ORGANOMETALLICS

Volume 15, Number 14, July 9, 1996

© Copyright 1996 American Chemical Society

Communications

Dichlorodigermacyclobutanes and Digermabicyclo[2.2.0]hexanes from the Reactions of [Tris(trimethylsilyl)methyl]chlorogermylene with Olefins

Toshiyuki Ohtaki and Wataru Ando*

Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Received January 9, 1996[®]

[Tris(trimethylsilyl)methyl] Toshiyuki Ohtaki Department of Chemistry, University of Received Jac Summary: GeCl₂(dioxane) reacts with trisyllithium (Me₃Si)₃SiLi) to give a trisylchlorogermylene-LiCl-THF complex (1), which is stable at room temperature. The reaction of 1 with olefins gave 1,2-dichloro-1,2-digermacyclobutanes (2a-e) exclusively. These were greated with Mg/MgBr₂ in the presence of olefins to give greated with Mg/MgBr₂ in the presence of olefins to give the chemistry of germylenes has been studied exten-Syvely over the last two decades. We recently reported that the reaction of germylenes with olefins gives germacyclopropanes¹ and a 1,2-digermacyclobutane.²

germacyclopropanes¹ and a 1,2-digermacyclobutane.² 身owever, in most of the germylenes involved the two substituents were the same. In particular, there have been few reports of organohalogermylenes (R-Ge-X). Recently, Jutzi and co-workers have reported³ the isolation of 2,4,6-tri-*tert*-butylphenyl (supermesityl = Mes*) and pentamethylcyclopentadienyl (Cp*) substituted chlorogermylenes. However, no details concerning their reactivity were provided. We report here the synthesis of the trisylchlorogermylene-LiCl-3THF complex (1; trisyl = tris(trimethylsilyl)methyl) as a germylene equivalent and its reactivity toward olefins.

Reaction of **1** with olefins, followed by dehalogenation of the 1,2-dichloro-1,2-digermacyclobutanes produced, in the presence of olefins, gives 1,4-digermabicyclo[2.2.0]hexanes.

Reaction of the $GeCl_2$ -dioxane complex with 1.2 equiv of trisyllithium (Tsi-Li) in THF at 0 °C gave 1 as pale yellow crystals (recrystallization from pentane at -78 °C, 41%) (eq 1).⁴ Compound **1** is air-sensitive, both in

Tsi-Li + GeCl₂•
$$O$$
 THF
 $Tsi-Ge$ -Cl • LiCl• 3THF (1)
1 (41%)
Tsi = C(SiMe₂)₃

solution and in the solid state. It dissolves in hydrocarbon solvents to give an orange solution. The ¹H NMR spectrum of 1 shows one signal for the trimethylsilyl group at δ 0.67 (in C₆D₆) and signals for THF, integration showing that the molar ratio of Tsi-Ge-Cl to THF is 1:3. In the ¹³C NMR spectrum of **1**, besides the signals for the THF portion, signals for the trisyl groups appear at 0.94 and 5.39 ppm. Furthermore, the ⁷Li NMR spectrum supported the existence (-0.20 ppm)of a lithium atom in the molecule.

© 1996 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, June 15, 1996. (1) Ando, W.; Ohgaki, H.; Kabe, Y. Angew. Chem., Int. Ed. Engl. **1994**, 33, 659 and references cited therein.

⁽²⁾ Ohgaki, H.; Kabe, Y.; Ando, W. Organometallics 1995, 14, 2139. (3) (a) Jutzi, P.; Leue, C. Organometallics **1994**, *13*, 2898. (b) Lange, L.; Meyer, B.; du Mout, W. W. J. Organomet. Chem. **1987**, *329*, C17. (c) Kohl, F. X.; Jutzi, P. J. Organomet. Chem. 1983, 243, 31. (d) Jutzi, P. J. Organomet. Chem. 1990, 400, 1. (e) Jutzi, P.; Becker, A.; Leue, ; Stammler, H. G.; Neumann, B. Organometallics 1991, 10, 3838. (f) Jutzi, P.; Schmidt, H.; Neumann, B.; Stammler, H. G. J. Organomet. Chem. 1995, 499, 7.

The reaction of **1** with gaseous ethylene in hexane at room temperature produced 1,2-dichloro-1,2-digermacyclobutane (2a), a colorless and air-stable solid, in 54% yield.⁵ The spectral data suggested the existence of only one isomer (cis or trans). A single-crystal X-ray diffraction study of 2a confirmed its trans configuration. (However, a detailed structure could not be obtained because of severe disordering.) Furthermore, 1 also reacts with olefins such as propene, styrene, isobutene, and cyclopentene to give the corresponding 1,2-dichloro- \pounds 2-digermacyclobutane derivatives (**2b**-**e**) in com-Parable yields (Scheme 1), perhaps with the trans Scheme 1), perhaps with the trans $\underset{\mathrm{cc}}{\mathrm{g}}$ gively, which arise from the disposition of the methyl or perhaps groups on the cyclobutane ring.

As in the reaction of olefins, the reaction of **1** with acetylenes depended on the acetylene substituents. Only polymeric products were obtained (-78 °C to room temperature) in the reaction of acetylene itself. Disubstituted acetylenes, such as diphenylacetylene and diethylacetylene, did not react with **1** in hexane. The meaction of 1 with phenylacetylene gave 1,2-dichloro-

June

0U

(3.70 g, 41.0%) (5) **2a**: colorless crystals; dec 202 °C (in air); ¹H NMR (C_6D_6) δ 0.50 (s, 54H), 2.43 (m, 4H); ¹³C NMR (C_6D_6) δ 5.73 (SiMe), 26.82 (GeCSi), 34.78 (GeCH₂). Anal. Calcd for C₂₂H₅₈Si₆Cl₂Ge₂: C, 37.37; H, 8.27. Found: C, 37.74; H, 8.29. 2b has two isomers; however, the minor species is not present in sufficient amount to allow its characterization by NMR spectroscopy (major:minor = 95:5). Therefore, NMR values for only the major source are reported. **2b**: colorless solid; ¹H NMR (C_6D_6) δ 0.47 (s, 27H), 0.49 (s, 27H), 1.59 (d, J = 7.5 Hz, 3H), 2.02–2.08 (m, 1H), 3.11–3.20 (m, 1H); ¹³C NMR (C_6D_6) δ 5.91, 6.26 (SiMe). 22.24 (-CH₃), 26.33, 28.04 (GeCSi), 44.06 (CH₂), 52.03 (CH). Anal. Calcd for C23H60Si6Cl2Ge2: C, 38.29; H, 8.38. Found: C, 38.30; H, 8.41. 2c has two isomers, and the ratio of the two is 2:1: waxy white solid; ¹H NMR (C₆D₆) δ 0.36 (s, 27H, minor), 0.39 (s, 27H minor), 0.47 (s, 27H major), 0.49 (s, 27H, major), 2.95 (dd, 2H, minor), 3.15 (dd, 2H, major), 4.25 (dd, 1H, minor), 4.70 (dd, 1H, major), 7.25 (m, 10H); ¹³C NMR (C₆D₆) & 5.90, 5.97, 6.03, 6.11 (SiMe), 26.40, 28.82, 31.17, 32.05 (GeCSi), 42.76, 44.18 (CH₂), 55.52, 66.65 (CH), 126.52, 127.87, 128.52, (dc6), 128.68, 129.04, 142.35, 142.98 (Ph). Anal. Calcd for $C_{28}H_{627}$ Si_6Cl_2Ge_2: C, 42.93; H, 7.98. Found: C, 42.99; H, 8.16. **2d**: waxy Si₆Cl₂Ge₂: C, 42.93; H, 7.98. Found: C, 42.99; H, 8.16. **2d**: waxy white solid; ¹H NMR (C₆D₆) δ 0.47 (s, 27H), 0.49 (s, 27H), 1.62 (s, 3H), 1.80 (s, 3H), 2.19 (d, 1H), 2.45 (d, 1H); ¹³C NMR δ 6.12, 6.59 (SiMe), 12.15, 12.80 (GeCSi), 30.81, 32.42 ($-CH_3$), 51.18 (CH₂); 58.22 (C-Me). Anal. Calcd for C₂₄H₆₂Si₆Cl₂Ge₂: C, 39.20; H, 8.50. Found: C, 38.86; H, 8.44. **2e**: waxy white solid; ¹H NMR (C₆D₆) δ 0.48 (s, 27H), 1.17– 1.43 (m, 2H), 1.82–2.35 (m, 4H), 3.10–3.45 (m, 2H); ¹³C NMR δ 6.09, 6.24 (GiM₂), 12.22, 14.16 (C₆CS³), 21.14, 29.79, 29.19 (CH₂); 56.29 6.31 (SiMe), 12.32, 14.16 (GeCSi), 31.14, 32.72, 33.12 (CH₂), 53.50, 64.06 (CH).

Scheme 2

Figure 1. ORTEP drawing of 4a showing 50% probability ellipsoids. Selected bond distances (Å) and angles (deg): Ge1-Ge2 = 2.513(1), Ge1-C101 = 2.01(1), Ge1-C103 =2.03(1), Ge2-C102 = 2.01(1), Ge2-C104 = 2.01(1), C101-C102 = 1.55(2), C103-C104 = 1.60(3); C101-Ge1-Ge2 = 76.2(3), C103-Ge1-Ge2 = 76.7(3), C102-Ge2-Ge1 =76.0(3), C104-Ge2-Ge1 = 77.1(3).

1,2-digermacyclobut-3-ene (3) in 60% yield as a colorless solid which is stable toward atmospheric oxygen and moisture (Scheme 1).⁶ In the ¹H NMR spectrum of **3**, one signal for the methylene proton on the ring at δ 7.84 and low-field ¹³C resonances at 158.53 and 177.64 ppm due to the olefinic carbon in the cyclobutene ring support the 1,2-digermacyclobut-3-ene framework.

Treatment of 2a with magnesium in THF in the presence of MgBr₂ (prepared by in situ reaction of magnesium with 1,2-dibromoethane) did not result in formation of a germanium-germanium-coupled product but gave instead the unexpected 1,4-digermabicyclo-[2.2.0]hexane (4a) in 50% yield as colorless air-stable crystals (Scheme 2).7 In the ¹H NMR spectrum of 4a, the appearance of only one signal for the trimethylsilyl groups is in agreement with its symmetrical structure. The relatively low field ¹³C NMR shift at 30.3 ppm for the methylene carbons supports the ring structure of 4a. Crystals suitable for X-ray structural analysis were obtained by slow evaporation of a benzene solution of 4a (Figure 1).⁸ This compound has a rooflike conformation. However, no inversion was observed in VT-NMR spectroscopic experiments (room temperature to 80 °C).

by CARLI CONSORTIUM (4) Synthesis of [tris(trimethylsilyl)methyl]chlorogermylene: a solu-Bon of 4.00 g of (Me₃Si)₃CH (17.2 mmol) in THF (40 mL) was added dropwise to 13.5 mL of halogen-free CH₃Li (in diethyl ether, 1.40 N, Downloaded **18**.9 mmol) (5 min). After removal of ether, the mixture was treated **a** reflux with an oil bath (70 °C, 3 h). The resulting deep yellow mixture was cannulated into a solution of GeCl₂-dioxane (3.50 g, 15.1 mmol) and 1 mL of Et₃N in 25 mL of THF at 0 °C. After the mixture was stirred for 1 h at ambient temperature, the solvent was removed inder reduced pressure. The residual orange solid was extracted with $\overline{\overline{a}}$ mL of pentane. Filtration through Celite afforded a clear orange solution. The latter was cooled to -78 °C to give a pale yellow solid

⁽⁶⁾ For 3: waxy white solid, ¹H NMR (C_6D_6) δ 0.42 (bs, 27H), 0.48 (s, 27H), 7.03-7.11 (m, 3H), 7.42-7.45 (m, 2H), 7.85 (s, 1H); ¹³C NMR (C6D6) & 5.83, 5.94 (SiMe); 22.54 (GeCSi); 127.02, 128.19, 128.54, 142.19 (Ph); 158.53, 177.64 (GeC=). Anal. Calcd for C₂₄H₆₂Si₆Ge₂: C, 43.38; H, 9.41. Found: C, 43.58; H, 9.46.

⁽⁷⁾ Synthesis of 4a: (1) Ethylene gas was introduced into a solution of 120 mg of 2 (0.17 mmol), Mg (20 mg), and MgBr₂·Et₂O (70 mg) in 5 mL of THF. After the mixture was stirred for 2 h, the solvent was evaporated. The residue was extracted with 40 mL of hexane and purified by silica gel chromatography (69% yield). (2) Ethylene gas was introduced into a solution of 80 mg of 2 (0.13 mmol) in 8 mL of THF. Lithium naphthalenide (1.20 mL, 0.30 N in THF) was added dropwise to the solution at -78 °C. The resulting yellow solution was warmed to ambient temperature and stirred for 1 h. The solvent was removed, the residue was extracted with toluene and the product was isolated by preparative HPLC (68% yield): colorless crystals, dec 210 ⁵C (in air); ¹H NMR (C_6D_6) δ 0.33 (s. 54 H), 2.23–2.36 (m, 8H); ¹³C NMR (C_6D_6) δ 4.78 (SiMe), 14.01 (GeCSi), 30.14 (CH₂). Anal. Calcd for $C_{24}H_{62}Si_6Ge_2$: C, 43.38; H, 9.41. Found: C, 43.53; H, 9.36. The reaction of the Mg/MgBr₂·Et₂O complex (no external ethylene present) with 2a in THF gave a complex mixture of oligomers, decomposition products (mainly Tsi-H), and halogen-exchanged starting material. Neither the Ge–Ge-coupled dimer nor compound **4a** was obtained (by TLC or HPLC).

Communications

Although the Ge–C bond distances of 2.009–2.027 Å are in the normal range of Ge-C single bonds, the Ge-Ge and C-C bonds in the cyclic framework are comparatively longer than normal Ge-Ge and Ge-C bonds (2.513, 1.552, and 1.601 Å). However, the acute Ge-Ge–C angles in the ring $(76.0-77.1^\circ)$ serve to decrease the ring strain. Undoubtedly, the ethylene is derived from Mg debromination of 1,2-dibromoethane. It is noteworthy that when the reaction is carried out under an ethylene atmosphere the yield of **4a** is increased to 69%. In the presence of styrene and propene, the substituted 1,4-digermabicyclo[2.2.0]hexanes 4b,c were obtained in 50% and 21% yield, respectively, together with 1,2-dihydro-1,2-digermacyclobutane (5, 23%). The reaction of 2a with Mg/MgBr₂ in the presence of acetylene gave 1,2-divinyl-1,2-digermacyclobutane (6, 23%) as main product. The use of lithium powder or lithium naphthalenide in place of Mg/MgBr₂ produced **4a** in comparable yield.

There are two possible mechanisms for the formation \mathbf{f} adducts $\mathbf{4-6}$. Magnesium and alkali metals could

form 1,2-digermacyclobutene (7) by an electron transfer reaction of the 1,2-dihalogermane 2a.⁹ However, attempted trapping of 7 with ethanol at room temperature was not successful; no ethanol adduct was observed. On the other hand, the analogous dechlorination of 2a in the presence of 2-methyl-1,3-butadiene, which is a trapping reagent¹⁰ for a digermene (Ge=Ge), instead of ethylene gave the corresponding [2 + 4] adduct 8 in 23% yield.¹¹ An electron transfer reaction leading to the formation of a germyl radical is a possibility, at least in the reaction with olefins and butadiene.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan. We are grateful to Asai Germanium Research Institute for their generous gift of chlorogermanes.

Supporting Information Available: Text giving details of the X-ray crystal structure study and tables of crystal structure determination data, atomic coordinates, anisotropic thermal parameters, and bond lengths and angles for compound **4a** (19 pages). Ordering information is given on any current masthead page.

OM9600147

(8) Crystallographic data for **4a**: C₂₄H₆₂Si₆Ge₂, triclinic, space group $P\overline{1}$, a = 9.030(1) Å, b = 13.675(1) Å, c = 15.487(1) Å, $\alpha = 85.05(1)^\circ$, $\beta = 88.86(1)^\circ$, $\gamma = 73.98(1)^\circ$, V = 1831.2 Å³, $\rho(\text{calcd}) = 1.20$ g/cm³, $\mu = 18.2$ cm⁻¹, Z = 2. The structure was solved from 5272 collected independent reflections ($2\theta \le 50^\circ$, $|F_0^2| > 3\sigma|F_0^2|$) measured on an Enraf-Nonius CAD4 diffractometer using Mo K α irradiation and an $\omega - 2\theta$ scan. The structure was solved by direct methods, and all nonhydrogen atoms were refined anisotropically to R = 0.069 and $R_w = 0.086$. One trisyl group showed disordering; therefore, these extra atoms were omitted in Figure 1.

(9) Reductive dehalogenation of 1,2-dichloro-1,1,2,2-tetrakis(2,4,6-triisopropylphenyl)disilane using lithium naphthalenide gave a stable disilene: Watanabe, H.; Takeuchi, K.; Nakajima, K.; Nagai, Y.; Goto, M. *Chem. Lett.* **1988**, 1343.

(10) Barrau, J.; Escudie, J.; Satge, J. *Chem. Rev.* **1990**, *90*, 283 and references cited therein.

(11) **8**: white solid, sublimes at 205 °C (0.01 mmHg); ¹H NMR (C_6D_6) δ 0.37 (s, 27H), 0.38 (s, 27H), 1.80–2.64 (m, 8H), 2.03 (s, 3H), 5.73–5.78 (m, 1H); ¹³C NMR (C_6D_6) δ 5.98 (q), 6.03 (q), 11.95 (s), 12.77 (s), 26.74 (t), 26.85 (q), 28.49 (t), 29.90 (t), 32.74 (t), 121.50 (t), 133.56 (s). Anal. Calcd for $C_{27}H_{66}Si_6Ge_2$: C, 46.03; H, 9.44. Found: C, 45.91; H, 9.35.