Synthesis, Structure, Reactivity, and Electrochemical Study of a (2,2'-Biphosphinine) $(\eta^5$ -pentamethylcyclopentadienyl)chlororuthenium(II) Complex

Pascal Le Floch, Stephane Mansuy, Louis Ricard, and François Mathey*

Laboratoire "hétéroéléments et Coordination", URA CNRS 1499, DCPH, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Anny Jutand and Christian Amatore*

Département de Chimie, URA CNRS 1679, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

Received January 31, 1996[⊗]

 $[RuCp^*(\eta^4-C_6H_{10})Cl]$ ($Cp^*=C_5Me_5$; 1) reacts with the tmbp ligand (2; tmbp = 4,4',5,5'tetramethyl-2,2'-biphosphinine) in THF to afford the [RuCp*(tmbp)Cl] complex 3, which has also been characterized by a single-crystal X-ray diffraction study. Complex 3 crystallizes with one THF molecule. The environment about the Ru atom corresponds to that of a classical three-legged piano-stool structure. Reaction of 3 with LiBr and KCN in CH₂Cl₂/ MeOH afforded [RuCp*(tmbp)Br] (4) and [RuCp*(tmbp)CN] (5), respectively. 3 also reacts in CH₂Cl₂, in the presence of NH₄PF₆, with various monodentate ligands to produce a series of stable cationic complexes of the type [I pyridine (7), trimethyl phosphite (8), tripher nine (10), tert-butyl isocyanide (11), cis-cyc were obtained in good yields and have bee analyses and spectroscopic methods (IR and 3 has been investigated by cyclic voltamme in [RuCp*III(tmbp)Cl] at +0.49 V (vs SCE). wave, which occurs at -1.82 V vs SCE, indica with the loss of Cl⁻. The second reversible formation of the anionic [Ru⁰Cp*(tmbp)]⁻ country the cyclic voltammetry.

Introduction

Introduction of stable cationic complexes of the type $[RuCp^*(tmbp) (L)]^+[PF_6]^-$ (L = acetonitrile (6), pyridine (7), trimethyl phosphite (8), triphenylphosphine (9), 2-bromo-4,5-dimethylphosphinine (10), tert-butyl isocyanide (11), cis-cyclooctene (12), norbornene (13)). All complexes were obtained in good yields and have been characterized by a combination of elemental analyses and spectroscopic methods (IR and ³¹P, ¹H, and ¹³C NMR). The redox chemistry of 3 has been investigated by cyclic voltammetry in MeCN. Complex 3 is reversibly oxidized in [RuCp*III(tmbp)Cl] at +0.49 V (vs SCE). The first irreversible monoelectronic reduction wave, which occurs at -1.82 V vs SCE, indicates the formation of the [Ru^ICp*(tmbp)] complex with the loss of Cl^- . The second reversible reduction wave at -2.24 V was assigned to the formation of the anionic [Ru⁰Cp*(tmbp)]⁻ complex, which is stable within the time scale of

Balance between their poor σ -donor and their strong 蓋-accepting power, they act as powerful chelate li-§ands for the stabilization of electron-excessive metal centers. Recently, we demonstrated that point in the case of an electrochemically reduced (tmbp)₂ Ni⁰ $complex^{2a}$ (tmbp = 4,4',5,5'-tetramethyl-2,2'-biphosphinine) 3 (eq 1).

On the other hand, their coordination chemistry toward metallic centers having a positive oxidation state (essentially +2) still remains unclear and from a previous report it appears that, in some cases, complexes are less stable. Upon complexation, the aromaticity of the ligand is disrupted and the phosphinine nucleus behaves as a genuine cyclophosphahexatriene with a highly reactive P=C double bond. The following example of a Pt(II) complex is highly illustrative. In the presence of traces of water, a selective addition of water to the P=C₆ double bond of the phosphinine ring *trans* to the less electron donating ligand is observed⁴ (eq 2).

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

This reactivity is not specific to biphosphinines, and similar reactions have also been observed by Venanzi's

[®] Abstract published in Advance ACS Abstracts, June 15, 1996. (1) Mathey, F.; Le Floch, P. Chem. Ber., in press.

^{(2) (}a) Le Floch, P.; Ricard, L.; Mathey, F.; Jutand, A.; Amatore, C. (2) (a) Le Flotti, F., Mcald, E., Mattley, F., Jutalid, A., Alladore, C. Inorg. Chem. 1995, 34, 5070. (b) Several homoleptic complexes of zerovalent metals having the parent phosphinine C₅H₅P as a ligand have been synthesized; see: Elschenbroich, C.; Nowotny, M.; Behrendt, A.; Massa, W.; Wocaldo, S. Angew. Chem., Int. Ed. Engl. 1992, 31, 1343. Wocaldo, S. J. Organomet. Chem. 1993, 459, 157. Elschenbroich, C.; Nowotny, M.; Harms, K.; Wocaldo, S. J. Organomet. Chem. 1993, 459, 157. Elschenbroich, C.; Nowotny, M.; Behrendt, A.; Harms, K.; Wocaldo, S.; Pebler, J. J. Am. Chem. Soc. 1994, 116, 6217.

group during their studies on the coordination chemistry of the 2-(2-pyridyl)-4,5-dimethylphosphinine ligand (NIPHOS) with Pt(II) and Pd(II) cationic centers.

More convincing results have been obtained with Ru-(II) centers, for which two biphosphinine complexes, cis-[Ru(tmbp)(dmso)₂Cl₂] and *cis*-[Ru(tmbp)₂Cl₂], have been characterized⁶ by us in 1992. Nevertheless, during a preliminary investigation of their reactivity, we found that the stability of their cationic derivatives was dramatically dependent on the nature of the ancillary ligands. The first series of experiments aiming to synthesize biphosphinine analogs of the [Ru(bpy)₃]²⁺ dication showed us that the stability of complexes increased with the number of bipyridine ligands. In that way, whereas the instability of the two dications $[Ru(tmbp)_3]^{2+}[BF_4]^{-2}$ and $[Ru(tmbp)_2(bpy)]^{2+}[BF_4]^{-2}$ prevented any characterizations, the [Ru(tmbp)(bpy)₂]²⁺- $[BF_4]^{-2}$ complex was found to be rather stable.

The different factors which govern the stability of complexed biphosphinines have not been totally rationalized thus far; nevertheless, it is quite clear that the electron density available at the metal center plays a decisive role in providing (or not) sufficient π back-Conation within the π^* delocalized system of the ligand. To confirm this hypothesis, we decided to explore the Synthesis and the chemistry of very electron-rich cat-enic ruthenium(II) complexes and, quite logically, we g bcussed our study on the RuCp* fragment, which is probably the best prototype. Besides the theoretical information provided by this study we also found that information provided by this study, we also found that it might be of interest to appreciate to what extent the Eewis acidic character of this electron-rich fragment can be modulated by a strongly π accepting chelate ligand. In the chemistry of $[RuCp*L_2X]$ complexes has been essentially studied so far with good σ -donor eigends. In this paper, we report the synthesis and an electrochemical study of the [RuCp*(tmbp)Cl] complex, we will as some studies on its reactivity.

Results and Discussion

[In this paper, we report the synthesis and an electrochemical study of the [RuCp*(tmbp)Cl] complex, where [RuCp*(tmbp)Cl] complexes well as some studies on its reactivity.

Several approaches have been devised for the synthesis and [RuCp*(tmbp)Cl]. it might be of interest to appreciate to what extent the

(i) Synthesis and Structure of [RuCp*(tmpp)CI]. Several approaches have been devised for the synthesis $\overline{\alpha}$ [RuCp*L₂Cl] complexes (L = phosphorus or nitrogen № donor ligands). These include the reaction of L with The $[RuCp^*Cl_2]_n^8$ polymer in the presence of a reducing agent⁹ or with the tetrameric [RuCp*(µ₃-Cl)]₄ complex¹⁰

and the traditional ligand exchange with $(\eta^2$ -olefin)₂ or [RuCp*(η^4 -diene)Cl] complexes.¹¹ All these methods were attempted with the tmbp ligand 1. Surprisingly, the reaction of **1** with the $[RuCp*Cl_2]_n$ polymer/Zn mixture in THF at room temperature did not proceed cleanly and the expected Cp*Ru(tmbp)Cl complex 3 was only formed in low yields (<30%) along with other unidentified biphosphinine complexes. The reaction of **1** with the tetrameric [RuCp*(μ_3 -Cl)]₄ in THF at 25 °C afforded 3 in 60% yield. Finally, the best fit was obtained using the precursor [RuCp*(η⁴-DMB)Cl]^{10d} (DMB = 2,3-dimethyl-1,3-butadiene), which was prepared directly from the [RuCp*Cl₂]_n polymer by a reductive procedure (see Experimental Section). The substitution of the diene was performed in THF at 35 °C and gave complex 3 in 85% yield (eq 3).

Complex 3 was isolated as a red-brown powder, air stable in the solid state for long periods, soluble in CH₂-Cl₂ and acetone, moderately soluble in THF and alcohols, and insoluble in ether and petroleum ether. In ³¹P NMR, the complexation induces a strong downfield shift (δ (CDCl₃) 224.60 ppm for **3** vs δ (CDCl₃) 178.32 ppm for the free ligand 1). As expected, 3 presents a good resistance toward hydrolysis and no reaction was observed at the complexed P=C double bonds upon treatment with water and alcohols in dichlromethane at 30 °C for hours. Fortunately, we were able to grow crystals of **3** by cooling a THF/pentane (1:1) solution at -20 °C.

The molecular structure of 3 has been determined by a single-crystal X-ray diffraction study. An ORTEP view of the molecule is presented in Figure 1. Selected bond distances and angles are given in Table 1. The environment about the Ru atom corresponds to that of a classical three-legged piano-stool structure. Interesting structural features of this complex are the two Ru-P bond distances. As expected for a strong π -acceptor ligand, these two bonds (Ru-P1 = 2.2475(7) Å and Ru-P12 = 2.2375(7) Å) are clearly short when compared to those observed for classical tertiary phosphines, which usually are in the range 2.30-2.35 Å in [RuCp*(R₃P)₂L] neutral or cationic complexes. 11,12 Besides, the distance

^{(3) (}a) Le Floch, P.; Carmichael, D.; Ricard, L.; Mathey, F. J. Am. Chem. Soc. 1991, 113, 667. (b) Le Floch, P.; Carmichael, D.; Ricard, L.; Mathey, F.; Jutand, A.; Amatore, C. Organometallics **1992**, 11, 2475. (c) Le Floch, P.; Ricard, L.; Mathey, F. Bull. Soc. Chim. Fr. **1994**, 131,

⁽⁴⁾ Carmichael, D.; Le Floch, P.; Mathey, F. Phosphorus, Sulfur Silicon Relat. Elem. 1993, 77, 255.

⁽⁵⁾ Schmid, B.; Venanzi, L. M.; Gerfin, T.; Gramlich, V. Mathey, F. Inorg. Chem. 1992, 31, 5117.

⁽⁶⁾ Carmichael, D.; Le Floch, P.; Ricard, L.; Mathey, F. Inorg. Chim. Acta 1992, 198-200, 437.

⁽⁷⁾ Mansuy, S.; Le Floch, P.; Mathey, F. Unpublished results.

^{(8) (}a) Tilley, T. D.; Grubbs, R. H.; Bercaw, J. E. Organometallics 1984, 3, 274. (b) Oshima, N.; Suzuki, H.; Moro-oka, Y. Chem. Lett. 1984, 1161.

⁽⁹⁾ Chaudret, B.; Jalon, F. A. J. Chem. Soc., Chem. Commun. 1988,

^{(10) (}a) Fagan, P. J.; Ward, M. D.; Caspar, J. V.; Calabrese, J. C.; Krusic, P. J. *J. Am. Chem. Soc.* **1988**, *110*, 2981. (b) Fagan, P. J.; Ward, M. D.; Calabrese, J. C. *J. Am. Chem. Soc.* **1989**, *111*, 1698. (c) Koelle, U.; Kossakowski, J. *J. Organomet. Chem.* **1989**, *362*, 383. (d) Fagan, P. J.; Mahoney, W. S.; Calabrese, J. C.; Williams, I. D. *Organometallics* **1990**, *9*, 1843. (e) Luo, L.; Nolan, S. P. *Organometallics* **1994**, 13, 4781.

⁽¹¹⁾ Luo, L.; Zhu, N.; Zhu, N.-J.; Stevens, E. D.; Nolan, S. P.; Fagan, P. J. Organometallics 1994, 13, 669.

⁽¹²⁾ See for example: (a) Lindner, E.; Haustein, M.; Fawzi, R.; Steimann, M.; Wegner, P. *Organometallics* **1994**, *13*, 5021. (b) Le Lagadec, R.; Roman, E.; Toupet, L.; Müller, U.; Dixneuf, P. H. *Organometallics* **1994**, *13*, 5030. (c) Bruce, M. I.; Humphrey, M. G.; Patrick, J. M.; White, A. H. Aust. J. Chem. 1983, 36, 2065.

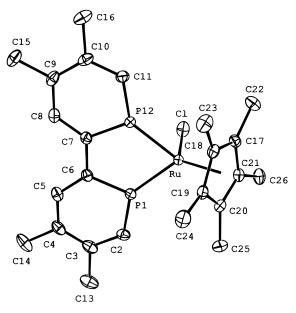


Figure 1. ORTEP drawing of one molecule of 3. Ellipsoids are scaled to enclose 50% of the electron density. The crystallographic labeling is arbitrary and different from the Sumbering used for assignment of the 13C spectra.

Table 1. Selected Bond Distances (Å) and Angles (deg) for Complex 3^a

1 —	` 0'	-	
Bond Lengths 2.4538(7) Ru-Ct 1.852(3)			
⊇ Ru−Cl	2.4538(7)	Řu−Ct	1.852(3)
∷ Ru−P1 ਉ P1−C2	2.2475(7)	Ru-P12	2.2375(7)
등을 P1-C2	1.712(3)	P12-C11	1.707(3)
C2-C3 C2-C3 C3-C4 C3-C4 C5-C6 C6-P1 C6-C7 C6-C7 C6-C7 C6-C7 C7 C6-C7 C7 C	1.408(4)	C11-C10	1.397(4)
5 C3−C4	1.386(5)	C10-C9	1.402(4)
≋ C4−C5	1.392(4)	C9-C8	1.400(4)
É C5−C6	1.391(4)	C8-C7	1.393(4)
ੋ	1.740(3)	C7-P12	1.730(3)
? ≥ C6−C7	1.466(4)		
t t			
Bond Angles			
°P1−Ru−P12	78.45(3)	Cl-Ru-Ct	120.1
ŠP1−Ru−Ct	131.0	P12-Ru-Ct	130.5
.P1-02-03	123.4(2)	Cl-Ru-P1	93.88(3)
S C2−C3−C4	123.0(3)	Cl-Ru-P12	89.77 (3)
C3-C4-C5 C4-C5-C6 C5-C6-P1	123.0(3)	P1-C6-C7	113.1(2)
C4-C5-C6	125.4(3)	Ru-P1-C6	117.3(1)
©C5−C6−P1	121.1(2)	Ru-P1-C2	138.7(1)
' ഉC6−P1−C2	104.1(1)	C7-P12-C11	104.7(1)
$ \frac{1}{2} 1$			

Downloaded by CARLI CONSORTIUM on June 30, 2009

from the ruthenium atom to the Cp* plane (1.852(3) Å) and the Ru-Cl bond length (2.4538(7) Å) appear quite normal.12

Some additional interesting information is provided by the intramolecular bond length and angle values within the biphosphinine ligand. From these, it appears that no dearomatization takes place in each ring, as demonstrated, for example, by the good homogeneity of the C-C double-bond lengths (between 1.386(5) and 1.408(4) Å; see Table 1). Additionally, as we previously noted,^{2a} the opening of the intracyclic ∠CPC angle, which can be correlated with the electron-accepting character of the metallic fragment, is another important piece of data which finely reflects the loss of aromaticity in a complexed phosphinine. In complex 3 this value (average of \angle C2-P1-C6 and \angle C7-P12-C11 104.4°) is almost identical with that observed in the [Cr(tmbp)-(CO)₄ complex (104.3°),^{3a} which is highly stable. For comparison, in the less stable cis-[Ru(tmbp)(dmso)₂Cl₂] complex, 6 the opening of the \angle CPC angle is 106.08°.

(ii) Reactivity of [(tmbp)RuCp*Cl] (3). In order to appreciate the influence of the biphosphinine ligand on the chemistry of the RuCp*Cl fragment, it seemed worthwhile to explore in a first step the reactivity of the Ru-Cl bond in 3 with regard to substitution reactions. Owing to the good stability of 3 in alcohols, we first investigated the metathesis of this bond with KBr and KCN. These two reactions proceeded in a CH₂-Cl₂/MeOH mixture at room temperature and gave complexes 4 (X = Br) and 5 (X = CN) in good yields (eq 4). As we previously noted for 3, no side reactions

$$KX$$

$$CH_{2}Cl_{2}/MeOH$$

$$RT, 3-5h$$
3

4, $X = Br$ (80%)
5, $X = CN$ (90%)

(addition of MeOH) were observed at the complexed P=C bonds of 4 and 5 during the reaction, thus confirming their stability.

We also investigated the substitution of the Ru-Cl bond with various monodentate ligands such as acetonitrile, pyridine, phosphines (PPh3 and P(OMe)3), 2-bromo-4,5-dimethylphosphinine, tert-butyl isocyanide, and olefins (*cis*-cyclooctene and norbornene). All these reactions were conducted in CH₂Cl₂ at room temperature in the presence of NH₄PF₆ to facilitate the displacement of the chlorine ligand. As does their precursor 3, complexes 6-13, which were isolated in moderate to good yields, show a good stability in solution and are not moisture sensitive. All these results are summarized in eq 5.

- (65%)
- $L = P(OMe)_3$ (80%) 12, $L = \underline{cis} - C_8 H_{14}$ (50%)

 $L = PPh_3$ (80%)13, (70%) $L = C_7 H_{10}$

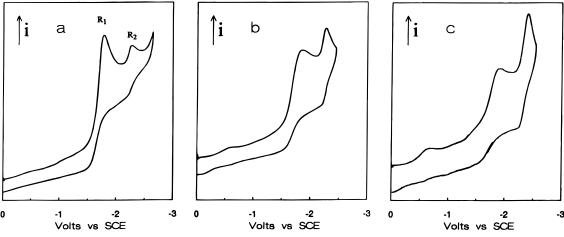


Figure 2. Cyclic voltammetry of 3 (2 mM) in MeCN containing n-Bu₄NBF₄ (0.3 M) at a stationary gold-disk microelectrode (0.5 mm diameter) and 20 °C. Scan rate: (a) 0.5 V s^{-1} ; (b) 2 V s^{-1} ; (c) 10 V s^{-1} .

Complexes 6-13, which have been isolated as crystalline solids, readily soluble in CH2Cl2, were succesfully characterized by $^{31}\mbox{P},\,^{1}\mbox{H},$ and $^{13}\mbox{C NMR}$ spectroscopy and elemental analysis in most cases. Additionally, complex \square was also identified by IR spectroscopy (ν (NC) in CCl₄ ${2143}$ cm⁻¹), 13 since the quaternary carbon of the iso-§ Spectrum. For complexes 12 and 13, the η^2 coordination $\widehat{\mathbf{g}}$ if the olefin is evidenced in ^{13}C NMR by the strong shift Enward high field observed for the two olefinic carbon atoms (δ (CD₂Cl₂) in ppm 74.80 in 12 and 67.95 in 13, compared to 130.2 and 135.8 in the free ligands compared to 130.2 and 135.8 in the free ligands, respectively).

gen The formation of these two complexes is of particular interest when we refer to the work on the very electron rich [RuCp*(bpy)]+ fragment published by Balavoine et a.14 During their investigation, they found that the gresence of the strong σ -donor bipyridine ligand strongly sisfavored the coordination of electron-rich olefins at the 登幕u center, whereas complexes with olefins bearing 🖫 Electron-withdrawing groups were found to be stable. fn contrast, with the [RuCp*(tmbp)]+ unit, whereas complexes 12 and 13 were easily formed, derivatives with methyl acrylate and diethyl maleate were too labile be isolated. This difference in the reactivty of the two complexes, which cannot be rationalized in terms of steric demand since the two ligands have nearly the same geometry, nicely illustrates the increase of the Lewis acidic character of the metal induced by the coordination of the biphosphinine.

(iii) Electrochemical Study of [RuCp*(tmbp)Cl] (3). The cyclic voltammetry of 3 (2 mM) in MeCN containing n-Bu₄NBF₄ (0.3 M) was performed at a stationary gold-disk electrode with a scan rate of 0.2 V s⁻¹. First, to complete our comparison between biphosphinine and bipyridine complexes, we investigated the oxidation of **3**. A reversible oxidation peak, which is assigned to the formation of the Ru^{III} complex, was observed at $E^{p}_{O1} = +0.49 \text{ V } vs \text{ SCE (eq 6)}.$

$$[Ru^{||}Cp^{*}(tmbp)Cl] \xrightarrow{-1 e^{-}} [Ru^{|||}Cp^{*}(tmbp)Cl]^{+} \qquad \text{reversible at O}_{1} \qquad (6)$$

As expected, this value is shifted anodically with respect to the oxidation potential of the [RuCp*(bpy)-

Cl] complex ($E_{1/2} = 0.07 \text{ V } vs \text{ SCE in } CH_2Cl_2$),¹⁵ thus confirming that the ruthenium center is more electron deficient in 3.

In view of the good ability of the biphosphinine ligand to accept and delocalize electron density, we focused our study on the electrochemical reduction of 3 to find out whether low-valent ruthenium complexes could be viable or not.

The cyclic voltammogram exhibited two reduction peaks with different magnitudes (Figure 2a). The first irreversible peak was observed at $E^{p}_{R1} = -1.82 \text{ V } vs$ SCE. The second one, of smaller magnitude, was reversible and was observed at $E^{p}_{R1} = -2.24 \text{ V}$. A determination of the absolute number of electrons involved in the first reduction peak¹⁶ at long time (0.2) s) revealed that two electrons were involved in the first electrochemical process.

Increasing the scan rate resulted in a decay of the first reduction peak current while the second one increased (Figure 2b). At high scan rate (above 10 V s⁻¹), the magnitudes of the two peaks were found to almost be similar (Figure 2c), indicating that the same numbers of electrons were involved in the two successive electrochemical processes. The first reduction peak remained irreversible in the range of scan rate investigated here. Plotting the variation of the reduction peak current of R₁ as a function of the scan rate showed that the initial two-electron transfer (taking place at long time) evolved toward a one-electron transfer at short time.¹⁷ Therefore, at high scan rate, two oneelectron transfers were observed that are consistent with the mechanism given in eqs 7 and 8.

$$[Ru^{ll}Cp^{*}(tmbp)Cl] \xrightarrow{\qquad \qquad \qquad }$$

$$[Ru^{ll}Cp^{*}(tmbp)] + Cl^{-} \quad \text{irreversible at R}_{1} \quad (7)$$

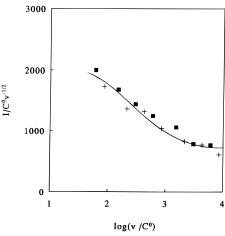
$$[Ru^{ll}Cp^{*}(tmbp)] \xrightarrow{\qquad \qquad } [Ru^{0}Cp^{*}(tmbp)]^{-} \quad \text{reversible at R}_{2} \quad (8)$$

⁽¹³⁾ Cotton, F. A.; Zingales, F. J. Chem. Soc. 1961, 351.
(14) Balavoine, G. G. A.; Boyer, T.; Livage, C. Organometallics 1992, 11. 456.

⁽¹⁵⁾ Koelle, U.; Kossakowski, J. Inorg. Chim. Acta 1989, 164, 23.

At low scan rate, wave R₁ remained chemically irreversible yet and the magnitude of the second peak R₂ was smaller than half the value of that of the first one, indicating that the complex [Ru^ICp*(tmbp)] was involved in a chemical reaction during the time elapsed between R₁ and R₂. This reaction provoked a decay of the concentration of [Ru^ICp*(tmbp)] in the diffusion layer, and only the reduction of the [Ru^ICp*(tmbp)] which had not completely reacted was observed at R_2 . This chemical reaction of [Ru^ICp*(tmbp)], probably with a Ru^{II} complex, affords a binuclear complex. The fact than more than one electron was involved at long time, in the first electrochemical step, suggests that the binuclear complex is more easily reduced than [Ru^{II}Cp*-(tmbp)Cl]. To support the formation of this binuclear complex, cyclic voltammetry was performed at different scan rates on solutions of [Ru^{II}Cp*(tmbp)Cl] of various concentrations. Plotting the variation of the peak current of R_1 as a function of $log(v/[Ru^{II}Cp^*(tmbp)Cl])$ (Figure 3) resulted in a single curve, demonstrating that the overall reaction order in ruthenium centers in the chemical step was 2 and therefore that a reaction between two ruthenium complexes took place with a Fate constant in the range of $10^4 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$. The mecha-Bism given by eqs 9 and 10 can be tentatively proposed nationalize the formation of this Ru^{II}—Ru^I dimer and

Figure 1 by eqs of that is a fast chemical proposed for rationalize the formation of this
$$Ru^{II}$$
— Ru^{I} dimer and its monoelectronic reduction.


The rationalize the formation of this Ru^{II} — Ru^{I} dimer and its monoelectronic reduction.

The rationalize the formation of this Ru^{II} — Ru^{I} dimer and Ru^{II} such that Ru^{II} is Ru^{II} and Ru^{II} are reduction as Ru^{II} and Ru^{II} are reduction a

ਤੂ réaction was not operating, means that a fast chemical step takes place after the first electron transfer. This observation is in good agreement with a fast cleavage $\stackrel{\triangle}{\cap}$ the Ru–Cl bond (as proposed in eq 7) from the anion gadical complex [RuIICp*(tmbp)Cl] - formed upon the 叠rst electron transfer. On the other hand, the good reversibility of the second reduction peak R_2 , even at long time (at least over 2 s), demonstrates the stability of the Cp*Ru⁰(tmbp) anion. Such anionic species are not totally unprecedented. In 1990, Fagan et al. showed that $[RuCp^*(\eta^4\text{-diene})]$ and $[RuCp^*(\eta^2\text{-}C_2H_4)_2]^-[Li\cdot$ DME]⁺ complexes could be isolated. 10d

Conclusion

In this paper, we have shown that the stability of a complexed biphosphinine on a Ru(II) center is clearly dependent on the nature of the ancillary ligands. With a powerful electron-releasing ligand such as C₅Me₅⁻, the easily available chlorine complex [RuCp*(tmbp)Cl] (3) shows a remarkable stability and can be used as an

Figure 3. Variation of $I/C^0v^{-1/2}$ (I = reduction current of R_1 ; v = scan rate; $C^0 = [\text{RuCp}^*(\text{tmbp})\text{Cl}])$ as a function of $\log(v/C^0)$.

efficient precursor for the synthesis of various cationic complexes of the type $[RuCp^*(tmbp)L]^+[PF_6]^-$. As expected, the strong π -accepting character of the biphosphinine ligand increases the Lewis acid character of the Ru⁺Cp* fragment which coordinates electron-rich olefins, in contrast to its bipyridine counterpart. The electrochemical behavior of complex 3 has also been investigated. This study reveals that, upon reduction with one electron, the Ru-Cl bond rapidly dissociates, leading to a [RuICp*(tmbp)] complex which can be reduced at a more negative potential to give the stable anion [Ru⁰Cp*(tmbp)]⁻.

In conclusion, these preliminary encouraging results demonstrate that the biphosphinine ligand might be succesfully used to stabilize various oxidation states with RuCp* complexes (from +3 to 0). Investigations are underway in our laboratory to further extend this chemistry to other electron-rich neutral and cationic centers.

Experimental Section

All reactions were routinely performed under an inert atmosphere of either nitrogen or argon by using Schlenk techniques and dry deoxygenated solvents. Dry THF, ether, toluene, and hexane were obtained by distillation from Na/ benzophenone, dry CH2Cl2 was obtained by distillation from P₂O₅, and dry MeCN and pyridine were obtained by distillation over CaH2. Dry Celite was used for filtration. Nuclear magnetic resonance spectra were obtained on a Bruker AC-200 SY spectrometer operating at 200.13 MHz for ¹H, 50.32 MHz for 13C, and 81.01 MHz for 31P. Chemical shifts are expressed in parts per million downfield from external TMS (1H and 13C) and 85% H₃PO₄ (31P), and coupling constants are given in hertz. The following abreviations are used: s, singulet; d, doublet; t, triplet; q, quadruplet; sept, septuplet; m, multiplet; b, broad; v, virtual). Elemental analyses were performed by the "Service d'analyse du CNRS", at Gif-sur-Yvette, France. $[RuCp*Cl_2]_n$ was prepared according to ref 7b. Preparation of [RuCp*(η^4 -C₆H₁₀)Cl] was carried out by modifications of reported methods. 18

Preparation of [RuCp*(η^4 -C₆H₁₀)Cl] (2). Zinc powder (6.0 g, 91.5 mmol) was added to a solution of $[RuCp*Cl_2]_n$ (6.0 g, 19.55 mmol) and 2,3-dimethyl-1,3-butadiene (8.00 g, 97.60

⁽¹⁶⁾ Amatore, C.; Azzabi, M.; Calas, P.; Jutand, A.; Lefrou, C.; Rollin, Y. J. Electroanal. Chem. Interfacial Electrochem. 1990, 288, 45.

⁽¹⁷⁾ In Figure 3, the limit at high scan rate appears smaller than half the value at low scan rates. This occurs because the wave R_1 is then partially controlled by the kinetics of the electron transfer, as evidenced by its increasing half-width. See: Bard, A. J.; Faulkner, L. R. Electrochemical Methods; Wiley: New York, 1980.

^{(18) (}a) Masuda, K.; Nakano, K.; Fukahori, T.; Nagashima, H.; Itoh, K. J. Organomet. Chem. 1992, 428, C21. (b) Masuda, K.; Ohkita, H.; Kurumatani, S.; Itoh, K. Organometallics 1993, 12, 2221. (c) Bosch, H. W.; Hund, H.-U.; Nietlispach, D.; Salzer, A. Organometallics 1992, 11. 2087.

Preparation of [RuCp*(tmpb)Cl] (3). A 300-mL flask was charged with 4.31 g (12.20 mmol) of complex **2** and 100 mL of THF. After 5 min of stirring, 3 g (12.20 mmol) of biphosphinine **1** was added and the resulting solution was heated at 35 °C for 2 h. After this period, a ^{31}P NMR control indicated the total disappearance of **1** and the formation of complex **3**. After cooling at room temperature, THF was evaporated and the red powder obtained was triturated with hexane (50 mL). The insoluble solid was then collected by filtration, washed three times with hexane (100 mL), and dried in vacuo. Complex **3** was recovered as a red-brown solid which can be crystallized at -20 °C in a THF/hexane (2:1) mixture. Yield: 5.36 g (85%).

³¹P NMR (CDCl₃): δ 224.60. ¹H NMR (CDCl₃): δ 1.93 (t, 15H, 4 /(H-P) = 2.80, Me of C_5Me_5), 2.39 (d, 6H, 4 /(H-P) = 4.60, Me of tmbp), 2.46 (s, 6H, Me of tmbp), 8.12 (AA'XX', 2H, Σ /(H-P) = 17.00, H₃ or H₆ of tmbp), 8.26 (AA'XX', vd, 2H, Σ /(H-P) = 24.00, H₆ or H₃ of tmbp). ¹³C NMR (CDCl₃): δ [1.80 (s, Me of C_5Me_5), 23.10 (s, Me of tmbp), 24.80 (AXX', vt, Σ /(C-P) = 4.30, Me of tmbp), 94.70 (s, Cq of C_5Me_5), 130.40 (AXX', Σ /(C-P) = 41.60, C_3 of tmbp), 132.90 (AXX', Σ /(C-P) = 38.20, C_4 or C_5 of tmbp), 139.90 (AXX', Σ /(C-P) = 17.10, C_6 of tmbp), 146.10 (AXX', Σ /(C-P) = 36.50, C_4 or C_5 of tmbp), 157.05 (AXX', vt, Σ /(C-P) = 68.70, C_2 of tmbp). Anal. Calcd for $C_{24}H_{31}$ ClP₂Ru: C_5 55.64; H, 6.03. Found: C_5 66.39; H, 6.26. C_7 Preparation of [RuCp*(tmpb)Br] (4). A 50 mL flask was

Preparation of [RuCp*(tmpb)Br] (4). A 50 mL flask was Enarged with 0.1 g (0.19 mmol) of complex 3, 5 mL of CH₂Cl₂, and 5 mL of MeOH. After complete dissolution, 0.165 g of LiBr (4.90 mmol) was added and the solution was stirred at room Emperature. The metathesis was monitored by ³¹P NMR. After 5 h, the solvents were evaporated and the brown oil Estained was partially dissolved in CH₂Cl₂ (10 mL). The estalting solution was then filtered on celite under nitrogen. The evaporation of the solvent yielded complex 4 as a brown-ed solid, which was crystallized in a THF/hexane mixture (1/3 1). Yield: 0.085 g (80%).

The state of the property of

Preparation of [RuCp*(tmpb)CN] (5). A 100 mL flask was successively charged with 0.30 g (0.58 mmol) of complex **3**, 20 mL of CH_2Cl_2 , and 10 mL of MeOH. After complete dissolution, 0.11 g (1.70 mmol) of KCN was added and the reaction mixture was stirred at room temperature. After 3 h a ^{31}P NMR control indicated the end of the reaction. The solvents were evaporated, and the brown residue obtained was partially dissolved in CH_2Cl_2 (40 mL). After filtration of the resulting solution on Celite under nitrogen, the CH_2Cl_2 was evaporated, yielding a brown-orange solid. After crystallization in a CH_2Cl_2 /hexane mixture at $-20~^{\circ}C$, complex **5** was isolated as a dark orange solid. Yield: 0.26 g (90%).

³¹P NMR (CDCl₃): δ 220.27. ¹H NMR (CDCl₃): δ 2.09 (t, 15H, ⁴J(H−P) = 2.42, Me of C₅Me₅), 2.44 (d, 6H, J(H−P) = 5.09, Me of tmbp), 2.51 (s, 6H, Me of tmbp), 8.10 (AA′XX′, 2H, Σ J(H−P) = 3.0, H₃ or H₆ of tmbp), 8.26 (AA′XX′, s, 2H, H₆ or H₃ of tmbp). ¹³C NMR (CDCl₃): δ 12.05 (s, Me of C₅Me₅), 23.15 (s, Me of tmbp), 24.94 (d, J(C−P) = 10.50, Me of tmbp), 97.80 (s, Cq of C₅Me₅), 128.70 (bs, C≡N), 130.91 (AXX′, Σ J(C−P) = 31.70, C₃ of tmbp), 133.64 (AXX′, Σ J(C−P) = 24.30, C₄ or C₅ of tmbp), 140.05 (AXX′, Σ J(C−P) = 22.60, C₆ of tmbp), 146.65 (AXX′, Σ J(C−P) = 18.40, C₄ or C₅ of tmbp), 152.75 (AXX′, vt,

 $\Sigma J(C-P) = 70.70$, C_2 of tmbp). IR (CH_2Cl_2) : 2112 cm⁻¹ $(C\equiv N)$. Complex **5** did not give satisfactory elemental analysis data.

Preparation of [RuCp*(tmpb)(MeCN)][PF6] (6). A 100 mL flask was charged with 30 mL of CH₂Cl₂, 0.24 g (1.5 mmol) of NH₄PF6, and 2 mL of MeCN. After 5 min of stirring, 0.52 g (1 mmol) of complex **3** was added and the resulting mixture was stirred at room temperature. After 6 h, a ^{31}P NMR control indicated the end of the complexation. The CH₂Cl₂ and the excess MeCN were then evaporated, leaving a brown solid which was dissolved in CH₂Cl₂ (30 mL). The resulting solution was then filtered under nitrogen (elimination of NH₄Cl and excess of NH₄PF6) and the solvent was removed in vacuo, yielding a yellow solid. Complex **6** was obtained as yellow microcrystals after standing in a CH₂Cl₂/ether solution at $-20\,^{\circ}$ C for 1 day. Yield: 0.57 g (85%).

 ^{31}P NMR (CD₂Cl₂): δ 215.30 (P of tmbp), -144.40 (sept, $^{1}J(P-F)=710.0,\ PF_{6}).\ ^{1}H$ NMR (CD₂Cl₂): δ 1.94 (t, 15H, $J(H-P)=2.90,\ Me$ of $C_{5}Me_{5}),\ 2.13$ (t, 3H, $^{5}J(H-P)=1.50,\ Me$ of CH₃CN), 2.47 (d, 6H, $^{4}J(H-P)=5.40,\ Me$ of tmbp), 2.54 (s, 6H, Me of tmbp), 8.27 (AA'XX', 2H, $\Sigma J(H-P)=18.70,\ H_{3}$ or H_{6} of tmbp), 8.38 (AA'XX', 2H, $\Sigma J(H-P)=24.90,\ H_{6}$ or H_{3} of tmbp). ^{13}C NMR (CD₂Cl₂): δ 4.80 (s, Me of CH₃CN), 11.50 (s, Me of C₅Me₅), 23.10 (s, Me of tmbp), 24.70 (AXX', vt, $\Sigma J(C-P)=4.60,\ Me$ of tmbp), 96.20 (s, Cq of C₅Me₅), 125.90 (s, CN of CH₃CN), 131.30 (AXX', $\Sigma J(C-P)=33.70,\ C_{3}$ of tmbp), 136.30 (AXX', $\Sigma J(C-P)=26.00,\ C_{4}$ or C_{5} of tmbp), 141.80 (AXX', $\Sigma J(C-P)=20.00,\ C_{6}$ of tmbp), 148.10 (AXX', $\Sigma J(C-P)=26.10,\ C_{4}$ or C_{5} of tmbp), 155.00 (AXX', vt, $\Sigma J(C-P)=35.00,\ C_{2}$ of tmbp). Anal. Calcd for $C_{26}H_{34}F_{6}NP_{3}Ru$: C, 46.70; H, 5.13. Found: C, 46.33; H, 5.36.

Preparation of [RuCp*(tmpb)(Py)][PF₆] (7). A 100 mL flask was charged with 30 mL of CH_2Cl_2 , 0.24 g (1.5 mmol) of NH_4PF_6 , and 0.30 mL (3.72 mmol) of pyridine. After 5 min of stirring, 0.52 g (1 mmol) of complex **3** was added and the resulting mixture was stirred at 40 °C. The complexation of pyridine was checked by ³¹P NMR. After 1 h, the solvent and excess pyridine were evaporated, yielding a viscous brown resisdue which was washed three times with dry ether (20 mL). After each washing, the solution of ether was filtered off and the brown powder obtained was collected. Dry CH_2 - Cl_2 (20 mL) was then added, and the resulting solution was quickly filtered on Celite under nitrogen. The evaporation of CH_2Cl_2 yielded complex **7** as an orange solid which can be purified by crystallization in a CH_2Cl_2 /ether mixture at -20 °C for 1 day. Yield: 0.53 g (75%).

³¹P NMR (CDCl₃): δ 217.30 (P of tmbp), -145.10 (sept, ${}^{1}J(P-F) = 712.10$, PF₆). ${}^{1}H$ NMR (CDCl₃): δ 1.81 (t, 15H, ${}^{4}J(H-P) = 2.80$, Me of C₅Me₅), 2.44 (d, 6H, J(H-P) = 5.10, Me of tmbp), 2.58 (s, 6H, Me of tmbp), 7.20 (dd, 2H, ³J(H-H) = 5.10 and 7.90, $H_{3,5}$ of C_5H_5N), 7.57 (t, 1H, ${}^3J(H-H) = 7.90$, H_4 of C_5H_5N), 8.15 (AA'XX', 2H, $\Sigma J(H-P) = 18.20$, H_3 or H_6 of tmbp), 8.55 (d, 2H, ${}^{3}J(H-H) = 5.10$, $H_{2,6}$ of $C_{5}H_{5}N$), 8.56 $(AA'XX', 2H, \Sigma J(H-P) = 24.80, H_6 \text{ or } H_3 \text{ of tmbp}).$ ¹³C NMR (CD₂Cl₂): δ 11.30 (s, Me of C₅Me₅), 23.00 (s, Me of tmbp), 24.70 (AXX', vt, J(C-P) = 4.50, Me of tmbp), 95.80 (s, Cq of C₅Me₅),126.70 (s, C_3 of C_5H_5N), 131.20 (AXX', $\Sigma J(C-P) = 33.90$, C_3 of tmbp), 136.20 (AXX', $\Sigma J(C-P) = 30.50$, C_4 or C_5 of tmbp), 138.50 (s, C_4 of C_5H_5N), 141.20 (AXX', $\Sigma J(C-P) = 39.70$, C_6 of tmbp), 148.40 (AXX', $\Sigma J(C-P) = 25.80$, C_4 or C_5 of tmbp), 154.90 (AXX', vt, $\Sigma J(C-P) = 70.30$, C_2 of tmbp), 158.80 (t, $^{3}J(C-P) = 4.80$, C_{2} of $C_{5}H_{5}N$). Anal. Calcd for $C_{29}H_{36}F_{6}NP_{3}$ -Ru: C, 49.29; H, 5.13. Found: C, 49.57; H, 4.89.

Preparation of [RuCp*(tmpb)(P(OMe)₃)][PF₆] (8). A 100 mL flask was charged with 30 mL of CH_2Cl_2 , 0.24 g (1.5 mmol) of NH_4PF_6 , and 0.25 mL of trimethyl phosphite. After 5 min of stirring, 0.52 g (1 mmol) of complex **3** was added and the resulting mixture was stirred at room temperature. After 2 h, a ³¹P NMR control indicated the quantitative transformation of **3** into complex **8**. The solvent was then evaporated, and the resulting brown residue was triturated with dry ether (20 mL). After filtration of the ether phase, the brown powder obtained was dissolved in CH_2Cl_2 (30 mL) and then filtered

on Celite under nitrogen. After evaporation of CH_2Cl_2 , complex **8** was obtained as a yellow powder (0.66 g) which was crystallized in a CH_2Cl_2 /ether (1:1) mixture at -20 °C for 1 day. Complex **8** was then collected as yellow microcrystals after filtration and drying. Yield: 0.60 g (80%).

³¹P NMR (CDCl₃): δ 217.90 (d, ${}^2J(P-P) = 72.10$, P of tmbp), 144.40 (t, ${}^2J(P-P) = 72.10$, P of P(OMe)₃), -146.15 (sept, ${}^1J(P-F) = 713.85$, PF₆). 1H NMR (CDCl₃): δ 2.05 (t, 15H, ${}^4J(H-P) = 2.50$, Me of C₅Me₅), 2.48 (d, 6H, J(H-P) = 5.50, Me of tmbp), 2.57 (s, 6H, Me of tmbp), 3.37 (d, 9H, ${}^3J(H-P) = 12.20$, Me of P(OMe)₃), 8.24 (AA'XX', 2H, $\Sigma J(H-P) = 18.50$, H₃ or H₆ of tmbp), 8.35 (AA'XX', 2H, $\Sigma J(H-P) = 20.90$, H₆ or H₃ of tmbp). 13 C NMR (CD₂Cl₂): δ 11.40 (s, Me of C₅Me₅), 23.00 (s, Me of tmbp), 24.80 (d, J(C-P) = 6.20, Me of tmbp), 53.40 (s, Me of P(OMe)₃), 99.70 (s, Cq of C₅Me₅), 131.80 (AXX', $\Sigma J(C-P) = 31.60$, C₃ of tmbp), 136.00 (AXX', $\Sigma J(C-P) = 25.80$, C₄ or C₅ of tmbp), 141.30 (AXX', $\Sigma J(C-P) = 29.80$, C₆ of tmbp), 148.50 (AXX', $\Sigma J(C-P) = 18.30$, C₄ or C₅ of tmbp), 153.30 (AXX', vt, $\Sigma J(C-P) = 75.30$, C₂ of tmbp). Anal. Calcd for C₂₇H₄₀F₆O₃P₄-Ru: C, 43.14; H, 5.36. Found: C, 43.21; H, 5.35.

Preparation of [RuCp*(tmpb)(PPh₃)][PF₆] (9). A 100 mL flask was charged with 30 mL of CH₂Cl₂, 0.24 g (1.5 mmol) of NH₄PF₆, and 0.40 g (1.50 mmol) of triphenylphosphine. After 5 min of stirring, 0.52 g (1 mmol) of complex 3 was added and the resulting mixture was stirred at room temperature. After 19 h, a ³¹P NMR control indicated the quantitative transformation of 3 into complex 9. After CH₂Cl₂ (20 mL) was added, the esolution was filtered under nitrogen and the solvent was fartially evaporated. Ether (30 mL) was then added to the resulting solution (about 5 mL) to precipitate complex 9. After facture and then washed with dry hexane (40 mL). After dimination of hexane by filtration, the complex was recovered as a yellow powder. Long yellow needles of 9 were isolated (80%)

The second points of the seco

Preparation of [RuCp*(tmpb)(C₇H₈BrP][PF₆] (10). A 100 mL flask was charged with 30 mL of CH_2Cl_2 , 3 mL of methanol, 0.24 g (1.5 mmol) of NH_4PF_6 , and 0.22 g (1.1 mmol) of 2-bromo-4,5-dimethylphosphinine. After 5 min of stirring, 0.52 g (1 mmol) of complex **3** was added and the resulting mixture was stirred at room temperature. After 4 h, a ³¹P NMR control indicated the end of the reaction. The resulting reaction mixture was then evaporated to dryness and the brown viscous residue obtained was triturated and washed three times with hexane (3 × 30 mL). The hexane phase which contains excess 2-bromophosphinine was separated from the solid by filtration under nitrogen. After drying, dry CH_2Cl_2 (20 mL) was added and the resulting solution was filtered on Celite under nitrogen. Complex **10** was recovered as a yellow powder after evaporation of CH_2Cl_2 . Yield: 0.70 g (85%).

³¹P NMR (CDCl₃): δ 208.80 (d, ²*J*(P−P) = 66.80, P of tmbp), 184.40 (t, ²*J*(P−P) = 66.80, P of C₇H₈PBr), −146.15 (sept, ¹*J*(P−F) = 713.85, PF₆). ¹H NMR (CDCl₃): δ 2.08 (d, 15H, ⁴*J*(H−P) = 2.50, Me of C₅Me₅), 2.17 (d, 3H, *J*(H−P) = 6.40, Me of C₇H₈PBr), 2.23 (s, 3H, Me of C₇H₈PBr), 2.45 (d, 6H, *J*(H−P) = 5.50, Me of tmbp), 2.59 (s, 6H, Me of tmbp), 7.81 (m, 2H, ΣJ (H−P) = 30.40, H of C₇H₈PBr), 8.24 (AA′XX′, 2H, ΣJ (H−P)

= 20.70, H_3 or H_6 of tmbp), 8.59 (AA'XX', 2H, $\Sigma J(H-P) = 22.70$, H_6 or H_3 of tmbp). ^{13}C NMR (CDCl₃): δ 12.10 (s, Me of C_5 -Me₅), 22.20 (d, J(C-P) = 3.50, Me of C_7H_8PBr), 23.20 (d, J(C-P) = 3.90, Me of tmbp), 23.70 (d, J(C-P) = 10.70, Me of C_7H_8PBr), 25.10 (d, J(C-P) = 10.90, Me of tmbp), 99.80 (s, Cq of C_5Me_5), 131.60 (AXX', $\Sigma J(C-P) = 30.40$, C_3 of tmbp), 136.40 (AXX', $\Sigma J(C-P) = 25.70$, C_4 or C_5 of tmbp), 139.10 (d, J(C-P) = 24.50, C_2 of C_7H_8PBr), 142.90 (AXX', $\Sigma J(C-P) = 28.20$, C_6 of tmbp), 144.40 (m, $\Sigma J(C-P) = 11.20$, C_3 of C_7H_8PBr), 148.70 (AXX', $\Sigma J(C-P) = 18.50$, C_4 or C_5 of tmbp), 148.80 (m, $\Sigma J(C-P) = 22.80$, C_4 or C_5 of C_7H_8PBr), 152.60 (AXX', $\Sigma J(C-P) = 23.20$, C_6 of C_7H_8PBr), 153.30 (AXX', vt, $\Sigma J(C-P) = 74.10$, C_2 of tmbp). Anal. Calcd for $C_{31}H_{39}BrF_6P_4Ru$: C_7 44.83; C_7 H, 4.73. Found: C_7 44.55; C_7 H, 5.13.

Preparation of [RuCp*(tmpb)(CNtBu)][PF₆] (11). A 100 mL flask was charged with 30 mL of CH_2Cl_2 , 0.24 g (1.5 mmol) of NH_4PF_6 , and 0.52 g (1 mmol) of complex **3**. After 5 min of stirring, 0.25 mL (1.92 mmol) of *tert*-butyl isocyanide was added and the reaction mixture was stirred at room temperature. After 30 min a control by ³¹P NMR indicated the end of the reaction with quantitative formation of complex **11**. The solvent was then evaporated, yielding an orange viscous oil which was triturated and washed three times with dry ether (20 mL). After each washing, the ether phase was separated from the solid by filtration. Complex **11** was then extracted with CH_2Cl_2 (30 mL) and filtered on Celite under nitrogen. The evaporation of CH_2Cl_2 yielded **11** as a dark green solid which can be crystallized in a CH_2Cl_2 /ether (1:1) mixture at -20 °C. Yield: 0.46 g (65%).

 ^{31}P NMR (CDCl₃): δ 210.90 (P of tmbp), -146.05 (sept, $^{1}J(P-F)=711.65,\,PF_{6}). \,^{1}H$ NMR (CDCl₃): δ 1.25 (s, 9H, Me of C(CH₃)₃), 2.09 (t, 15H, $^{4}J(H-P)=2.80,\,Me$ of $C_{5}Me_{5}),\,2.50$ (d, 6H, $J(H-P)=5.70,\,Me$ of tmbp), 2.57 (s, 6H, Me of tmbp), 8.31 (AA'XX', 2H, $\Sigma J(H-P)=20.20,\,H_{3}$ or H_{6} of tmbp), 8.34 (AA'XX', 2H, $\Sigma J(H-P)=23.40,\,H_{6}$ or H_{3} of tmbp). ^{13}C NMR (CDCl₃): δ 11.70 (s, Me of $C_{5}Me_{5}),\,23.20$ (s, Me of tmbp), 24.90 (d, $J(C-P)=10.70,\,Me$ of tmbp), 31.30 (s, Me of C(CH₃)₃), 58.70 (s, Cq of C(CH₃)₃), 99.20 (s, Cq of $C_{5}Me_{5}),\,131.70$ (AXX', $\Sigma J(C-P)=30.60,\,C_{3}$ of tmbp), 136.20 (AXX', $\Sigma J(C-P)=25.60,\,C_{4}$ or C_{5} of tmbp), 141.50 (AXX', $\Sigma J(C-P)=24.70,\,C_{6}$ of tmbp), 148.30 (AXX', $\Sigma J(C-P)=22.10,\,C_{4}$ or C_{5} of tmbp), 153.60 (AXX', vt, $\Sigma J(C-P)=71.90,\,C_{2}$ of tmbp). IR (CCl₄): 2143 cm⁻¹ (C=N). Anal. Calcd for $C_{29}H_{40}F_{6}NP_{3}Ru$: C, 49.01; H, 5.67. Found: C, 48.67; H, 5.78.

Preparation of [RuCp*(tmpb)(η^2 -cis-C₈H₁₄)][PF₆] (12). A 100 mL flask was charged with 30 mL of CH2Cl2, 0.24 g (1.5 mmol) of NH₄PF₆, and 0.52 g (1 mmol) of complex 3. After 5 min of stirring, 1 mL (7.68 mmol) of cis-cyclooctene was added and the reaction mixture was stirred at room temperature. After 2 h, a control by 31P NMR indicated the end of the complexation. The reaction mixture was then evaporated to dryness, yielding a green powder which was washed three times with dry hexane (20 mL) to remove traces of cyclooctene. After each washing, the hexane phase was separated from the solid by filtration under nitrogen. The resulting residue was then dissolved in dry CH2Cl2 (20 mL) and filtered on Celite under nitrogen. After evaporation of CH₂Cl₂, complex 12 was recovered as a dark green powder which can be crystallized in a CH₂Cl₂/ether (1:1) mixture at room temperature. Yield: 0.37 g (50%).

 ^{31}P NMR (CD₂Cl₂): δ 232.70 (P of tmbp), -143.25 (sevt, $^{1}\text{J}(P-F)=712.85, PF_{6})$. ^{1}H NMR (CD₂Cl₂): δ 1.2–1.5 (m, 12H, CH₂ of C₈H₁₄), 1.76 (t, 15H, $^{4}\text{J}(H-P)=2.70,$ Me of C₅Me₅), 2.42 (d, 6H, J(H-P)=5.00, Me of tmbp), 2.50 (s, 6H, Me of tmbp), 3.04 (d, 2H, $^{3}\text{J}(H-H)=10.10,$ CH of C₈H₁₄), 8.21 (AA'XX', m, 4H, H₃ and H₆ of tmbp). ^{13}C NMR (CD₂Cl₂): δ 10.80 (s, Me of C₅Me₅), 23.30 (s, Me of tmbp), 25.20 (AXX', vt, $\Sigma\text{J}(C-P)=5.40,$ Me of tmbp), 26.40, 32.80, 33.50 (s, CH₂ of C₈H₁₄), 74.80 (s, =CH of C₈H₁₄), 99.00 (s, Cq of C₅Me₅), 131.40 (AXX', $\Sigma\text{J}(C-P)=48.10,$ C₃ of tmbp), 136.60 (AXX', $\Sigma\text{J}(C-P)=23.30,$ C₄ or C₅ of tmbp), 140.20 (AXX', $\Sigma\text{J}(C-P)=26.50,$ C₆ of tmbp), 149.10 (AXX', $\Sigma\text{J}(C-P)=13.90,$ C₄ or C₅ of tmbp),

152.00 (AXX', vt, $\Sigma J(C-P) = 76.30$, C_2 of tmbp). Complex **12** did not give satisfactory elemental analysis data.

Preparation of [RuCp*(tmpb)(η^2 -C₇H₁₀)][PF₆] (13). The experimental procedure is identical with that used for the preparation of complex 12. The reaction occurs under the same conditions and requires 2 h of stirring at room temperature. From 0.24 g (1.5 mmol) of NH₄PF₆, 0.52 g (1 mmol) of complex 3, and 0.19 g (2 mmol) of norbornene, complex 13 was isolated as a dark green solid after crystallization in a CH2-Cl₂/ether mixture (1:1) at -20 °C. Yield: 0.50 g (70%).

³¹P NMR (CD₂Cl₂): δ 234.90 (P of tmbp), -144.35 (sept, ${}^{1}J(P-F) = 708.70, PF_{6}$). ${}^{1}H NMR (CD_{2}Cl_{2})$: $\delta 1.03-2.30 (m,$ 23H, Me of C_5Me_5 , $2 \times CH$ and $2 \times CH_2$ of C_7H_{10}), 2.48 (d, 6H, J(H-P) = 4.90, Me of tmbp), 2.57 (bs, 6H, Me of tmbp), 2.97 (bs, 2H, CH of C_7H_{10}), 8.28 (AA'XX', 2H, $\Sigma J(H-P) = 16.70$, H_2 or H_6 of tmbp), 8.40 (AA'XX', 2H, $\Sigma J(H-P)=19.50$, H_6 or H_2 of tmbp). ${}^{13}\text{\^{C}}$ NMR (CD₂Cl₂): δ 10.15 (s, Me of C₅Me₅), 22.60 (s, Me of tmbp), 24.55 (s, Me of tmbp), 27.85 (s, CH_2 of C_7H_{10}), 35.0 (s, CH of C₇H₁₀), 42.35 (s, bridging CH₂ of C₇H₁₀), 67.95 (s, =CH of C_7H_{10}), 99.55 (Cq of C_5Me_5), 131.85 (AXX', $\Sigma J(C-$ P) = 48.82, C_3 of tmbp), 136.45 (AXX', C_4 or C_5 of tmbp), 140.10 $(AXX', \Sigma J(C-P) = 27.46, C_6), 148.55 (AXX', \Sigma J(C-P) = 37.80,$ C_5 or C_4), 151.20 (AXX', vt, $\Sigma J(C-P) = 76.30$, C_2); Anal. Calcd for $C_{31}H_{41}F_6P_3Ru$: C, 51.59; H, 5.73. Found: C, 51.38; H, 5.85.

Electrochemical Study of 3. Transient cyclic voltamme-Ty was performed in a ca. 12 mL three-electrode airtight cell nnected to a Schlenk line. The working electrode consisted a gold disk of 0.5 or 0.125 mm diameter made from a cross section of a gold wire (Goodfellow) sealed in glass. The reference electrode was an SCE (Tacussel), separated from the solution by a bridge (3 mL) filled with a 0.3 M solution of n-Bu₄-NBF₄ in MeCN identical with that used in the cell. The Surface located within 5 mm of the working electrode and facing it. A home-built potentiostat equipped with positive feedback for ohmic-drop compensation was a Tacusssel GSTP4 of the compensation of the working electrode and facing it. A home-built potentiostat equipped with positive feedback for ohmic-drop compensation of the working electrode and facing it. A home-built potentiostat equipped with positive feedback for ohmic-drop compensation of the working electrode and facing it. A home-built potentiostat equipped with positive feedback for ohmic-drop compensation of the working electrode and facing it. A home-built potentiostat equipped with positive feedback for ohmic-drop compensation of the working electrode and facing it. A home-built potentiostat equipped with positive feedback for ohmic-drop compensation of the working electrode and facing it. A home-built potentiostat equipped with positive feedback for ohmic-drop compensation of the working electrode and facing it. A home-built potentiostat equipped with positive feedback for ohmic-drop compensation of the working electrode and facing it. A home-built potentiostat equipped with positive feedback for ohmic-drop compensation of the working electrode and facing it. A home-built potentiostat equipped with positive feedback for ohmic-drop compensation of the working electrode and facing it. A home-built feedback for ohmic-drop compensation of the working electrode and facing it. A home-built feedback for ohmic-drop electrode and facing it. A home-built feedback for ohmic-drop electrode and facing it. A home-built feedback for ohmic-drop electrode and facing it. A home-built feedback for ohmic-drop electrode and facing it. A home-built feedback f Sounter electrode was a platinum spiral of ca. 1 cm² apparent

instrument. The voltammograms were recorded with a Nicolet 3091 digital oscilloscope and the measurements performed on the stored curves. The cyclic voltammetric measurements were performed on 2 mM solutions of the complex. The absolute number of electrons was determined by a combination of chronoamperometry and cyclic voltammetry on a stationary gold-disk ultramicroelectrode (0.25 μ m), with ferrocene as reference, according to a published procedure. 16

X-ray Structure Determination for 3. Crystals of 3, C₂₈H₃₉ClOP₂Ru, were grown from a THF/pentane solution of the compound. Data were collected at -150 ± 0.5 °C on an Enraf-Nonius CAD4 diffractometer using Mo Kα radiation (λ = 0.710 73 Å) and a graphite monochromator. The crystal structure was solved and refined using the Enraf-Nonius MOLEN package. The compound crystallizes in space group $P2_1/n$ (No. 14), with a = 11.493(1) Å, b = 14.238(1) Å, c =16.605(2) Å, $\beta = 92.56(6)^{\circ}$, V = 2714.52(77) Å³, Z = 4, $d_{\text{calc}} = 4$ 1.444 g/cm³, $\mu = 8.0$ cm⁻¹, and F(000) = 1224. A total of 8561 unique reflections were recorded in the range $2^{\circ} \le 2\theta \le 60.0^{\circ}$, 2916 of which were considered as unobserved $(F^2 < 3.0\sigma(F^2))$, leaving 5644 for solution and refinement. Direct methods yielded a solution for most atoms. The hydrogen atoms were included as fixed contributions in the final stages of leastsquares refinement while using anisotropic temperature factors for all other atoms. A non-Poisson weighting scheme was applied with a p factor equal to 0.08. The final agreement factors were R = 0.038, $R_w = 0.060$, and GOF = 1.20.

Supporting Information Available: Text giving details of the X-ray structure determination for 3 and tables of crystal data, positional parameters, bond distances and angles for all non-hydrogen atoms, and β_{ij} values (6 pages). Ordering information is given on any current masthead page.

OM960063J

(19) Amatore, C.; Lefrou, C.; Pflüger, F. J. Electroanal. Chem. Interfacial Electrochem. 1988, 270, 43