent sets.) The In–P(t-Bu)₂ distances in **1** are shorter than those in [(Me_3CCH_2)₂InP(t-Bu)₂]₂ (2.690– 2.712 Å, average 2.701 Å).

The P(*t*-Bu)₂ moiety of **1** is associated with the bond lengths P(3)–C(51) = 1.897(4) Å and P(3)–C(61) = 1.898(5) Å (average 1.898 Å). These bond lengths are similar to values of 1.891–1.895 Å for $[(Me_3CCH_2)_2InP-(t-Bu)_2]_2$.² The plane C(51)–P(3)–C(61) makes an angle of 91.5° with the In(1)–P(3)–In(2) plane.

The PPh₂ moiety of **1** is associated with the bond lengths P(4)-C(71) = 1.833(4) Å and P(4)-C(81) =1.830(5) Å (average =1.832 Å). The P-C bond length is shorter than that in $[(Me_3CCH_2)_2InPPh_2]_3$ (average 1.845 Å),⁴ due, most probably, to the change from a trimeric to a dimeric molecule. The angle between the C(71)-P(4)-C(81) and In(1)-P(4)-In(2) planes is 75.3°; these planes are clearly not perpendicular to each other. The two phenyl groups are twisted away from each other with a dihedral angle of 64.5° between the $C(71)\rightarrow C(76)$ and $C(81)\rightarrow C(86)$ planes. Note that overall the P-C bond lengths in the $P(t-Bu)_2$ moiety are substantially and significantly longer than those in the PPh_2 moiety (1.898 Å vs 1.832 Å for the present, dissymmetric molecule).

The In–C bond lengths within the In(CH₂CMe₃)₂ systems average 2.191 Å and may be compared with those in $[(Me_3CCH_2)_2InP(t-Bu)_2]_2$ (average 2.213 Å)² or in $[(Me_3CCH_2)_2InPPh_2]_3$ (average 2.196 Å).⁴ The interligand angles are C(11)–In(1)–C(21) = 121.5(2)° and C(31)–In(2)–C(41) = 130.5(2)° (average 126.0°) and are much larger than those found in $[(Me_3CCH_2)_2InP(t-Bu)_2]_2$ (average 115.2°).² The change in C–In–C angles is likely the result of a reduction from four bulky *tert*-butyl groups in $[(Me_3CCH_2)_2InP(t-Bu)_2]_2^2$ to only two in the present dissymmetric molecule. Dihedral angles are 83.2° between the C(11)–In(1)–C(21) and P(3)–In(1)–P(4) planes.

The physical properties of 1 are unique when compared with those of the symmetrical indium phosphides from which it was prepared. As the properties are compared, it should be noted that (Me₃CCH₂)₂InP(t- $Bu)_2^2$ is a dimer in the solid state and in benzene solution according to NMR studies. The solubility of [(Me₃CCH₂)₂InP(t-Bu)₂]₂ in benzene was insufficient for a cryoscopic molecular study. In contrast, (Me₃CCH₂)₂-InPPh₂⁴ exists as a trimer in the solid state and as a monomer-dimer equilibrium mixture in benzene solution. Compound **1** decomposes at 171–173 °C. Both starting compounds also decompose rather than melt. The decomposition temperature of [(Me₃CCH₂)₂InP(t- $Bu_{2}^{2}^{2}$ is 200–203 °C, whereas that for $[(Me_{3}CCH_{2})_{2}^{2}]$ InPPh₂]₃⁴ is 143–150 °C. The solubility of the new mixed-bridge compound is much higher than of either starting material.

Even though **1** exists as a single compound in the solid state, an equilibrium mixture of species as represented by eq 1 is present in benzene solution. The chemical

$$(Me_{3}CCH_{2})_{2}InP(t-Bu)_{2}In(CH_{2}CMe_{3})_{2}PPh_{2} \stackrel{K}{\Leftarrow}$$

$$^{1}/_{2}[(Me_{3}CCH_{2})_{2}InP(t-Bu)_{2}]_{2} + (Me_{3}CCH_{2})_{2}InPPh_{2} \qquad (1)$$

shifts of all observed ³¹P and ¹H NMR resonances are assigned in Table 3. The three species are readily identified in the ³¹P NMR spectrum. It is noteworthy that the equilibrium concentration of (Me₃CCH₂)₂-InPPh₂ is so small that the dimer is not observed. The ¹H NMR spectrum of **1** in benzene also confirms the presence of the equilibrium mixture of species. The equilibrium constant for eq 1 calculated from integration data has a value of 0.2 ± 0.1 . The difference in splitting pattern is due either to the loss of symmetry in the In-P-In-P core when the four-membered ring becomes puckered or, more likely, to the dissymmetry introduced by the two different substituents on phosphorus, which precludes the possibility of "trans coupling". "Trans coupling" was observed for [(Me₃CCH₂)₂InP(t-Bu)₂]₂.² The proton signal for the methyl groups of the neopentyl groups attached to indium atoms is 1.21 ppm, which is between the corresponding signals for [(Me₃CCH₂)₂InP- $(t-Bu)_2]_2$ (1.39 ppm)² and (Me₃CCH₂)₂InPPh₂ (1.06 ppm).^{3,4} The chemical shift for the methylene protons of neopentyl ligands in 1 is 1.54 ppm, which is the same as that observed for $[(Me_3CCH_2)_2InP(t-Bu)_2]_2^2$ but is

Table 3. ¹ H and ³¹ P NMR Resonances for (Me ₃ CCH ₂) ₂ InP(<i>t</i> -Bu) ₂ In(CH ₂ CMe ₃) ₂ PPh ₂ , and for Solutions	of
[(Me ₃ CCH ₂) ₂ InP(<i>t</i> -Bu) ₂] ₂ and (Me ₃ CCH ₂) ₂ InPPh ₂ (ppm) in Benzene- <i>d</i> ₆	

	(Me ₃ CCH ₂) ₂ InP(t-Bu) ₂ In(CH ₂ CMe ₃) ₂ PPh ₂	$[(\mathrm{Me_3CCH_2})_2\mathrm{InP}(t\text{-}\mathrm{Bu})_2]_2^2$	(Me ₃ CCH ₂) ₂ InPPh ₂ ^{3,4}
	¹ H N	MR	
InCCCH3	1.07 (s) a		1.06 (s)
	1.21 (s)		
	$1.39 (s)^{b}$	1.39 (s)	
PCCH ₃	1.43 (d, $J = 13$ Hz)		
	1.46 (t, $J = 7 \text{ Hz})^{b}$	1.46 (t, $J = 7$ Hz)	
In <i>CH</i> 2	1.54 (br)	1.54 (s)	
P <i>Ph</i>	6.96 (td)		
	7.09 (td)		
	7.70 (dd)		
	$^{31}P\{^{1}H\}$	NMR	
	-28.5 (s)^{a}		-49.7 (s, dimer) -30.2 (s, monomer)
	-25.6 (d, $J = 360$ Hz)		
	46.7 (d, $J = 359$ Hz)		
	56.3 (s) ^b	55.0 (s)	

^a Resonances due to (Me₃CCH₂)₂InPPh₂. ^b Resonances due to [(Me₃CCH₂)₂InP(t-Bu)₂]₂.

(Me ₃ CCH ₂) ₂ InP(<i>t</i> -Bu) ₂ In(CH ₂ CMe ₃) ₂ PPh ₂					
Published on June 25, 1996 on http://pubs.acs.org doi: 10.1021/om9509864	mol formula	C ₄₀ H ₇₂ In ₂ P ₂			
203	cryst syst	triclinic			
3 <u>6</u> 0	space group	P1 (No. 2)			
/ou	temp, °C (K)	22 (295)			
51	a, Å	9.9191(12)			
.10	<i>b</i> , Å	12.1506(15)			
10	<i>c</i> , Å	18.7589(25)			
. <u>.</u>	α, deg	97.974(10)			
<u>م</u>	β , deg	100.448(10)			
50	γ , deg	90.052(10)			
S.0	V, Å	2201.3(5)			
.ac	Ζ	2			
lbs	fw	844.6			
Jd/	<i>D</i> , g/cm ³	1.274			
:i	μ , mm ⁻¹	1.126			
ht	2θ range, deg	5.0 - 45.0			
on	index ranges	<i>h</i> , 0–10			
96	-	<i>k</i> , −13 to +13			
19°		<i>l</i> -20 to +19			
5.	no. of rflns collected	6278			
le 7	no. of unique rflns	5787			
Jun	no. of rflns > 6σ	4162			
ц.	weighting scheme	$1/[\sigma^2(F) + 0.0005F^2]$			
ğ	no. of params refined	398			
she	goodness of fit	1.04			
bli	largest and mean Δ/σ	0.002, 0.000			
Pu	data-to-param ratio	14.5:1			
	R indices (all data), %	$R = 4.53, R_{\rm w} = 3.78$			
	R indices (6s data), %	$R = 2.54, R_{\rm w} = 2.70$			
	largest diff peak, e/ų	0.61			
	deepest diff hole, e/Å ³	-0.44			

Table 4. Crystal Data and Summary of IntensityData Collection and Structure Refinement of

different from the chemical shift of the corresponding proton for $(Me_3CCH_2)_2InPPh_2$ (1.43 ppm).^{3,4} The presence of only one set of proton resonances for the neopentyl protons in **1** indicates all the neopentyl ligands are magnetically equivalent in solution. This equivalence could be due to either a rapid inversion of the In₂P₂ ring on the NMR time scale or the rapid breaking of the ring and rotation of groups. In contrast, it should be noted that the exchange between **1** and its symmetrical derivatives $[(Me_3CCH_2)_2InP(t-Bu)_2]_2$ and $(Me_3CCH_2)_2InPPh_2$ is slow on the NMR time scale, as all three species are observed in benzene solution at the normal operating temperature of the spectrometer.

Experimental Section

All compounds described in this investigation were extremely sensitive to oxygen and moisture and were manipu-

lated in a standard vacuum line or under a purified argon atmosphere. The starting materials [(Me₃CCH₂)₂InP(t-Bu)₂]₂² and [(Me₃CCH₂)₂InPPh₂]₃^{3,4} were prepared by literature methods. Solvents were dried by conventional procedures. Elemental analyses were performed by E+R Microanalytical Laboratory, Inc., Corona, NY. The ¹H spectra were recorded at 400 MHz by using a Varian VXR-400 spectrometer. Proton chemical shifts were reported in δ units (ppm) and were referenced to SiMe₄ at 0.00 ppm and to C₆D₆ at 7.15 ppm. The ³¹P NMR spectra were recorded at 161.9 MHz on a Varian VXR-400 spectrometer. All phosphorus chemical shifts were referenced to 85% H₃PO₄ at 0.00 ppm. All samples for NMR spectra were contained in sealed NMR tubes. The infrared spectrum of a Nujol mull between CsI plates was recorded with a Perkin-Elmer 683 spectrometer. Melting points were observed in sealed capillaries.

Synthesis of (Me₃CCH₂)₂InP(t-Bu)₂In(CH₂CMe₃)₂PPh₂ (1). A small tube with a Solv-Seal joint was charged in the glovebox with stoichiometric amounts of (Me₃CCH₂)₂InP(t-Bu)₂ (0.184 g, 0.458 mmol) and (Me₃CCH₂)₂InPPh₂ (0.203 g, 0.459 mmol). The assembled apparatus was then degassed, and pentane (50 mL) was added by vacuum distillation. The resulting solution was heated by an oil bath to 60-75 °C for 18 h. The solution was then concentrated to about saturation by removing part of the pentane by vacuum distillation. Recrystallization by slowly lowering the temperature to -30 °C produced X-ray-quality crystals of **1**: 0.254 g, 0.301 mmol, 65.7% yield based on (Me₃CCH₂)₂InP(t-Bu)₂; mp 170.9-172.9 °C dec. Anal. Calcd: C, 56.88, H, 8.59. Found: C, 56.74; H, 8.71. IR (Nujol mull; cm⁻¹): 3073 (w), 3060 (m), 2730 (vw), 2706 (vw), 2280 (vw), 1957 (vw), 1944 (w), 1886 (vw), 1872 (vw), 1809 (vw), 1580 (m), 1563 (w), 1431 (w), 1357 (s), 1298 (vw), 1275 (vw), 1232 (s, sh), 1169 (m, sh), 1116 (m), 1103 (m), 1095 (m), 1063 (w), 1022 (m), 1010 (m), 999 (m), 929 (w, sh), 904 (vw), 809 (w), 739 (vs), 731 (vs), 717 (vw), 688 (s), 562 (m), 504 (m), 472 (m), 447 (w), 430 (w), 375 (w).

X-ray Data Collection, Structure Determination, and Refinement for 1. A colorless, transparent single crystal (dimensions $0.23 \times 0.20 \times 0.20$ mm) was sealed under an argon atmosphere in a drybox, under extremely strict anaerobic and moisture-free conditions, into a thin-walled glass capillary. The crystal was then accurately centered in a eucentric goniometer on a Siemens R3m/V automated fourcircle diffractometer. Determination of unit cell dimensions and data collection (Mo K α radiation, $\lambda = 0.710~730$ Å) were carried out as has been described in detail previously.⁵ Details are provided in Table 4.

⁽⁵⁾ Churchill, M. R.; Lashewycz, R. A.; Rotella, F. J. Inorg. Chem. 1977, 16, 265.

Notes

The crystal belongs to the triclinic crystal system. Possible space groups are the noncentrosymmetric P1 (C_1^{1} ; No. 1) or the centrosymmetric $P\overline{1}$ (C_t^{1} ; No. 2). Intensity statistics, frequency of occurrence data,⁶ and the probability of a synthetic material from achiral precursors being itself achiral⁷ all militate in favor of the centrosymmetric possibility, $P\overline{1}$. This space group was assumed and was confirmed by the successful solution of the structural analysis.

Crystallographic calculations were carried out on a VAXstation 3100 computer system with use of the Siemens SHELX-TL PLUS program package (Release 4.11,VMS).^{8,9}

The analytical scattering factors for *neutral* atoms were corrected explicitly for both the real ($\Delta f'$) and imaginary ($i\Delta f''$) components of anomalous dispersion.¹⁰ The structure was solved by a combination of direct methods, difference-Fourier

syntheses, and least-squares refinement. All non-hydrogen atoms were located, and hydrogen atoms were included in their appropriate idealized staggered tetrahedral or trigonal positions with d(C-H) set at 0.96 Å.¹¹

Convergence was reached with R = 4.53% and $R_w = 3.78\%$ for all 5787 unique reflections and R = 2.54% and $R_w = 2.70\%$ for those 4162 reflections with $|F_o| > 6\sigma(|F_o|)$.

Acknowledgment. This work was supported in part by the Office of Naval Research. The purchase of the diffractometer was made possible by Grant 89-13733 from the Chemical Instrumentation Program of the National Science Foundation.

Supporting Information Available: Complete tables of atomic coordinates, bond lengths, bond angles, anisotropic thermal parameters, and calculated positions for hydrogen atoms (6 pages). Ordering information is given on any current masthead page.

OM950986Z

⁽⁶⁾ Nowacki, W.; Matsumoto, T.; Edenharter, A. Acta Crystallogr. 1967, 22, 935.

⁽⁷⁾ Jones, P. G. Chem. Soc. Rev. 1984, 13, 155.

⁽⁸⁾ SHELXTL PLUS Manual, 2nd ed.; Siemens Analytical Instruments: Madison, WI, 1990.
(9) Sheldrick, G. M.; SHELXTL PLUS: An Integrated System for

⁽⁹⁾ Sheldrick, G. M.; SHELXTL PLUS: An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data (for Nicolet R3m/V); University of Göttingen, Göttingen, Germany, 1987.

⁽¹⁰⁾ International Tables for X-Ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 99-101, 149-150.
(11) Churchill, M. R. Inorg. Chem. 1973, 12, 1213.