on June

# **Rhodium Complexes with the New Anionic Diphosphine** $[7,8-(PPh_2)_2-7,8-C_2B_9H_{10}]^-$ Ligand

Francesc Teixidor,\* Clara Viñas, M. Mar Abad, Claire Whitaker, and Jordi Rius

Institut de Ciencia de Materials de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain

Received November 14, 1995<sup>®</sup>

New rhodium complexes with the eclipsed anionic diphosphine  $[7,8-(PPh_2)_2-7,8-C_2B_9H_{10}]^$ are described. These were prepared from the neutral cod complex [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8- $C_2B_9H_{10}$  (cod)] either directly or via the complex [Rh{7,8-(PPh\_2)\_2-7,8-C\_2B\_9H\_{10}}(CO)\_2], which was obtained by bubbling CO through a suspension of [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(cod)] in deoxygenated methanol. The CO ligands may be readily replaced by monophosphines, chelating diphosphines, monoamines, and chelating diamines. CO substitution by monophosphines depends on the phosphine cone angle more than the phosphine basicity. Both CO ligands can be replaced in [Rh{7,8-(PPh2)2-7,8-C2B9H10}(CO)2] by monophosphines with small cone angles, while monophosphines with large cone angles are only able to displace one CO ligand. Thus [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>](CO)(phosphine)] and [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-**7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>** $(phosphine)_2$  can be obtained. By contrast, with chelating diamines, carbamoyl complexes have been obtained.

 $\sum_{i=1}^{\infty}$  It is well-known that the tris(triphenylphosphino)-chlororhodium(I) complex is an active catalyst for the 8 Romogeneous hydrogenation of unsaturated compounds containing olefinic and acetylenic linkages.<sup>1</sup> The effect and alkyl- substituted tertiary phosphine groups in tris(tertiaryphosphino)chlororhodium(I) complexes on the rate of catalytic homogeneous hydrogenation of substrates<sup>2</sup> is well established.

Downloaded by CARLI CONSORTIUM The relevance of selective catalytic hydrogenation to asymmetric synthesis has led to a spectacular proliferagon of rhodium complexes with a great variety of Thelating neutral diphosphines.<sup>3</sup> Catalysts with a Enelating diphosphine can be formed by treatment of (diene) rhodium complexes with the appropriate diphosphine, among other procedures. They behave differently from those formed from monodentate tertiary phosphines, a feature understood in terms of stereochemical arguments.4

 $\frac{5}{2}$  The advantage of these over the monophosphines has do with their chelating capacity, which ensures greater robustness of the complex. To this aim the ânionic diphosphine 7,8-bis(diphenylphosphino)-7,8-dicarba-*nido*-undecaborate(1-),  $[7,8-(PPh_2)_2-7,8-C_2B_9H_{10}]^-$ , has been recently prepared.<sup>5</sup>

In transition metal complexes with this anionic diphosphino ligands, the proximity of the anionic cluster to the metal is thought to induce a greater stability to the chelate. In addition, the anionic nature of the ligand should prevent the approach of other anionic coordinating ligands to the metal.

The catalytic characteristics of rhodium complexes with the unsubstituted carborane have been previously studied.<sup>6</sup> These complexes are catalytically active in the hydrogenation of olefins, including stereoselective hydrogenation.<sup>7</sup> The catalytic properties of rhodium complexes based on the neutral *closo*-carboranyldiphosphines have also been noted.8

As a consequence, the eclipsed anionic diphosphine  $[7,8-(PPh_2)_2-7,8-C_2B_9H_{10}]^-$  was synthesized and structurally characterized to understand the influence of the ligand's negative charge on the P-Rh bonds, without the interference of other charge-compensating anionic ligands.<sup>5</sup>

Here we report the synthesis of Rh(I) complexes based on the eclipsed anionic diphosphine [7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8- $C_2B_9H_{10}$ ]<sup>-</sup>. From the species [Rh{**7,8-(PPh\_2)\_2-7,8-**C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(diene)], Rh(I) complexes have been obtained by displacement of the diolefinic ligand. They are formally similar to Wilkinson's catalyst via substitution of the PPh<sub>3</sub> and Cl<sup>-</sup> ligands by the diphosphine [7,8-(**PPh<sub>2</sub>**)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]<sup>-</sup>. Their spectroscopic and chemical properties have also been studied.

## **Results and Discussion**

The reaction of the dimeric rhodium complex [Rh<sub>2</sub>- $(\mu$ -Cl)<sub>2</sub>(cod)<sub>2</sub>] (cod = 1,5-cyclooctadiene) with the anionic diphosphine [7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]<sup>-</sup> induces the cleavage of the initial dimer and the formation of a neutral monomeric complex, [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8- $C_2B_9H_{10}$  (cod)]. (See eq 1.)

$$[NMe_{4}][7,8-(PPh_{2})_{2}-7,8-C_{2}B_{9}H_{10}] \rightarrow [Rh\{7,8-(PPh_{2})_{2}-7,8-C_{2}B_{9}H_{10}] \rightarrow [Rh\{7,8-(PPh_{2})_{2}-7,8-C_{2}B_{0}H_{10}\}(cod)] + [NMe_{4}]C] (1)$$

The ligand [7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]<sup>-</sup> contains three competing sites of coordination: the cluster's open face

<sup>&</sup>lt;sup>®</sup> Abstract published in Advance ACS Abstracts, May 15, 1996. (1) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. A 1966, 1711.

<sup>(2)</sup> Montelatici, S.; Van der Ent, A.; Osborn, J. A.; Wilkinson, G. *J. Chem. Soc. A* **1968**, 1054.

<sup>(3)</sup> Masters, C. Homogeneous Transition-Metal Catalysis. A Gentle Art, Chapman and Hall: London, 1981.
(4) Halpern, J.; Riley, D. P.; Chan, A. S. C.; Pluth, J. J. J. Am. Chem. Soc. 1977, 99, 1711.

<sup>(5)</sup> Teixidor, F.; Viñas, C.; Abad, M. M.; Nuñez, R.; Kivekäs, R.; Sillanpää, R. *J. Organomet. Chem.* **1995**, *503*, 193.

<sup>(6) (</sup>a) Behnken, P. E.; Belmont, J. A.; Busby, D. C.; Delaney, M. S.; King, R. E., III; Kreimendahl, C. W.; Marder, T. B.; Wilczynski, J. J.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1984**, *106*, 3011. (b) Hawthorne, M. F. In *Advances in Boron and the Boranes*, Liebman, J. F., Greenberg, A., and Wiliams, R. E., Eds.; VCH Publishers, Inc.: New York, 1984; Chapter 10, p 255. (7) Pirotte, B.; Felekidis, A.; Fontaine, M.; Demonceau, A.; Noels, A. F.; Delarge, J.; Chizhevsky, I. T.; Zinevich, T. V.; Pisareva, I. V.; Bregadxe, V. I. *Tetrahedron Lett.* **1993**, *34*, 1471. (8) Hart, F. A.; Owen, D. W. *Inorg. Chim. Acta* **1985**, *103*, L1.



Figure 1. ORTEP molecular plot, with 20% probability thermal ellipsoids, showing labeling scheme. Hydrogens atoms have been omitted for clarity.

 $\mathfrak{C}_{2}B_{3}$ , the two exocluster phosphorus atoms, and the **B**H's, in which case exo-*nido* coordination might take place. In the absence of the two P elements connected to the *nido*-carborane cluster, an  $\eta^5$  coordination to the  $\breve{\mathbf{G}}_2\mathbf{B}_3$  open face<sup>6b,9</sup> or an exo-*nido* coordination<sup>10</sup> would  $\subseteq \mathbb{G}_2^2\mathbb{B}_3$  open face<sup>60,9</sup> or an exo-*nido* coordination<sup>10</sup> would  $\mathbb{G}_2$  be expected upon reaction with Rh(I) complexes. The 5 spectroscopic characterization of this complex shows  $\geq \mathbf{G}_2 \mathbf{B}_3$  open face. The  ${}^{11}\mathbf{B}{}^{11}\mathbf{H}$ -NMR spectrum range also

generation of the spectral data. In contrast with the strucfire of an equivalent rhodium dithiocarborane complex pereviously studied by our group, in the current molecule There is no close contact between the hydrogen atom of B3 and the rhodium atom, as the carborane cage lies well away from the Rh(cod) unit.<sup>12</sup> The [Rh{7,8-(**PPh<sub>2</sub>**)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(cod)] molecule exhibits rotational disorder in the cod ligand positions, the two groups of cod atoms being labeled C(51)-C(58) (conformer 1) and C(61)-C(68) (conformer 2) (C(51)-C(58) (pop = 0.6852) and C(61)-C(68) (pop = 1 - 0.6852)) (see Figure 1). The average geometry for the rhodium atom is approxi-

## Table 1. Crystallographic Data for $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(cod)]$

| mol formula: $C_{34}H_{42}B_9P_2Rh$<br>MW 712.85<br>F(000) = 1464<br>cell params<br>a, b = 18.084(3) Å<br>c = 12.493(1) Å<br>$V = 4086(1) Å^3$ | density $\rho_c = 1.16 \text{ g cm}^{-3}$<br>space group; P4 <sub>3</sub> , No. 78.<br>Z = 4<br>cryst dimens: $0.36 \times 0.20 \times 0.63$<br>abs coeff: $\mu$ (Mo K $\alpha$ ) = 5.20 cm <sup>-1</sup> |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Data Collection                                                                                                                                |                                                                                                                                                                                                           |  |  |  |
| diffractometer:                                                                                                                                | $\theta$ meas range: $2.17 \le \theta \le 30.44^{\circ}$                                                                                                                                                  |  |  |  |
| Enraf-Nonius CAD4                                                                                                                              | Range h, k, l: 0/25, -25/25, 0/17                                                                                                                                                                         |  |  |  |
| $T = 23 \ ^{\circ}\mathrm{C}$                                                                                                                  | no. of reflcns measd: $= 13185$                                                                                                                                                                           |  |  |  |
| Refinement                                                                                                                                     |                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                |                                                                                                                                                                                                           |  |  |  |

| Kennement                  |                 |  |  |
|----------------------------|-----------------|--|--|
| no. of obsd reflcns: 10220 | R Factors       |  |  |
| with $I \geq 3\sigma(I)$   | R = 0.040       |  |  |
| no. of params refined: 407 | $R_{w} = 0.054$ |  |  |

mately square planar, the average P-Rh-C=C angle being 94.62°, C=C-Rh-C=C being 86.34°, and P(1)-Rh-P(2) being 85.33(3)° and the rhodium atom lies within the plane described by the atoms P(1), P(2), C(7), and C(8). In contrast, a copper complex with the same  $[7,8-(PPh_2)_2-7,8-C_2B_9H_{10}]^-$  ligand involves coordination of the metal atom at an angle of 20.4° to the plane of the P(1), P(2), C(7), C(8) atoms,<sup>13</sup> allowing a distorted tetrahedral coordination environment for the copper atom. Crystallographic data are given in Table 1, and selected bond distances and angles for the two conformers are reported in Table 2.

The complex  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(cod)]$  is a good starting material to prepare other Rh(I) complexes based on [7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]<sup>-</sup>, by replacing the weakly coordinated cod by other ligands, such as carbon monoxide or phosphines (Figure 2).

Bubbling carbon monoxide through a slurry of [Rh- $\{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}\}$ (cod)] yields the corresponding dicarbonyl species. (See eq 2.)

$$[Rh\{7,8-(PPh_{2})_{2}-7,8-C_{2}B_{9}H_{10}\}(cod)] \xrightarrow{CO \text{ gas}}_{+ \text{ cod}} \\ [Rh\{7,8-(PPh_{2})_{2}-7,8-C_{2}B_{9}H_{10}\}(CO)_{2}] (2)$$

In the IR spectrum of [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}- $(CO)_2$ ] the  $\nu(CO)$  frequencies occur at 2087 and 2054 cm<sup>-1</sup>. The CO absorption process is reversible, and in solution in the absence of a CO atmosphere, the initial cod complex is recovered. The <sup>1</sup>H-NMR spectrum of [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(CO)<sub>2</sub>] confirms the removal of the starting cod ligand and the presence of the BHB bridge ( $\delta = -2.1$  ppm) in the *nido* cluster. The <sup>11</sup>B{<sup>1</sup>H}-NMR spectrum shows the typical 2:3:2:1:1 pattern between -9.7 and -35.1 ppm.

This dicarbonylic complex is suitable as a starting material for the synthesis of a new series of Rh(I) complexes. Its reaction with monophosphines varying in steric and electronic properties, with neutral and anionic diphosphines, and with monodentate and bidentate N-donor ligands, leads easily and quantitatively to new complexes by displacement of one or two CO molecules. Figures 2 and 3 show the synthetic procedures which are reported in detail in the Experimental Section.

In all cases, the coordination of the ligand [7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>]<sup>-</sup> takes place through the exoclus-

<sup>(9) (</sup>a) Dare, H. F.; Howard, J. A. K.; Pilotti, M. U.; Stone, F. G. A.; (a) *Date*, H. F., Howard, S. A. R., Hiott, M. C., Stohe, F. G. A., Szameitat, J. *J. Chem. Soc., Chem. Commun.* **1989**, 1409. (b) Baker, R. T.; Delaney, M. S.; King, R. E., III; Knobler, C. B.; Long, J. A.; Marder, T. B.; Paxson, T. E.; Teller, R. G.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1984**, *106*, 2965.

<sup>(10) (</sup>a) Long, J. A.; Marder, T. B.; Behnken, P. E.; Hawthorne, M. F. J. Am. Chem. Soc. 1984, 106, 1979. (b) Knobler, C. B.; Marder, T. B.; Mizusawa, E. A.; Teller, R. G. Long, J. A.; Hawthorne, M. F. J. Am. Chem. Soc. 1984, 106, 2990.

<sup>(11) (</sup>a) Teixidor, F.; Ayllón, J. A.; Viñas, C.; Kivekäs, R.; Casabó, J. J. Chem. Soc., Chem. Commun. 1992, 1281. (b) Teixidor, F.; Ayllón, J. A.; Viñas, C.; Kivekäs, R.; Sillanpää, R.; Casabó, J. Organometallics 1992, 13, 2751.

<sup>(12)</sup> Ayllón, J. A. Doctoral Thesis, Universitat Autònoma de Barcelona. 1993.

<sup>(13)</sup> Teixidor, F.; Viñas, C.; Abad, M. M.; Lopez M.; Casabó, J. Organometallics 1993, 12, 3766-3768.

## Table 2. Selected Interatomic Distances (Å) and Angles (deg) with Esd's in Parentheses for [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>](cod)]

| Conformer 1: Population $C(51)-C(58) = 0.6852$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                                  |                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-----------------------|--|--|
| $\mathbf{Ph}_{\mathbf{D}}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DUIIU I<br>2226(0)                           | Db_D(9)                                          | 2 2842(0)             |  |  |
| $\frac{\text{KII}^{-} \mathbf{F}(1)}{\text{Dh} C(51)} \qquad 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.2000(3)                                    | $\operatorname{RH}^{-} \Gamma(\mathcal{L})$      | 2.2043(3)<br>2.269(6) |  |  |
| $R_{11} = C(51)$ 2<br>Db $C(55)$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.240(7)                                     | C(52)                                            | 2.202(0)              |  |  |
| KII = C(55) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.309(7)                                     | KII-C(50)                                        | 2.319(7)              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bond                                         | Angles                                           |                       |  |  |
| P(1)-Rh-P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85.33(3)                                     | ) $P(1)-Rh-C(51)$                                | 170.1(2)              |  |  |
| P(1)-Rh-C(52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154.2(2)                                     | P(1)-Rh-C(55)                                    | 91.0(2)               |  |  |
| P(1)-Rh-C(56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.2(2)                                     | P(2)-Rh-C(51)                                    | 89.6(2)               |  |  |
| P(2)-Rh-C(52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98.3(2)                                      | P(2)-Rh-C(55)                                    | 167.0(2)              |  |  |
| P(2)-Rh-C(56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 156.7(2)                                     | C(51)-Rh-C(52)                                   | 35.2(2)               |  |  |
| C(51)-Rh-C(55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.7(2)                                      | C(51)-Rh-C(56)                                   | 81.3(3)               |  |  |
| C(52)-Rh-C(55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79.7(2)                                      | C(52)-Rh-C(56)                                   | 86.5(2)               |  |  |
| C(55)-Rh-C(56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.4(3)                                      | Rh-C(51)-C(58)                                   | 105.6(5)              |  |  |
| C(52)-C(51)-C(58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 126.6(6)                                     | Rh-C(52)-C(53)                                   | 110.8(4)              |  |  |
| C(51)-C(52)-C(53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 126.2(6)                                     | C(52)-C(53)-C(53)                                | 54) 114.8(6)          |  |  |
| C(53) - C(54) - C(55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113.4(6)                                     | Rh-C(55)-C(54)                                   | 106.3(5)              |  |  |
| C(54)-C(55)-C(56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 126.9(6)                                     | Rh-C(56)-C(57)                                   | 106.8(4)              |  |  |
| C(55)-C(56)-C(57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123.0(6)                                     | C(56)-C(57)-C(57)                                | 58) 115.3(6)          |  |  |
| C(51)-C(58)-C(57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113.2(6)                                     |                                                  | , , , ,               |  |  |
| Conformer 2: Population $C(61)-C(68) = 0.3148$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                                  |                       |  |  |
| $\mathbf{Ph}_{\mathbf{D}}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DUIIU I<br>2226(0)                           | Db_D(9)                                          | 2 2842(0)             |  |  |
| $R_{H}^{-1} = \Gamma(1)$ 2<br>$R_{H}^{-1} = C(61)$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2000(9)                                    | $R_{\rm H} = \Gamma(2)$<br>$R_{\rm h} = C(62)$   | 2.2043(3)             |  |  |
| $\sum_{n=1}^{\infty} Rh - C(65)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.30(1)                                      | Ph-C(66)                                         | 2.23(2)               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | C(00)                                            | 2.22(1)               |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bond                                         | Angles                                           |                       |  |  |
| S ₿(1)−Rh−P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85.33(3)                                     | ) $P(1) - Rh - C(61)$                            | 157.2(4)              |  |  |
| <sup>¬</sup> , ₹(1)−Rh−C(62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170.3(4)                                     | P(1)-Rh-C(65)                                    | 97.9(3)               |  |  |
| $\widehat{\mathfrak{B}}$ $\widehat{\mathfrak{P}}(1)$ -Rh-C(66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91.5(3)                                      | P(2)-Rh-C(61)                                    | 98.9(4)               |  |  |
| ≌ <b>£</b> (2)−Rh−C(62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89.6(4)                                      | P(2)-Rh-C(65)                                    | 152.2(3)              |  |  |
| = P(2) - Rh - C(66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 171.9(3)                                     | C(61)-Rh-C(62)                                   | 32.0(6)               |  |  |
| 5 €(61)−Rh−C(65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88.8(5)                                      | C(61)-Rh-C(66)                                   | 81.3(5)               |  |  |
| $\geq \overline{\mathfrak{G}}(62) - \mathrm{Rh} - \mathrm{C}(65)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82.8(5)                                      | C(62)-Rh-C(66)                                   | 94.6(5)               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.7(4)                                      | Rh-C(61)-C(68)                                   | 111(1)                |  |  |
| $\simeq \tilde{g}(62) - C(61) - C(68)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 131(1)                                       | Rh-C(62)-C(63)                                   | 105(1)                |  |  |
| $S \not\subseteq (61) - C(62) - C(63)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121(1)                                       | C(62)-C(63)-C(63)                                | 64) 117(1)            |  |  |
| $\vec{z}$ $\vec{c}$ (63)-C(64)-C(65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120(1)                                       | Rh-C(65)-C(64)                                   | 108.3(8)              |  |  |
| $\overleftarrow{C}(64) - C(65) - C(66)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 123(1)                                       | Rh-C(66)-C(67)                                   | 105.7(8)              |  |  |
| □ 髶(65)-C(66)-C(67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 128(1)                                       | C(66) - C(67) - C(67)                            | <b>68)</b> 114(1)     |  |  |
| $\stackrel{\text{\tiny M}}{=} \underbrace{\mathfrak{E}}(61) - C(68) - C(67)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118(1)                                       |                                                  |                       |  |  |
| U o<br>S Overall Molecular Geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                                  |                       |  |  |
| $\frac{1}{2}$ Rh-P(1) 2.2886(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ))                                           | Rh-P(2) 2.2                                      | 843(9)                |  |  |
| $= \frac{1}{2} $ | <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Rh-C range 2.2                                   | 2(1) - 2.319(7)       |  |  |
| $\stackrel{a}{\subseteq} \stackrel{b}{E}(1) - C(8) = 1.846(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | P(1) - C(11) 1.8                                 | 10(3)                 |  |  |
| $\frac{1}{5}$ <b>B</b> (1)-C(21) 1.826(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | P(2) - C(7) 1.8                                  | 49(3)                 |  |  |
| $\hat{\partial} \hat{\mathbf{E}}(2) - C(31) 1.821(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | P(2) - C(41) 1.8                                 | 20(3)                 |  |  |
| $\mathbf{\tilde{E}}(7) - \mathbf{C}(8) = 1.614(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | B-C(av) 1.6                                      | 97                    |  |  |
| <b>B</b> -C range 1.617(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.739(5)                                    | B-B(av) 1.7                                      | 82                    |  |  |
| <b>Ē</b> –B range 1.732(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.863(6)                                    | C-C(phenyl av) 1.3                               | 86                    |  |  |
| D(1)_DL D(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95 99(9)                                     | $\mathbf{P}_{\mathbf{P}}\mathbf{P}_{\mathbf{h}}$ | 04 69                 |  |  |
| $\Gamma(I) = I \Pi = \Gamma(\lambda)$<br>$\Gamma = \Gamma = \Gamma = \Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0J.33(3)<br>86 24                            | $F = K_{11} = C = C$<br>Ph = P(1) = C(0)         | 34.02<br>112 /(1)     |  |  |
| $D_{\rm L} = 0 = 0 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00.34                                        | $R_{1} = r(1) = C(\delta)$<br>$R_{1} = C(01)$    | 110.4(1)              |  |  |
| $R_{11} = F(1) = U(11)$<br>$P_{11} = D(2) = C(7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.7(1)<br>112.0(1)                         | $R_{1} = r(1) = C(21)$<br>$P_{1} = D(2) = C(21)$ | 110.0(1)<br>115.7(1)  |  |  |
| $R_{1} = F(2) = C(1)$<br>$R_{1} = D(2) = C(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.9(1)                                     | $R_{1} = r(2) = C(31)$<br>D(2) = C(7) = C(2)     | 113.7(1)              |  |  |
| D(1) = C(2) = C(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.0(1)<br>111.1(9)                         | $\Gamma(L) = C(I) = C(0)$                        | 113.3(2)              |  |  |
| $\Gamma(1) = U(0) = U(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114.1(2)                                     |                                                  |                       |  |  |

ter phosphorus atoms. The IR spectra show the B-H stretching frequency at the expected position for a *nido* carborane cluster ( $\nu < 2550 \text{ cm}^{-1}$ ) and confirm the presence or absence of CO as ligands in the new complexes. As a general observation, it appears that the less basic monophosphines are capable of displacing only one CO, while the more basic ones may displace both, e.g. PPh<sub>3</sub> and PMePh<sub>2</sub> displace one CO, while PMe<sub>2</sub>Ph displace two. Phosphites are an exception since they displace the two CO groups. As discussed below this reaction is more related to steric hindrance than electronic effects. The IR spectra of [Rh{7,8-(PPh\_2)\_2-7,8-C\_2B\_9H\_{10}}(CO)(PMePh\_2)] and [Rh{7,8-(PPh\_2)\_2-7,8-C\_2B\_9H\_{10}}(CO)(PMePh\_2)] show a single CO band at 2032

and 2009 cm<sup>-1</sup>, respectively. Diphosphines are able of displacing the two CO molecules of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)_2]$ . If neutral diphosphines such as diphos and 1,2-(PPh\_2)\_2-1,2-C\_2B\_10H\_{10} or anionic diphosphines such as  $[7,8-(PPh_2)_2-7,8-C_2B_9H_{10}]^-$  are used, complete substitution of the CO molecules is observed. Probably the chelating effect is the driving force for this process, providing additional stability for the formation of compounds of the type  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}]^-$  (PP)]<sup>*n*</sup> (*n* = 0 if PP = diphos or 1,2-(PPh\_2)\_2-1,2-C\_2B\_10H\_{10}; *n* = -1 if PP = [7,8-(PPh\_2)\_2-7,8-C\_2B\_9H\_{10}]^-).

The situation is different when N-donor ligands are used (Figure 3). The removal of both CO molecules in  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)_2]$  by amines follows the expected path only with monodentate ligands such as pyridine. In this case,  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}-(py)_2]$  is isolated. The <sup>31</sup>P-NMR in DMSO is explained by substitution of one pyridine by DMSO, producing  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(py)(DMSO)]$  in solution. When chelating N-donor ligands such as phenanthroline or bipyridine are used, monocarbamoyl derivatives are formed instead of total substitution of both CO ligands.

Many metal carbonyl complexes are known to react directly with nucleophiles such as ammonia or secondary amines to yield carbamoyl complexes<sup>14</sup> (Figure 4). However, only a few examples of the analogous reactions with diamines have been noted,<sup>15</sup> and in those cases dinuclear dicarbamoyl complexes have been reported. in which the two metal centers were linked via a dicarbamoyl bridge. In the example reported here, a monocarbamoyl moiety has been formed which acts as a chelating ligand. We do not fully rule out that the formation of a dicarbamoyl ligand may take place, but chemical analysis better support the monocarbamoyl, though variations between one or the other are so small that they are not conclusive. The CO complexes stretching frequency of the IR spectra moves from 2080 cm<sup>-1</sup>, observed for  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)_2]$  to approximately 1650 cm<sup>-1</sup>, the typical range for >N-C=Ogroups.

The <sup>1</sup>H-NMR spectrum confirms the coordination of the carborane cluster to Rh(I). The characteristic broad band of the BHB hydrogen bridge appears in all cases between -2.0 and -2.6 ppm. The multiplets due to aromatic hydrogen atoms of the phenylphosphines and N-donor ligands appear in the range between 6.69 and 8.52 ppm, and the complexes containing alkyl groups resonate at the expected frequencies.

The <sup>11</sup>B-NMR spectra of these complexes also confirm the participation of the cluster in the Rh(I) coordination. The spectrum pattern and frequency range are quite similar to the ligand. In several cases minor variations are observed due to a reduction of symmetry of the ligand.

The <sup>31</sup>P{<sup>1</sup>H}-NMR spectra support the proposed stoichiometries. We propose monocarbamoyl ligands and not dicarbamoyl because the number of resonances and the coupling constants observed require complex asymmetry. The high insolubility of these complexes required to use a good solvating agent such as DMSO. Total substitution of the chelating carbamoyl ligand in

<sup>(14) (</sup>a) Angelici, R. J. Acc. Chem. Res. **1972**, *5*, 335. (b) Angelici, R. J. and Blacik, L. J. Inorg. Chem. **1972**, *11*, 1754. (c) Behrens, H. Adv. Organomet. Chem. **1980**, *18*, 1.

<sup>(15)</sup> Lindsay, A. J.; Kim, S.; Jacobson, R. A.; Angelici, R. J. Organometallics 1984, 3, 1523.



**Figure 2.** Schematic representation of [Rh{**7,8-(PPh\_2)\_2-7,8-C\_2B\_9H\_{10}**}(cod)] reactivity and CO displacement reactions by P-donor ligands at [Rh{**7,8-(PPh\_2)\_2-7,8-C\_2B\_9H\_{10}**}(CO)<sub>2</sub>].



**Figure 3.** Schematic representation of the reactivity of [Rh{**7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>**}(CO)<sub>2</sub>] versus N-donor ligands.

$$\underbrace{\overset{O}{\exists}}_{\underset{N}{\exists}} L_{n} M \underbrace{\overset{O}{=}}_{\underset{N}{\exists}} O_{n}^{\dagger} + 2 H N R R' = L_{n} M \underbrace{\overset{O}{\leftarrow}}_{\underset{N}{d}} N R R' + H_{2} \overset{\dagger}{N} R R'$$

**Eigure 4.** Carbamoyl derivatives.

 $\vec{s}$ ome of the molecules by DMSO explains the  ${}^{31}P{}^{1}H$ -NMR spectra. The values of chemical shifts and coupling constants are similar to those registered in the literature for Rh(I) complexes.<sup>16</sup>

The starting complex  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}]$ -(cod)] is an excellent precursor to synthesize a new series of Rh(I) complexes, first by replacement of the diolefinic cod ligand by CO, and second by P-donor or N-donor ligands. In the case of replacement by P-donor ligands, the rate of carbonyl substitution may depend on the electronic and steric effects of the phosphines. As mentioned, with PPh<sub>3</sub> and PMePh<sub>2</sub>, even in excess, only monosubstitution is observed, while with PMe<sub>2</sub>Ph and P(OEt)<sub>3</sub> disubstitution is always found. These three monophosphines and the monophosphite have different electronic properties: the basicity of alkylphosphines is higher than the aryl ones, but the steric effect seems to be the dominant factor in the rate of CO substitution in  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)_2]$ . From Tolman's cone angle data,<sup>17</sup> the steric constrains imposed by the phosphorus ligands decrease in the following order:

$$PPh_3 > PMePh_2 > diphos > PMe_2Ph > P(OEt)_3$$

The cone angle explains the ability of the low-angle phosphines to substitute both CO groups, while the high-angle phosphines only replace one CO. It has not been possible to prepare the complex analogous to Wilkinson's catalyst by direct substitution of Cl<sup>-</sup> and PPh<sub>3</sub> by the anionic diphosphine  $[7,8-(PPh_2)_2-7,8-C_2B_9H_{10}]^-$ . Steric requirements may not allow the formation of "[Rh{7,8-(PPh\_2)\_2-7,8-C\_2B\_9H\_{10}}(PPh\_3)\_2]", although the analogous exodithiocarborane complexes are well-known.<sup>18</sup>

For chelating diphosphines, two additional factors must be considered: first, the additional stability conferred by their chelating capacity as compared to two carbon monoxide molecules and, second, their minor steric hindrance in comparison with the two analogous monophosphines. These aspects favor the disubstitution of the two CO molecules of  $[Rh\{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}\}(CO)_2]$  independently of their electronic properties or their neutral or anionic charge.

<sup>(16)</sup> Tolman, C. A.; Meakin, P. Z.; Lindner, A. L.; Jesson, J. P. J. Am. Chem. Soc. 1974, 96, 2762.

<sup>(17)</sup> Tolman, C. A. Chem. Rev. 1977, 77, 313.

<sup>(18)</sup> Teixidor, F.; Rius, J.; Miravitlles, C.; Viñas, C.; Escriche, Ll.; Sánchez, E.; Casabó, J. *Inorg. Chim. Acta* **1990**, *176*, 61.

With monodentate N-donor ligands, disubstitution occurs, but in contrast, the reaction with chelating diamines, such as bipy and phen, is an exception, leading to the formation of chelating monocarbamoyl derivatives.

As a conclusion, a family of new Rh(I) complexes formally analogous to Wilkinson's catalyst by substitution of Cl<sup>-</sup> and PPh<sub>3</sub> for the anionic diphosphine [7,8- $(\mathbf{PPh}_2)_2 \cdot 7, \mathbf{8} \cdot \mathbf{C}_2 \mathbf{B}_9 \mathbf{H}_{10}$ , has been accomplished. Using [Rh{**7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>**}(cod)] as a starting material, replacement of the olefinic ligand by CO and then by phosphines, diphosphines, and N-donor ligands has yielded this series of Rh(I) complexes. The most important factor in the replacement of the CO molecules is the steric hindrance of the phosphines. With the highly hindered phosphines, only monosubstitution is observed, while with the less hindered ones, disubstitution is observed. The chelating diphosphines in each case produce disubstitution. Electronic effects of the phosphines seem to be of lesser importance in the formation of these complexes.

Variations in the nature of the ancillary ligands bound to Rh(I) will enable a detailed study of their effect on the catalytic properties of these complexes. The sesults of this study will be the subject of a subsequent publication.

# **Experimental Section**

2009

June

uo

CARLI CONSORTIUM

30,

 $\underline{\bigcirc}$  General Methods. 1,2-Dicarba-*closo*-dodecaborane was sublimed under high vacuum before use. 1,2-(PPh<sub>2</sub>)<sub>2</sub>-1,2- $\underline{\bigcirc}_2 B_{10}H_{10}$  and [NMe<sub>4</sub>][7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>] were prepared from 1,2-dicarba-*closo*-dodecaborane according to the literature procedure.<sup>5</sup> A 1.6 M solution of *n*-butyllithium in hexane (Fluka) was used as purchased. [RhCl(PPh<sub>3</sub>)<sub>3</sub>],<sup>19</sup> [RhCl(CO)-( $\underline{\bigcirc}$ Ph<sub>3</sub>)<sub>2</sub>],<sup>20</sup> and [Rh<sub>2</sub>( $\mu$ -Cl)<sub>2</sub>(cod)<sub>2</sub>]<sup>21</sup> were synthesized according to the literature procedures. Solvents, inorganic salts, and ( $\underline{\bigcirc}$ ganic reagents were analytical reagent grade from Fluka or Aldrich and were used as purchased.

ට ඉ All reactions were carried out under a dinitrogen atmo-කි\$phere employing Schlenk techniques.

Microanalyses were performed in our analytical laboratory by using a Perkin-Elmer 240B microanalyzer. IR spectra were obtained with KBr pellets on a Nicolet 710-FT spectropho-commeter. The <sup>1</sup>H-NMR, <sup>11</sup>B-NMR, and <sup>31</sup>P-NMR spectra were Becorded on Bruker AM 400WB or AC 250WB instruments. ā Synthesis of [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(cod)]. [Rh<sub>2</sub> $f_{\pi}$ -Cl)<sub>2</sub>(cod)<sub>2</sub>] (26 mg, 0.053 mmol) was added to 15 mL of a solution of [NMe<sub>4</sub>]][7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>] 26 mg (0.053 mmol), in deoxygenated refluxing ethanol, and the mixture was refluxed for 1 h. An orange solid precipitated from the warm mixture. The orange solid was separated by filtering under nitrogen and then washed with ethanol (10 mL) and a mixture of ethanol/water (2/1), giving [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(cod)], 62 mg (87%). Anal. Calcd for C<sub>34</sub>H<sub>42</sub>B<sub>9</sub>P<sub>2</sub>Rh: C, 57.29; H, 5.94. Found: C, 57.45; H, 6.34. IR (KBr): v<sub>max</sub>-(B-H) = 2578, 2525 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>, 25 °C, TMS):  $\delta$  -2.6 (br, 1 H, BHB), 1.97-2.34 (q, 8 H, CH<sub>2</sub>), 4.55 and 4.69 (s, 4 H, CH), 7.25-7.29, 7.41-7.45, 7.58-7.65 (m, 20 H, Carvl-H). <sup>11</sup>B-NMR (128 MHz, CH<sub>2</sub>Cl<sub>2</sub>, 25 °C, BF<sub>3</sub>-Et<sub>2</sub>O):  $\delta = -10.9$  (d, <sup>1</sup>J(BH) = 123 Hz, 2 B), -16.1 (d, <sup>1</sup>J(BH) = 135 Hz, 5 B), -29.2 (1 B), -35.3 (d,  $^{1}J(BH) = 142$  Hz, 1 B). <sup>31</sup>P{<sup>1</sup>H}-NMR (162 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 25 °C, H<sub>3</sub>PO<sub>4</sub>):  $\delta$  = 74.33  $(d, {}^{1}J(RhP) = 148 Hz).$ 

Orange crystals suitable for X-ray analysis were grown from a dichloromethane/heptane solution (3:1) after partial evaporation of the solvent.

(21) Schriver, D. F. Inorg. Synth. 1979, XIX, 218.

Synthesis of [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(CO)<sub>2</sub>]. A yellow solid was obtained when carbon monoxide was bubbled for a few minutes through a suspension of 150 mg (0.210 mmol) of [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(cod)] in deoxygenated methanol (25 mL). The resulting yellow solid was filtered off, washed with methanol, and dried in vacuum to afford 115 mg of [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(CO)<sub>2</sub>] (97%). Anal. Calcd for C<sub>28</sub>H<sub>30</sub>B<sub>9</sub>P<sub>2</sub>O<sub>2</sub>Rh: C, 50.90; H, 4.58. Found: C, 50.49; H, 4.81. IR (KBr):  $v_{max}(B-H)= 2584$ , 2580, 2532 cm<sup>-1</sup>;  $v_{max}(C=O)=$ 2087, 2054 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, acetone-d<sub>6</sub>, 25 °C, TMS):  $\delta$  -2.1 (br, 1 H, BHB), 7.44-7.87 (m, 20 H, C<sub>aryl</sub>-H). <sup>11</sup>B-NMR (128 MHz, acetone- $d_6$ , 25 °C, BF<sub>3</sub>·Et<sub>2</sub>O):  $\delta = -9.7$  $(d, {}^{1}J(BH) = 137 Hz, 2 B), -14.0 (d, {}^{1}J(BH) = 143 Hz, 3 B),$ -16.3 (2 B), -27.9 (d,  ${}^{1}J(BH) = 104$  Hz, 1 B), -35.1 (d,  ${}^{1}J(BH)$ = 144 Hz, 1 B). <sup>31</sup>P{<sup>1</sup>H}-NMR (162 MHz, acetone, 25 °C, H<sub>3</sub>-PO<sub>4</sub>):  $\delta = 79.34$  (d, <sup>1</sup>*J*(RhP) = 121 Hz).

Synthesis of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)(PPh_3)]$ . Method 1. An excess of PPh<sub>3</sub> was added to 10 mL solution of 30 mg (0.045 mmol) of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)_2]$  in deoxygenated refluxing dichloromethane, and the mixture was refluxed for 1 h. The solution was evaporated to dryness. The excess PPh<sub>3</sub> was dissolved in hexane/dichloromethane, and the yellow solid was separated by filtering under nitrogen and was washed with hexane. Yield of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}]$ : 30 mg (75%).

**Method 2.** First, 50 mg (0.087 mmol) of  $[RhCl(CO)(PPh_3)_2]$  was added to 20 mL solution of 50 mg (0.087 mmol) of  $[NMe_4]$ -[**7,8-(PPh\_2)\_2-7,8-C\_2B\_9H\_{10}**] in deoxygenated refluxing ethanol and the mixture was refluxed for 1.5 h. The resulting yellow solid was filtered, washed with hot ethanol and dried in vacuum to afford 58 mg of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)-(PPh_3)]$  (74%).

**Method 3.** This compound can be synthesized as described<sup>22</sup> from **1,2-(PPh<sub>2</sub>)<sub>2</sub>-1,2-C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>** and [RhCl(CO)-(PPh<sub>3</sub>)<sub>2</sub>] in molar ratio 1:1, in refluxing ethanol. Yield: 55%.

Anal. Calcd for  $C_{45}H_{45}B_9P_3ORh$ : C, 60.39; H, 5.07. Found: C, 58.37; H, 4.99. IR (KBr):  $v_{max}(B-H)=2582$ , 2538, 2524 cm<sup>-1</sup>;  $v_{max}(C\equiv O)=2032$ , 2014 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, acetone- $d_6$ , 25 °C, TMS):  $\delta$  -2.5 (br, 1 H, BHB), 6.93, 7.28–7.33, 7.64 (m, 35 H,  $C_{aryl}$ -H). <sup>11</sup>B-NMR (128 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 25 °C, BF<sub>3</sub>·Et<sub>2</sub>O):  $\delta$  = -10.5 (1 B), -13.2 (3 B), -15.0 (2 B), -17.9 (d, <sup>1</sup>J(BH) = 144 Hz, 2 B), -31.5 (d, <sup>1</sup>J(BH) = 90 Hz, 1 B), -35.9 (d, <sup>1</sup>J(BH) = 120 Hz, 1 B).

 $[Rh\{7,\!8\text{-}(PPh_2)_2\text{-}7,\!8\text{-}C_2B_9H_{10}\}(CO)\text{-}$ Synthesis of (PMePh<sub>2</sub>)]. An excess of PMePh<sub>2</sub> was added to a 10 mL solution of 30 mg (0.045 mmol) of [Rh{7,8-(PPh2)2-7,8- $C_2B_9H_{10}$  (CO)<sub>2</sub> in deoxygenated refluxing dichloromethane and the yellow solution was refluxed for 3 h, yielding a yellow solid. The solid was filtered and washed with dichloromethane. Yield: 36 mg of [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}-(CO)(PMePh<sub>2</sub>)] (96%). Anal. Calcd for C<sub>40</sub>H<sub>43</sub>B<sub>9</sub>P<sub>3</sub>ORh: C, 57.68; H, 5.20. Found: C, 56.70; H, 5.22. IR (KBr): v<sub>max</sub>(B-H) = 2571, 2537 cm<sup>-1</sup>;  $v_{\text{max}}$  (C=O)= 2009 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>, 25 °C, TMS):  $\delta$  -2.4 (br, 1 H, BHB), 1.21 (m, 3 H, CH<sub>3</sub>), 6.98-7.68, 8.11-8.16 (m, 30 H, C<sub>aryl</sub>-H). <sup>11</sup>B-NMR (128 MHz, CHCl<sub>3</sub>, 25 °C, BF<sub>3</sub>·Et<sub>2</sub>O):  $\delta = -10.7$  (1 B), -11.7(2 B), -13.6 (2 B), -16.8 (3 B), -29.4 (1 B), -36.4 (d, 1J(BH) = 137 Hz, 1 B).  ${}^{31}P{}^{1}H{}-NMR$  (162 MHz, CDCl<sub>3</sub>, 25 °C, H<sub>3</sub>-PO<sub>4</sub>):  $\delta = 10.49$  (two dd, <sup>2</sup>*J*(PP)<sub>c</sub> = 39 Hz, <sup>2</sup>*J*(PP)<sub>t</sub> = 244 Hz,  ${}^{1}J(\text{RhP}) = 127 \text{ Hz}$ , 67.89 (dt,  ${}^{2}J(\text{PP})_{c} = 39 \text{ Hz}$ ,  ${}^{1}J(\text{RhP}) = 127$ Hz), 83.02 (two dd, <sup>2</sup>*J*(PP)<sub>c</sub> = 39 Hz, <sup>2</sup>*J*(PP)<sub>t</sub> = 244 Hz, <sup>1</sup>*J*(RhP) = 127 Hz).

Synthesis of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(PMe_2Ph)_2]$ . An excess of PMePh<sub>2</sub> was added to 8 mL of a solution of 30 mg (0.045 mmol) of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)_2]$  in deoxygenated refluxing dichloromethane and the yellow solution was refluxed for 1 h. After addition of hexane (4 mL) and storing at -4 °C, a microcrystalline orange solid separated, filtered, washed with a mixture of hexane/diethyl ether (1:1),

<sup>(19)</sup> Osborn, J. A.; Wilkinson, G. Inorg. Synth. 1967, X, 67.

<sup>(20)</sup> McCleverty, J. A.; Wilkinson, G. Inorg. Synth. 1966, VIII, 214.

<sup>(22)</sup> Teixidor, F.; Viñas, C.; Abad, M. M.; Kivekäs, R.; Sillanpää, R. J. Organomet. Chem. **1996**, 509, 139.

and dried in vacuum. Yield: 23 mg of  $[Rh\{7,8\cdot(PPh_2)_2\cdot7,8\cdotC_2B_9H_{10}\}(PMe_2Ph)_2]$  (58%). Anal. Calcd for  $C_{42}H_{52}B_9P_4Rh$ : C, 57.26; H, 5.95. Found: C, 57.35; H, 6.12. IR (KBr):  $v_{max}(B-H) = 2591$ , 2545, 2516, 2506 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CD<sub>2</sub>-Cl<sub>2</sub>, 25 °C, TMS):  $\delta - 2.6$  (br, 1 H, BHB), 1.66 and 1.69 (s, 12 H, CH<sub>3</sub>), 7.17-7.71, 7.96 (m, 30 H,  $C_{aryl}-H$ ). <sup>11</sup>B-NMR (128 MHz, acetone, 25 °C, BF<sub>3</sub>·Et<sub>2</sub>O):  $\delta = -11.3$  (d, <sup>1</sup>*J*(BH) = 140 Hz, 2 B), -17.0 (d, <sup>1</sup>*J*(BH) = 121 Hz, 5 B), -30.8 (d, <sup>1</sup>*J*(BH) = 111 Hz, 1 B), -36.0 (d, <sup>1</sup>*J*(BH) = 143 Hz, 1 B). <sup>31</sup>P{<sup>1</sup>H}-NMR (162 MHz, acetone- $d_6$ , 25 °C, H<sub>3</sub>PO<sub>4</sub>):  $\delta = -4.29$  (dd, <sup>2</sup>*J*(PP)<sub>t</sub> = 133 Hz, <sup>1</sup>*J*(RhP) = 227 Hz), 82.17 (dd, <sup>2</sup>*J*(PP)<sub>t</sub> = 133 Hz, <sup>1</sup>*J*(RhP) = 227 Hz).

Synthesis of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(P{OEt}_3)_2]$ . An excess of P(OPh)<sub>3</sub> was added to 8 mL of a solution of 30 mg (0.045 mmol) of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)_2]$  in deoxygenated refluxing dichloromethane, and the yellow solution was refluxed for 30 min. After evaporation to ca 3 mL, a mixture of hexane/ethyl ether (2:1) was added and a yellow solid precipitated. This was filtered and washed with hexane/ ether (2:1). Yield: 23 mg of [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}- $(P{OEt}_2)_2$ ] (78%). Anal. Calcd for  $C_{38}H_{60}B_9P_4O_6Rh$ : C, 48.71; H, 6.45. Found: C, 48.35; H, 6.47. IR (KBr):  $v_{max}(B-H) =$ 2577, 2531, 2522 cm  $^{-1}.\,$   $^{1}H\text{-}NMR$  (400 MHz, CDCl\_3, 25 °C, TMS):  $\delta -2.5$  (br, 1 H, BHB), 0.91 (br, 18 H, CH<sub>3</sub>), 3.62 (br, 12 H, CH<sub>2</sub>), 7.17, 7.28, 7.59, 7.93 (m, 20 H, C<sub>aryl</sub>-H). <sup>11</sup>B-NMR (128 MHz, CHCl<sub>3</sub>, 25 °C, BF<sub>3</sub>·Et<sub>2</sub>O):  $\delta = -10.7$  (2 B), -15.8**b** B), -29.5 (1 B), -35.7 (d,  ${}^{1}J(BH) = 112$  Hz, 1 B).  ${}^{31}P{}^{1}H{}$ - $\widetilde{R}$ MR (162 MHz, CDCl<sub>3</sub>, 25 °C, H<sub>3</sub>PO<sub>4</sub>):  $\delta = 78.95$  (dd, <sup>2</sup>J(PP)<sub>t</sub>  $\overset{\circ}{\cong} \overset{\circ}{\equiv} 357 \text{ Hz}, \, {}^{1}J(\text{RhP}) = 122 \text{ Hz}), \, 129.95 \text{ (dd, } {}^{2}J(\text{PP})_{t} = 357 \text{ Hz}, \\ \overset{\circ}{\approx} \overset{\circ}{=} J(\text{RhP}) = 222 \text{ Hz}).$ 

ଚ୍ଚି ୍ରି Synthesis of [Rh{7,8-(PPh₂)₂-7,8-C₂B9H10}{1,2-(PPh₂)₂- $\stackrel{\text{g}}{=} \underbrace{\mathbf{g}_2 - \mathbf{C}_2 \mathbf{B}_{10} \mathbf{H}_{10}}_{10}$ ]. First, 19 mg (0.038 mmol) of 1,2-(**PPh**\_2)<sub>2</sub>-1,2-**C**\_2 **B**\_1 **H**\_2 was added to a 15 mL solution of 25 mg (0.038 mmol) G2B10H10 was added to a 15 mL solution of 25 mg (0.038 mmol) on of [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(CO)<sub>2</sub>] in deoxygenated re-CONSORTIUM fluxing dichloromethane, and the yellow solution was refluxed for 30 min. After evaporation to ca 8 mL, hexane was added. The yellow solution was stored at -4 °C and a yellow maicrocrystalline solid precipitated. This was filtered and washed with hexane. Yield: 38 mg of [Rh{7,8-(PPh2)2-7,8-ARLI  $\mathbf{\underline{G}}_{2}\mathbf{B}_{9}\mathbf{H}_{10}$  { **1,2-(PPh**<sub>2</sub>)<sub>2</sub>-**1,2-C**<sub>2</sub> $\mathbf{B}_{10}\mathbf{H}_{10}$  ] (90%). Anal. Calc for @<sub>52</sub>H<sub>60</sub>B<sub>19</sub>P<sub>4</sub>Rh: C, 55.90; H, 5.41. Found: C, 56.68; H, 5.50.  $\overset{\frown}{\cup}$  **R** (KBr):  $v_{\text{max}}$ (B–H) = 2563, 2546, 2528, 2520 cm<sup>-1</sup>. <sup>1</sup>H-NMR  $\delta = 400$  MHz, CDCl<sub>3</sub>, 25 °C, TMS):  $\delta = 2.6$  (br, 1 H, B**H**B), 6.81  $\begin{array}{c} \overbrace{}{3} \overbrace{}{7} \underbrace{62}, 8.07 \text{ (m, 40 H, } C_{aryl} - \mathbf{H}). \\ \overbrace{}{11} B-NMR (128 MHz, CH_2Cl_2, \\ \overbrace{}{8} \underbrace{62}, BF_3 \cdot Et_2O): \\ \overbrace{}{8} = -1.8 (2 B), -4.1 (4 B), -8.7 (2 B), -10.9 \\ \overbrace{}{8} \underbrace{6}, B), -15.9 (d, {}^{1}J(BH) = 102 Hz, 3 B), -29.1 (1 B), -35.7 (d, \\ \overbrace{}{6} \underbrace{6}, B) = 131 Hz, 1 B). \\ \overbrace{}{8} 1P\{{}^{1}H\}-NMR (162 MHz, acctone-d_6, \\ \overbrace{}{8} F, C H BO) Hz, \\ \overbrace{}{8} = 2.92 (2 B) ($  $\breve{\mathfrak{B}}$  °C, H<sub>3</sub>PO<sub>4</sub>):  $\delta$  = 73.88 (two dd, <sup>2</sup>*J*(PP)<sub>c</sub> = 25 Hz, <sup>2</sup>*J*(PP)<sub>t</sub> =  $\mathbf{B}_{1}$  Hz,  ${}^{1}J(\text{RhP}) = 269$  Hz), 84.45 (two dd,  ${}^{2}J(\text{PP})_{c} = 25$  Hz,  ${}^{2}J(PP)_{t} = 131 \text{ Hz}, {}^{1}J(RhP) = 266 \text{ Hz}).$ 

Synthesis of  $[NMe_4][Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}_2]$ . Method 1. First, 26 mg (0.045 mmol) of  $[NMe_4]][7,8-(PPh_2)_2-7,8-C_2B_9H_{10}]$  was added to a 10 mL solution of 30 mg (0.045 mmol) of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)_2]$  in deoxygenated refluxing dichloromethane, and the yellow solution was refluxed for 30 min. After evaporation to dryness, chloroform and heptane were added and an orange microcrystalline solid separated. This was filtered and washed with heptane and diethyl ether to yield 41 mg of  $[NMe_4][Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}_2]$  (77%).

**Method 2.** This product can be obtained from  $[NMe_4][7,8-(PPh_2)_2-7,8-C_2B_9H_{10}]$  and  $[RhCl(PPh_3)_3]$  in molar ratio 1:1 or 2:1 in refluxing ethanol, but the yield is only 55%.

Anal. Calcd for C<sub>56</sub>H<sub>72</sub>B<sub>18</sub>P<sub>4</sub>NRh: C, 56.97; H, 6.15; N, 1.19. Found: C, 54.53; H, 6.11; N, 1.17. IR (KBr):  $v_{max}(B-H)=2527$  cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, acetone- $d_6$ , 25 °C, TMS):  $\delta$  -2.2 (br, 2 H, BHB), 3.52 (s, 12 H, CH<sub>3</sub>), 6.69–8.19, 8.52 (m, 40 H, C<sub>aryl</sub>-**H**). <sup>11</sup>B-NMR (128 MHz, CH<sub>2</sub>Cl<sub>2</sub>, 25 °C, BF<sub>3</sub>·Et<sub>2</sub>O):  $\delta$  = -11.0 (2 B), -16.0 (5 B), -29.7 (1 B), -36.1 (1 B). <sup>31</sup>P{<sup>1</sup>H}-NMR (162 MHz, acetone- $d_6$ , 25 °C, H<sub>3</sub>PO<sub>4</sub>):  $\delta$  = 78.46 (d, <sup>1</sup>J(RhP)= 138 Hz), 80.78 (d, <sup>1</sup>J(RhP) = 138 Hz).

Synthesis of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(diphos)].$ 

**Method 1.** 1,2-Bis(diphenylphosphine)ethane, diphos (12 mg, 0.030 mmol), was added to a refluxing solution of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)_2]$  (20 mg, 0.030 mmol) in deoxygenated dichloromethane (8 mL). The yellow solution was refluxed for 30 min, and a yellow solid was separated, filtered, washed with dichloromethane, and dried in vacuum to afford 16 mg of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(diphos)]$  (88%).

**Method 2.** This product can be obtained from  $[Rh{7,8}-(PPh_2)_2-7,8-C_2B_9H_{10}]$  (cod)] and diphos under the same reaction conditions with similar yield.

Anal. Calcd for  $C_{51}H_{54}B_9P_4Rh$ : C, 61.81; H, 5.49. Found: C, 61.81; H, 5.49. IR (KBr):  $v_{max}(B-H) = 2580, 2543, 2518$  cm<sup>-1</sup>.

Synthesis of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CObipy)]$ -<sup>1/</sup><sub>3</sub>CH<sub>2</sub>Cl<sub>2</sub>. 2,2'-Bipyridine (12 mg, 0.072 mmol) was added to a refluxing solution of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(CO)_2]$ (40 mg, 0.060 mmol) in deoxygenated dichloromethane (10 mL). The mixture was refluxed for 30 min, and stirred at room temperature for a further 2 h. The resulting ivory solid was filtered, washed with hexane and diethyl ether, and dried in vacuum to afford 45 mg of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}-(CObipy)]$ . <sup>1/</sup><sub>3</sub>CH<sub>2</sub>Cl<sub>2</sub> (92%). Anal. Calcd for C<sub>37</sub>H<sub>38</sub>B<sub>9</sub>P<sub>2</sub>N<sub>2</sub>-ORh. 1/3 CH<sub>2</sub>Cl<sub>2</sub>: C, 54.87; H, 4.77; N, 3.43. Found: C, 55.25; H, 4.26; N, 2.85. IR (KBr):  $v_{max}(B-H) = 2586, 2537 \text{ cm}^{-1};$  $v_{max}(C=O) = 1682, 1629 \text{ cm}^{-1}.$ 

Synthesis of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(COphen)]$ . 1/2CH2Cl2. 1,10-Phenanthroline (20 mg, 0.092 mmol) was added to a refluxing solution of [Rh{7,8-(PPh2)2-7,8-C2B9H10}-(CO)<sub>2</sub>] (60 mg, 0.090 mmol) in deoxygenated dichloromethane (10 mL). The mixture was refluxed for 30 min and stirred at room temperature for a further 2 h. It was then evaporated to approximately 1/2 of the volume, and hexane was added until a solid precipitated. Upon recrystallization from dichloromethane/heptane, a yellow solid was obtained. This was filtered, washed with heptane and diethyl ether and dried in vacuum to afford 62 mg of [Rh{7,8-(PPh2)2- $\textbf{7,8-C_2B_9H_{10}}(COphen)] \cdot {}^{1}\!/_2CH_2Cl_2 ~(82\%). ~Anal. ~Calcd~for$  $C_{39}H_{39}B_9P_2N_2ORh \cdot {}^{1}\!/_{2}CH_2Cl_2; \ C, \ 55.40; \ H, \ 4.71; \ N, \ 3.27.$ Found: C, 55.50; H, 4.56; N, 3.13. IR (KBr):  $v_{max}$ (B-H) = 2563, 2546, 2528, 2520 cm<sup>-1</sup>;  $v_{max}$ (C=O) = 1674, 1628 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 25 °C, TMS):  $\delta$  –2.1 (br, 1 H, BHB), 6.40, 6.88–7.75, 7.91, 8.49, 9.39 (m, 28 H, C<sub>aryl</sub>–H). <sup>11</sup>B-NMR (128 MHz, CH<sub>2</sub>Cl<sub>2</sub>, 25 °C, BF<sub>3</sub>·Et<sub>2</sub>O):  $\delta = -9.1$  (2 B), -14.3 (1 B), -16.3 (5 B), -28.4 (1 B), -35.1 (1 B).  ${}^{31}P{}^{1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{}^{-1}H{$ NMR (162 MHz, DMSO- $d_6$ , 25 °C, H<sub>3</sub>PO<sub>4</sub>):  $\delta = 68.6$  (dd,  ${}^{2}J(PP)_{c} = 30$  Hz,  ${}^{1}J(RhP) = 230$  Hz, PPh<sub>2</sub>), 75.7 (dd,  ${}^{2}J(PP)_{c} =$ 30 Hz,  ${}^{1}J(RhP) = 148$  Hz, PPh<sub>2</sub>), 96.27 (d,  ${}^{1}J(RhP) = 311$  Hz, PPh<sub>2</sub>).

Synthesis of [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(py)<sub>2</sub>]·<sup>1</sup>/<sub>3</sub>CH<sub>2</sub>Cl<sub>2</sub>. Excess pyridine was added to a refluxing solution of [Rh- $\{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}\}(CO)_2\}$  (30 mg, 0.045 mmol) in deoxygenated dichloromethane (8 mL). The resulting solid was refluxed for 2 h and then heptane was added. This was filtered off, washed with heptane and diethyl ether, and dried in vacuum to afford 30 mg of microcrystalline [Rh{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}(py)<sub>2</sub>]·<sup>1</sup>/<sub>2</sub>CH<sub>2</sub>Cl<sub>2</sub> (87%). Anal. Calcd for  $C_{36}H_{40}B_9P_2N_2Rh \cdot \frac{1}{3}CH_2Cl_2$ : C, 56.16; H, 5.18; N, 3.54. Found: C, 55.23; H, 4.76; N, 3.26. IR (KBr):  $v_{max}(B-H) = 2575$ , 2522 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, DMSO-*d*<sub>6</sub>, 25 °C, TMS):  $\delta$  -2.0 (br, 1 H, BHB), 5.52 (s, CH<sub>2</sub>Cl<sub>2</sub>), 6.71, 7.41-7.90, 8.71 (m, 30 H, Caryl-H). <sup>11</sup>B-NMR (128 MHz, DMSO, 25 °C. BF<sub>3</sub>·Et<sub>2</sub>O):  $\delta = -9.9$  (2 B), -15.4 (5 B), -28.9 (1 B), -35.3(1 B).  ${}^{31}P{}^{1}H{}-NMR$  (162 MHz, DMSO- $d_6$ , 25 °C, H<sub>3</sub>PO<sub>4</sub>):  $\delta$  $= 72.20 \text{ (dd, } {}^{2}J(\text{PP})_{c} = 24 \text{ Hz}, {}^{1}J(\text{RhP}) = 146 \text{ Hz}, \text{ PPh}_{2}, 86.00 \text{ Hz}, 86.00$  $(dd, {}^{2}J(PP)_{c} = 24 Hz, {}^{1}J(RhP) = 121 Hz, PPh_{2}).$ 

X-ray Structure Determination of  $[Rh{7,8-(PPh_2)_2-7,8-C_2B_9H_{10}}(cod)]$ . Data were collected at room temperature on a CAD4-Enraf-Nonius diffractometer in *w*-scan mode using graphite-monochromated Mo K $\alpha$  radiation. A total of 13 185 reflections were measured (2.17  $\leq \theta \leq 30.44^{\circ}$ ); 10 220 independent reflections with I $\geq$ 3.0 $\sigma$ (I) were used in the refinement. Absorption corrections were not carried out due to the ir-

regularity of the crystal and the low absorption coefficient  $(\mu_{\rm Mo~K\alpha} = 5.20 \text{ cm}^{-1}).$ 

The structure was solved using the Patterson function and difference Fourier syntheses (XTAL3.2),<sup>23</sup> with neutral atomic form factors.<sup>24</sup> Attempted solutions in the space groups P4<sub>1</sub> and *P*4<sub>3</sub> indicated that *P*4<sub>3</sub> was the correct space group. The positions of the disordered C<sub>8</sub>H<sub>12</sub> ligand appeared initially as those labeled as C(51)-C(58). After partial refinement of these positions, neighboring difference density peaks were observed with geometry correct for this ligand. These secondary positions were assigned as C(61)-C(68) and an overall population parameter for C(51)-C(58) was refined to a value of 0.6852 (population C(61)-C(68) = 1 - 0.6852). C(51)-C(58) and C(61)-C(68) were refined with isotropic thermal parameters while the remaining 38 non-hydrogen atoms were refined with anisotropic thermal parameters. Phenyl ring hydrogen atoms were placed in ideal calculated positions, and carborane hydrogen positions were found from the difference Fourier map, except for one hydrogen which could not be found and was omitted from the calculations. C<sub>8</sub>H<sub>12</sub> hydrogen positions could not be found from the difference Fourier synthesis and

were not included in the calculations. Hydrogen atom parameters were not refined. Isotropic thermal parameters for the hydrogen atoms were estimated as 1.25 U(C, B<sub>parent</sub>). The total number of parameters refined was 407. This model refined to R = 0.040 and  $R_w = 0.054$ , while refinement of the model of opposite chirality did not achieve a significant improvement in the *R*-factor. *R*-factors are based on |F|, where  $R = \sum |F_0|$  $|F_{\rm c}| \sum |F_{\rm o}|$  and  $R_{\rm w} = \sum |W| |F_{\rm o}| - |F_{\rm c}||^2 \sum |W| |F_{\rm o}|^2 |^{1/2}$ . Weighting scheme  $w = 1/\sigma^2(F)$ , with modified  $\sigma$ :  $\sigma^2(I) = \sigma^2(I)_{\text{diff}} + 0.0004\sigma^4$ (I)<sub>diff</sub>. Highest residual electron density in the final difference map was  $1.5 \text{ e/Å}^3$ , 0.72 Å from the Rh atom.

Acknowledgment. This work was supported by Grant PB87-0364 from the Spanish Government (CICYT, Comisión Interministerial de Ciencia y Tecnología), a postdoctoral scholarship for CRW from the Spanish "Ministerio de Educación y Ciencia", and a grant for Project QF92-9313 from CIRIT.

Supporting Information Available: Tables including complete X-ray experimental details, hydrogen atom positional parameters, anisotropic thermal parameters, a complete list of bond lengths and angles, and intermolecular hydrogen contact distances, and positional parameters and  $B_{eq}$  (13 pages). Ordering information is given on any current masthead page.

OM950887L

<sup>(23)</sup> Hall, S. R., Flack, H. D., Stewart, J. M., Eds. XTAL3.2 (Universities of Western Australia, Geneva and Maryland). Lamb Printers: Perth, Australia, 1992.

Printers: Perth, Australia, 1992. (24) Cromer D. T.; Waber, J. T. *International Tables for X-ray Crystallography*; Kluwer Academic Publishers: Dordrecht, The Neth-Filands, 1989; Volume 4, Table 2.2B. (10) 101 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (10) 100 (24) Cromer D. T.; Waber, J. T. International Tables for X-ray