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The reaction of MMes; (M = Ga, In; Mes = 2,4,6-Me;C¢H,) with CsF in acetonitrile yields
the trimesitylfluorometalates [{ Cs(MeCN),}{ MessMF} ],:2MeCN ([1].*6MeCN, M = Ga; [2]2*
6MeCN, M = In). Ga(CH,Ph); gives with CsF under the same conditions the salt
[Cs{(PhCH;)sGaF}].:2MeCN ([3]2:2MeCN). The treatment of 1 equiv CsF with 2 equiv of
GaMes; does not lead to Cs[MeszGaFGaMes;] but to [1],-6MeCN and the adduct [Mes;Ga-
(MeCN)] (4). [1].6MeCN—4 have been characterized by NMR, IR, and MS techniques as
well as by X-ray analyses. [1],*6MeCN and [2].-:6MeCN are solvated ion pairs in acetonitrile,
while [3]2:2MeCN shows a monomer—dimer equilibrium. According to the X-ray structure
determinations, [1],:6MeCN and [2],:6MeCN are isostructural and contain Cs—F four-
membered rings. The fluorine centers at the rings are bound to the metallane groups. Each
cesium cation is coordinated by two molecules of acetonitrile and by one mesityl group in a
n3-fashion. The basic structural feature of [3],°2MeCN is also a Cs—F four-membered ring;
however, the cations in [3],:2MeCN are surrounded by three phenyl groups of the benzyl
substituents. The three 78-bound phenyl rings are contributed from two different metallane
units. 4 possesses a distorted tetrahedral coordination sphere with a low pyramidalization

of the Ga center (angular sum: 355°).

Although triorganofluorometalates have been known
for 35 years, reports about their structures in the solid
state are sparse. The aluminum derivatives!—2 as well
as the later published derivatives of the higher homo-
loges gallium and indium, K[Mes;GaF],* K[Et;GaF],*~®
[NMe,][EtsGaF],5 [MesNCH,Ph][EtsGaF],87 [EtsNCH,-
Ph][Et;GaF],” and [MesNCH,Ph][MezInF],8 supposedly
consist of linear polymer chains of [RsMF]~ units with
a distorted trigonal-bipyramidal coordination sphere. In
this case the cations should not be included into strong
interionic interactions as it has been found for the salts
K[Et:AIFAIEt;]° and K[MeszAlIFAIMe3]:CeHe.10 This ar-
rangement, however, does not appear likely in the case
of the alkali triorganofluorometalates because of our
findings during the structural studies of the metalates
Cs[(PhCH,),GaF,],!* Cs[MesGaF3],'2 and [{ Cs(MeCN),} -
{F(i-Prz2InF)s}].1® In these salts Cs—F contacts domi-
nate the structure.

More recently, we have shown strong Cs—F interac-
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tions also in cesium triorganofluorometalates Cs[RsMF]
(R =Me, M = Al, Ga, In;* R = Et, i-Pr, M = Ga, In5),
The important structural motifs are Cs,F, four-mem-
bered rings connected to puckered layers, infinite lad-
der-type chains, or heterocubane units.

In the present work we have investigated the influ-
ence of electronic z-systems on the generation of the
Cs—F skeleton, particularly on the environment of the
Cs* ions.

Experimental Section

General Procedures. All experiments were carried out
under an atmosphere of argon using Schlenk techniques.
Purification and drying of the organic solvents were performed
using standard methods.’®* GaMess,'” InMes3,'® and Ga(CHo-
Ph);11° were prepared following literature procedures.

The H, 13C, and °F NMR spectra were recorded on a Bruker
spectrometer AC-300 (*H, 300.134 MHz; 13C, 75.469 MHz; *°F,
282.409 MHz). The standards were TMS (external; H, 13C)
and CFCl; (external; *°F) with 6 = 0.0 ppm. The IR spectra
were obtained using a Bruker instrument I1FS-88 (Nujol mulls,
Csl disks for the range 4000—500 cm™1; polyethylene disks for
the range 500—100 cm™?). For the EI mass spectra a Varian
CH7a mass spectrometer (70 eV) was used. The melting
points were measured with a Dr. Tottoli (Blichi) melting point
apparatus in sealed capillaries under argon (values not cor-
rected).

Synthesis of [{Cs(MeCN).}{Mes;GaF}].:2MeCN, [1].-
6MeCN. A 1.77 g (11.65 mmol) amount of CsF was added to
a solution of 3.56 g (8.32 mmol) of GaMes; in 40 mL of MeCN
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in one portion at room temperature. The colorless suspension
was stirred for 4 days, heated to 60 °C and filtered at this
temperature. The filtrate was cooled to 5 °C yielding colorless
crystals of [1],°6MeCN [3.92 g, 82% yield based on GaMess,
mp >270 °C (solvent-free material 1)]. *H NMR (CDsCN,
ppm): 2.20 (s, 3 H, CH3-C%), 2.23 (s, 6 H, CH3-C%9%), 6.63 (s, 2
H, H-C®5). 13C NMR (CDsCN, ppm): 21.0 (CHs-C?#), 24.9 (CH3-
C26), 127.1 (C®5), 134.9 (C*#), 145.8 (C26), 155.4 (CY). °F NMR
(CDsCN, ppm): —167.8. IR (cm™2): 2726 (w), 2292 (w), 2260
(w), 1735 (w), 1598 (m), 1542 (m), 1256 (m), 1169 (w), 1019
(m), 943 (w), 922 (w), 876 (s), 581 (m), 546 (vs), 496 (w), 421
(vs), 350 (s), 285 (m), 257 (s), 194 (s). EI-MS [m/z (rel. int.)
fragment]: 503 (3) (CsFGaMes; — 5Me)*, 429 (8) (CsFGaMes;
— 2Me)*, 415 (3) (CsFGaMes; — 3Me + H)*, 401 (2) (CsF-
GaMes, — 4Me + 2H)*, 355 (18) (CsFGaMesMe)*, 341 (8)
(CsFGaMes + H)*, 325 (7) (FGaMes, — H)*, 307 (62) (GaMesy)",
281 (51) (FGaMes, — 3Me)*, 267 (6) (FGaMes; — 4Me + H)™,
221 (12) (FGaMesMe — H/CsFGas)*, 207 (100) (FGaMes)*, 191
(9) (FGaMes — Me — H)*, 147 (22) (CsMe — H)*, 133 (9) Cs™,
119 (4) (Mes)*, 69 (28) Gat. Anal. Calcd: C, 55.99; H, 5.74;
Cs, 22.95; F, 3.28. Found: C, 55.76; H, 5.82; Cs, 22.68; F, 3.16
(solvent-free material 1).

Synthesis of [{Cs(MeCN)z}{Mesz;InF}].:2MeCN, [2]-
6MeCN. A 1.13 g (7.44 mmol) amount of CsF was added to a
solution of 2.34 g (4.95 mmol) of InMes; in 50 mL in one portion
at room temperature. The colorless suspension was stirred
for 70 h, heated to 60 °C, and filtered at this temperature.
The filtrate was cooled to 5 °C yielding colorless crystals of
[2].-6MeCN [2.60 g, 84% yield based on InMesz, mp 191 °C
(solvent-free material 2)]. *H NMR (CD3CN, ppm): 2.10 (s, 3
H, CH3-C%, 2.20 (s, 6 H, CH5-C%%), 6.69 (s, 2 H, H-C%5). 13C
NMR (CDs;CN, ppm): 21.0 (CH3-C%), 25.9 (CH;-C?9%), 126.6
(C®5), 135.8 (C*), 140.7 (C%®), 146.4 (CY). *°F NMR (CDsCN,
ppm): —173.4. IR (cm™%): 2728 (m), 1712 (vw), 1609 (w), 1594
(w), 1306 (m), 1225 (m), 1156 (m), 1032 (m), 969 (m), 940 (m),
890 (w), 845 (m), 836 (m), 687 (m), 604 (m), 577 (m), 538 (M),
488 (w), 462 (w), 446 (w), 402 (w), 391 (w), 297 (w), 239 (w),
190 (m), 146 (w), 135 (w), 125 (w). EI-MS [m/z (rel. int.)
fragment]: 372 (1) (FInMes,)", 353 (2) (InMes,)*", 253 (2)
(FInMes)*, 234 (3) (InMes)*, 134 (3) (InF)*, 133 (7) Cs*, 119
(71) (Mes)*, 115 (3) In*, 105 (100) (MesH — Me)*t, 91 (9)
(Mes — 2Me)*, 77 (12) (CsHs)*. Anal. Calcd: C, 51.95; H, 5.33;
Cs, 21.29; F, 3.04. Found: C,51.69; H, 5.42; Cs, 21.18; F, 3.12
(solvent-free material 2).

Synthesis of [Cs{(PhCH,);GaF}].-2MeCN, [3].:2MeCN.
A 0.75 g (4.94 mmol) amount of CsF was added to a solution
of 1.14 g (3.32 mmol) of Ga(CH2Ph); in 25 mL of MeCN in one
portion at room temperature. The colorless suspension was
stirred for 48 h, heated to 60 °C, and filtered at this temper-
ature. The filtrate was cooled to 5 °C yielding colorless crystals
of [3]2:2MeCN [1.49 g, 91% vyield based on Ga(CH:Ph);, mp
132 °C (dec, solvent-free material 3)]. *H NMR (CD3sCN, ppm,
rel. integral): 1.65 (s, 0.79, CH,Ph, dimer), 1.64 (s, 1.57, CH,-
Ph, dimer), 1.77 (s, 1, CH,Ph, monomer), 6.78—7.40 (m, 8.57,
H-phenyl, monomer and dimer). *C NMR (CDs;CN, ppm):
22.6 (br, CHzPh, monomer), 24.4 (CH,Ph, dimer), 24.6 (CH.-
Ph, dimer), 121.2 (C*, dimer), 122.6 (C*, monomer), 127.8 (C3?,
dimer), 128.4 (C®5, monomer), 128.7 (C%¢, dimer), 128.9 (C%5,
monomer), 147.3 (C, monomer), 150.7 (C%, dimer). °F NMR
(CDsCN, ppm, rel. integral): —167.7 (s, 2.2, dimer), —173.1
(s, 1.0, monomer). IR (cm™): 2717 (m), 2667 (m), 2008 (vw),
1980 (vw), 1858 (vw), 1808 (vw), 1590 (s), 1306 (m), 1267 (w),
1206 (vs), 1177 (m), 1071 (s), 1043 (s), 994 (s), 901 8m), 797
(m), 755 (vs), 699 (vs), 619 (w), 567 (w), 544 (m), 521 (m), 477
(s), 446 (s), 331 (M), 246 (s), 228 (s), 206 (s), 181 (M), 136 (Vvw).
EI-MS [m/z (rel. int.) fragments]: 555 (1) [Cs:F.Ga(CH,Ph),]*,
403 (1) [CsFGa(CH.Ph),]*, 342 (1) [Ga(CH,Ph)s]*, 330 (1)
[CsF,GaCH,Ph — H]", 251 (33) [Ga(CH.Ph),]*, 91 (100) (CH-
Ph)*, 69 (55) Ga*. Anal. Calcd: C, 50.95; H, 4.27; Cs, 26.85;
F, 3.84. Found: C, 50.79, H, 4.35; Cs, 26.59; F, 4.04 (solvent-
free material 3).

Synthesis of [Mesz;Ga(MeCN)], 4. A solution of 1.12 g
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(2.6 mmol) of GaMesz in 10 mL of MeCN was treated with 5
mL of n-pentane. The mixture was cooled to 5 °C yielding
colorless crystals [0.96 g, 79%, mp 193 °C]. *H NMR (CDs-
CN, ppm): 1.89 (s, 3 H, CH3CN), 2.11 (s, 6 H, CH5-C?%%), 2.13
(s, 3 H, CH;-C%, 6.67 (s, 2 H, H-C3). 3C NMR (CDsCN,
ppm): 1.2 (CH3CN), 20.9 (CHz-C*), 24.9 (CH3-C%6), 121.2
(CH3CN), 128.1 (C®®, 138.7 (C%), 145.1 (C?6), 148.0 (CY). IR
(cm™1): 2728 (w), 2306 (w), 2279 (w), 1600 (m), 1569 (m), 1304
(m), 1225 (m), 1169 (m), 969 (m), 932 (m), 890 (M), 847 (s),
836 (s), 687 (m), 596 (w), 581 (m), 558 (m), 544 (m), 523 (w),
490 (w), 463 (m), 447 (m), 399 (m), 345 (m), 338 (m), 327 (m),
279 (w), 247 (m), 226 (vw), 194 (m-s), 170 (vw), 151 (m), 118
(m), 105 (w). EI-MS [m/z (rel. int.) fragment]: 426 (10)
(GaMes3)*t, 307 (90) (GaMes;)", 188 (33) (GaMes)™, 119 (100)
(Mes)*, 105 (21) (Mes — Me)*, 91 (4) (Mes — 2Me)*, 69 (45)
Gat, 41 (31) (MeCN)*. Anal. Calcd: C, 74.36; H, 7.76; N, 2.99.
Found: C, 74.18; H, 7.48; N, 2.98.

X-ray Structure Determinations of [1],:6MeCN—4. The
crystals were covered with a high-boiling paraffin oil and
mounted on the top of a glass capillary under the flow of cold
gaseous nitrogen. The orientation matrix and preliminary unit
cell dimensions were determined from 25 reflections on a four-
circle diffractometer with graphite-monochromated Mo Ka
radiation (1 = 0.710 73 A; [1],°6MeCN, 4, Siemens P4; [2]»
6MeCN, [3]2:2MeCN, Enraf-Nonius CAD4). The final cell
parameters were determined with 25 high-angle reflections.

The intensities have been corrected for Lorentz and polar-
ization effects (cell parameters and collecting of the intensities;
see Table 1). The structure of [1],:6MeCN has been solved by
the Patterson method, and the structures of [3],:2MeCN and
4 have been solved by direct methods using the program
SHELXTL-Plus.?° The structure of [2],-6MeCN is isostruc-
tural to [1].-6MeCN; the coordinates of the non-hydrogen
atoms of [1],-6MeCN have been used for the first refinement
cycles. The structures were refined against F2 by full-matrix
least-squares with the program SHELXL-93.2* The positions
of the hydrogen atoms were calculated for ideal positions and
refined with a common displacement parameter. The calcula-
tion of the bond lengths, bond angles, and U values was
performed using the program PLATON.??

Selected bond lengths and angles of [1],-6MeCN—4 are listed
in Table 2. Table 3 shows additional metal—carbon contacts
in [1],*6MeCN—[3]2*2MeCN. A comparison of bond lengths
for selected organogallium(indium) compounds is given in
Table 4.

Results and Discussion

The cesium triorganofluorometalates [{ Cs(MeCN);} -
{MeszMF}]22MeCN ([1]2:6MeCN, M = Ga; [2]2-6MeCN,
M = In) have been synthesized by the reaction of the
corresponding metallanes with CsF in acetonitrile at
room temperature according to eq 1.

2MMes; + 2CsF + 6MeCN —

[{Cs(MeCN),}{ Mes;MF}],:2MeCN (1)
[1],6MeCN, M = Ga
[2],-6MeCN, M = In

The choice of CsF as fluoridation agent is based on
its highest fluoridation potential among the alkali
fluorides and the highest enthalpy of complexation for
the salts M'[RsMF] (M' = Li, Na, K, Rb, Cs; M = Al,
Ga, In; R = alkyl groups).! Another reason is the
possibility of obtaining crystals of high quality. Other

(20) Sheldrick, G. M. SHELXTL-Plus, Release 4.2 for Siemens R3
Crystallographic Research Systems, Siemens Analytical X-ray Instru-
ments, Inc., Madison, WI, 1990.

(21) Sheldrick, G. M. SHELXL-93, Gottingen, 1993.

(22) Spek, A. L. PLATON-94, Utrecht, 1994.
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Table 1. Crystallographic Data for the Compounds [1],-:6MeCN—4
compd
[1].-6MeCN [2].-6MeCN [3]2-2MeCN 4
formula CeeH34C52FzGazN6 C56H84C52F2In2N6 C46H48C82FzGazN2 ngngGaN
fw 1404.69 1494.89 1072.16 468.33
cryst size (mm) 0.6 x 0.3 x 0.2 0.6 x 0.5 x 0.1 0.45 x 0.4 x 0.38 0.4 x 0.08 x 0.2
a(A) 10.359(2) 10.341(1) 12.503(2) 8.219(2)
b (A) 13.319(3) 13.424(1) 19.755(1) 22.844(5)
c(A) 25.498(5) 25.711(2) 9.122(1) 13.834(3)
f (deg) 101.58(1) 101.03(1) 93.05(1) 101.63(1)
V (A3) 3446(1) 3503.2(5) 2249.9(5) 2544(1)
space group P21/c P21/c P2i/c P21/c
No.43 14 14 14 14
z 2 2 2 4
ocatc (g/cm?3) 1.354 1.417 1.583 1.222
temp (K) 223 213 203 223
abs corr numerical empirical no no
u(cm™1) 18.7 17.3 28.3 11.0
260 range (deg) 2-50 4.4-50 5.0-50 4-50
h,k,I values —1<h=<12,-1<k=<15 -12=<h=<12,0=<k=<15 —-14<h=<14,-23<k=<0, -1<h=9, -1=<k=<27,
-30=<1=<30 0<1=<30 0<1=<10 -16<1<16
scan w-scan w-scan w-scan w-scan
scan width (deg) 1.4 0.58 + 0.43 tan 0 0.96 + 0.46 tan 0 1.2
no. of refls 7772 6588 4334 5939
unique refls 6050 6149 3937 4481
refls with F, > 40(F,) 2990 5063 3103 1824
for Ry
params 353 353 345 282
R2 0.0578 0.0267 0.0277 0.0501
WR,P 0.1879 0.0741 0.0712 0.0967
weight fact. a, b 0.0958, 0 0.0422,1.12 0.0346, 1.01 0.0286, 0
max/min resid electron 1.27/—1.94 0.42/-0.49 0.63/—0.56 0.37/-0.43

density (e/A3)

a Ry = Y|IFo — Fell/Y|Fel. ® WR2 = {[IW(Fe? — FA2/yW(FR)2} Y2, ¢ w = U/[03(Fs?) + (aP)? + bP].

alkali cations like K give crystalline material suitable
for a single-crystal X-ray structure determination only
in a few cases, e.g., for the compound K[MesInBr;3].1223

The coordination of MeCN at cesium centers can be
excluded for compounds of the general formula
M'[R4-nGaFy] (n = 1, 2) in the case of benzyl substitu-
ents as shown in eq 2 for n = 1.

2Ga(CH,Ph), + 2CsF + 2MeCN —

[Cs{(PhCH,),;GaF}],-2MeCN (2)
[3],:2MeCN

The treatment of 1 equiv CsF with 2 equiv of MR3
does not lead to the dimetalla fluorides Cs[RsMFMR3]
as was observed for M[R3AIFAIR3] (M = alkali metal,
R = alkyl),%?10 [NMe4][RsGaFGaR3] (R = Me,* Et*%7),
and [NMeg][MesTIFTIMes).24 Only [1].-6MeCN—[3]+
2MeCN and, in the case of GaMesg, the adduct [Mess-
Ga(MeCN)], 4, could be isolated. One reason which
could serve to explain this finding is the reduced Lewis
acidity of gallanes and indanes compared to that of
allanes on the one hand and the strong cesium—fluorine
interaction on the other hand. A salt of general formula
A[RsMFMR;] with M = Ga, In, and Tl should exist only
when AT is a bulky nonpolarizing cation such as [NR4]*
or [PR4]".

The title compounds are oxygen and moisture sensi-
tive and soluble in donor solvents such as MeCN and
THF. Solutions of 1 and 2 in acetonitrile contain
solvated ion pairs of the type [Cs(MeCN),][MeszMF].

Earlier investigations of the saltlike compounds Cs-
[(PhCHz)zGaFg],ll CS[|\/|(ES(.:,|8[|:3],12 and Cs[R3MF] (R =
Me, Et, i-Pr; M = Al, Ga, In)*15 showed similar results.
The °F NMR spectra of 1 and 2 exhibit one resonance
at —167.8 and —173.4 ppm, respectively. The two
signals at —167.7 and —173.2 ppm for 3 in acetonitrile
may be caused by a monomer—dimer equilibrium. The
1H and 3C NMR spectra of 3 verify this assumption.
The monomer gives one signal at 1.77 (*H) and 22.6 ppm
(13C), while the dimer gives rise to two peaks at 1.64
and 1.65 ppm (*H) as well as at 24.4 and 24.6 ppm (*3C).
However, the ratio of the signals for the dimer is 1:2.
This can be explained by the X-ray analysis, which
shows that the three benzyl groups are coordinated to
two different Cs centers. Therefore, two benzyl groups
are chemically equivalent. The molar dimer—monomer
ratio determined from the 'H spectrum is 1.18:1 at 25
°C. A VT-F-NMR study in the range —40 to 40 °C
(CD3CN) shows only a slight temperature dependence
of the dimer—monomer ratio.

The 'H and 13C resonances for the coordinated aceto-
nitrile molecule in 4 at 1.89 (*H) and 1.2 and 121.2 ppm
(13C) show typical values compared with the spectra of
compounds with MeCN ligands coordinated to group 13
metal centers.2>26 In all cases, 1—4, the organic groups
give 'H and 3C NMR signals which are characteristic
for Mes and CHPh ligands, attached to MF fragments
(M = Ga, In).11-13.2527

The small rings in [1],-6MeCN—[3],-2MeCN allow a
reliable assignment of IR bands to the corresponding

(23) For gallium and indium compounds, see: Gmelin Handbook of
Inorganic Chemistry, Gallium, Organogallium Compounds; Springer:
Berlin, 1987; Part 1. Weidlein, J. In Gmelin Handbook of Inorganic
Chemistry, Organoindium Compounds; Springer: Berlin, 1991; Part
1

. (24) Ehemann, T.; Dehnicke, K. J. Organomet. Chem. 1974, 71, 191.

(25) Neumller, B.; Gahlmann, F. Z. Anorg. Allg. Chem. 1992, 612,
123.

(26) Cowley, A. H.; Carrano, C. J.; Geerts, R. L.; Jones, R. A.; Nunn,
C. M. Angew. Chem., Int. Ed. Engl. 1988, 27, 277.

(27) Neumuller, B.; Gahlmann, F. J. Organomet. Chem. 1991, 414,
271.
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Table 2. Selected Bond Lengths (A) and Angles
(deg) of [1],-6MeCN—4
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Table 3. Additional Metal—-Carbon Contacts in
[1]2:6MeCN—[3],-2MeCN (A)

Compound [1],-6MeCN

Cs1—F1 3.207(6) Gal-C1 2.024(9)

Csl—-Fla 2.880(5) Gal—-C2 2.03(1)

Cs1—-N1 3.18(1) Gal-C3 2.02(1)

Cs1—N2 3.11(1) N1-C4 1.13(2)

Gal-F1 1.903(5) N2—-C5 1.10(2)
F1-Csl—Fla 86.4(1) Cl-Gal—-C2 113.3(4)
F1-Csl1—N1 119.0(3) Cl-Gal-C3 114.4(4)
F1-Cs1—N2 121.3(4) C2—-Gal-C3 130.3(4)
N1-Cs1—N2 119.6(4) Csl-F1-Gal 109.7(2)
N1-Csl—Fla 105.0(3) Csl-F1-Csla 93.6(1)
N2—-Csl—-Fla 82.1(3) Gal-F1-Csla 156.4(3)
F1-Gal-C1 105.5(3) Cs1-N1-C4 160(1)
F1-Gal-C2 96.0(3) Cs1-N2-C5 135(1)
F1-Gal—-C3 103.6(4)

Compound [2],°6MeCN

Csl-F1 3.040(2) In1-C1 2.202(3)

Csl-Fla 2.852(2) In1-C2 2.213(3)

Cs1—N1 3.224(4) In1-C3 2.212(3)

Cs1—-N2 3.139(4) N1-C4 1.128(6)

In1-F1 2.113(2) N2—-C5 1.112(6)
F1-Csl—Fla 82.26(5) Cl-In1l-C2 115.1(1)
F1—-Cs1—N1 121.83(9) C1-In1-C3 116.2(1)
F1—-Cs1—N2 119.5(1) C2-In1-C3 119.3(1)
N1—Cs1—N2 118.7(1) Csl—-F1-Inl 109.41(7)
N1-Csl—Fla 106.9(1) Csl1—-F1—Csla 97.74(5)
N2—-Cs1-Fla 80.9(1) In1-F1—Csla 152.75(9)
F1-In1-C1 103.97(9) Cs1-N1-C4 160.0(5)
F1-In1-C2 93.9(1) Cs1-N2—-C5 137.4(4)
F1-In1-C3 103.0(1)

Compound [3]22MeCN

Csl—-F1 2.872(2) Gal—-C1l 2.013(4)

Csl—Fla 2.838(2) Gal—C2 2.007(5)

Gal-F1 1.864(2) Gal—-C3 2.021(5)
F1-Csl—Fla 84.85(6) C1-Gal—C3 112.6(2)
F1-Gal—-C1 105.0(1) C2—-Gal-C3 116.6(2)
F1-Gal—C2 104.3(2) Cs1-F1-Gal 119.8(1)
F1-Gal-C3 104.6(2) Csl—-F1-Csla 95.15(7)

C1-Gal—-C2 112.3(2) Gal-Fl-Csla  132.9(1)

Compound 4

Gal—N1 2.207(5) Gal-C3 1.988(5)

Gal—-C1 2.014(5) N1-C4 1.111(6)

Gal-C2 1.999(5)
N1-Gal—-C1 96.6(2) C1-Gal—-C3 118.1(2)
N1-Gal—-C2 94.2(2) C2-Gal-C3 118.0(2)
N1-Gal—-C3 101.0(2) Gal—-N1-C4 171.2(5)
Cl-Gal-C2 119.3(2) N1—-C4—-C41 178.4(7)

vibrations. Monomer CsF and the dimer (CsF), inves-
tigated by matrix isolation techniques exhibit IR bands
at 313 (monomer) and 251, 205, and 76 cm~! (dimer),
respectively.?®6. The absorptions at 194 ([1],:6MeCN) and
190 cm~! ([2],-6MeCN) can be attributed to the vibra-
tions vas(CszF2). The bands at 228, 206, and 181 cm™?!
for the ring vibrations in [3],:2MeCN are observed at
higher wavenumbers because of the lower coordination
number of the Cs* ion. The Ga(ln)—F stretching
vibrations have been observed at 420 ([1],:6MeCN), 402
([2]2°6MeCN), and 447 cm~! ([3].-2MeCN); the higher
value for [3]22MeCN in comparison to [1],°6MeCN is
in good agreement with the shorter Ga—F bond length
in [3]:2MeCN compared to that in [1],°6MeCN. We
assign the bands at 581 ([1].:6MeCN), 538 ([2].*
6MeCN), 477 ([3]2*2MeCN), and 581 cm™1 (4) to M—C
vibrations. However, the M—Mes fragments lead to a
mixing of M—C and aryl-ring vibrations.?® The absorp-

(28) Martin, T. P.; Schaber, H. 3. Chem. Phys. 1978, 68, 4299.

Compound [1],-6MeCN

Csl:--C2 3.49(1) Csl1---C24 4.17(1)
Csl---C21 3.31(1) Csl---C25 3.94(1)
Csl:--C22 3.56(1) Cs1---C36 3.59(1)
Cs1---C23 4.00(1)
Compound [2],-6MeCN
3.508(3) 4.243(4)
3.360(3) 3.988(4)
3.761(4) 3.663(5)
4.123(4)
Compound [3]2:2MeC
Csl---Clla 3.700(4) Csl---C25 3.497(5)
Cs1-++Cl2a 3.641(4) Csl---C26 3.553(5)
Csl1---Cl3a 3.549(5) Cs1---C21—-C262 3.30
Csl:--Cl4da 3.477(5) Csl1---C31 3.617(4)
Csl1--C15a 3.479(5) Csl1--+C32 3.550(5)
Csi1---Cl6a 3.592(4) Csl1---C33 3.526(5)
Csl---Clla—Cl6a? 3.29 Cs1---C34 3.545(5)
Csl1-+C21 3.670(4) Csl1--C35 3.581(5)
Cs1---C22 3.697(4) Csl---C36 3.614(5)
Csl1---C23 3.651(5) Cs1---C31-C362 3.29
Csl-+C24 3.556(5)

a Ring centroid.

tion at 338 cm™1 for 4 is caused by the M—N streching
vibration. Interesting are the C=N bands. A C=N
vibration for [1],°6MeCN and [2],:6MeCN has been
observed only for [1],°6MeCN because of the weakly
bound MeCN molecules. In[1],-6MeCN the acetonitrile
molecule is attached to Cs™, while 4 possesses a slightly
stronger donor—acceptor Ga—N bond. Nevertheless, in
both cases the resonance v(C=N) is split by Fermi
resonance. In addition, a shift of the values to higher
wavenumbers should be observable ([1],-6MeCN, 2292,
2260; 4, 2306, 2279; MeCN, 2294, 2254 cm~1).30 [1],-
6MeCN and 4 exhibit only a small splitting of the band
and no significant shift of the values as it was found in
[{ B(CH2Ph)3}0.92{ Ga(CH2Ph)s} 0.0s(MeCN)] (2336, 2314,
2291 cm™1).25 The spectroscopic data and the results
of the X-ray analyses confirm that [1],-6MeCN, [2].*
6MeCN, and 4 are compounds with weak metal—
nitrogen bonds.

The EI mass spectra exhibit only fragments for the
dimers [1],°6MeCN—[3]2:2MeCN. m/z = 503 (CsF-
GaMesz — 5Me)*t, m/z = 372 (FInMes,)*, and m/z =
555 [Cs,F,Ga(CH2Ph),]™ are the highest observed sig-
nals.

Centrosymmetric four-membered CsF rings are the
dominating structural motif for the solid structures of
[1]2-6MeCN—[3]2-:2MeCN. In comparable derivatives
such as Cs[Me3MF] and CsJ[i-PrsMF] (M = Ga, In)415
the CsyF, rings are connected by additional Cs—F
interactions. In [1],-6MeCN—[3]>:2MeCN the m-elec-
tron systems of aryl substituents and, in part, aceto-
nitrile molecules have to substitute the Cs—F contacts
to saturate the coordination sphere of the Cs* ions.
However, the interactions of m-electron systems with
Cs* ions can be understood as an electrostatic one.
Comparable aryl—Cs(Rb) features are known from or-
ganometallic compounds such as [Cs(CsHe)s{ C(Si-
Mes)3}].3132 The structures of [1],:6MeCN and [2],

(29) Kainz, B; Schmidt, A. Spectrochim. Acta 1990, 46A, 1361.

(30) Weidlein, J.; Mdller, U.; Dehnicke, K. Schwingungsfrequenzen
I; Thieme: Stuttgart, Germany, 1981.

(31) Eaborn, C.; Hitchcock, P. B.; Izod, K.; Smith, J. D. Angew.
Chem., Int. Ed. Engl. 1995, 34, 687.
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Table 4. Comparison of Bond Lengths (A) in Selected Organogallium(indium) Compounds

compd Cs—F Ga(ln)—F Ga(ln)—-C Ga—N ref
[1]2:6MeCN 2.880(5), 3.207(6) 1.903(5) 2.022 b
[3]2:2MeCN 2.838(2), 2.872(2) 1.864(2) 2.012 b
Cs[MesGaF] 2.962 1.919(3), 1.922(3) 1.992 14
Csli-PrsGaF] 2.924(2) 1.970(4) 1.998(5) 15
Cs[(PhCH,),GaF] 3.182 1.842 1.972 11
Cs[MesGaF3] 3.112 1.784(7) 1.941(8) 12

1.807(4)

[Mes,GaF], THF 1.947(2)¢ 1.949(5) 44
[(PhCH2):Ga(THF)] 1.981(6) 11
GaMes3 1.968(4) 17
[Mes,GaCl], 1.972(3) 45
4 2.002 2.207(5) b
[Mes,Ga(F)(t-BuNHy)]-2.5THF 1.838(3) 1.991(5) 2.049(4) 46
[MeseGagF404]- THF 2.23ad 1.932 44
[Me3Ga(t-BuNH,)] 1.95(1), 2.01(1) 2.12(1) 36
[Me3Ga{ (CeH11)2NH}] 1.972 2.151(6) 38
[t-BusGa(PhNHy)] 2.00(2) 2.246(9) 37
[2]2:6MeCN 2.852(2), 3.040(2) 2.113(2) 2.212 b
Cs[MeslInF] 2.942 2.148(9), 2.149(8) 2,182 14
Cs[i-PrsInF] 2.889(2) 2.168(3) 2.199(4) 15
[{ Cs(MeCN)}{ F(i-Pr2InF)s}] 2.962 2.28acd 2.152 13
[(MesInF2)10MgF,]-5tol 2.122cd 2,142 13
[MeszInF]3 2.123¢ 2,132 46
InMes; 2.163(5), 2.170(5) 18
[MeszINnCl], 2.146(9), 2.17(1) 18

a Average. P This work. ¢ Contains u,-bridging F atoms to two Ga(ln) centers. ¢ Contains uz-bridging F atoms to three Ga(In) centers.

Figure 1. Molecule [{Cs(MeCN),}{MeszInF}], in [2],-
6MeCN. The carbon and nitrogen atoms are drawn as balls
for clarity (Cs, In, and F with 50% probability level; without
H atoms).

6MeCN are isostructural (Figure 1), but all three Cs—F
four-membered rings show the same rhombic distortion
[F1-Csl—F1la, Cs1—F1—Csla: 86.4(1), 93.6(1)° ([1].
6MeCN); 82.26(5), 97.74(5)° ([2].-6MeCN); 84.85(6),
95.15(7)° ([3]2:2MeCN)].

Decreasing Cs—F distances in a group of substances
with the same ligand sphere but different group 13
metals have been observed recently.'415> We have
observed an analogous effect for [1],-6MeCN and [2],*
6MeCN. [1],-6MeCN shows Cs—F contacts of 3.207(6)
and 2.880(5) A while [2],6MeCN exhibits interactions
of 2.852(2) and 3.040(2) A. This is caused by the
synergetic effect of an increase of M—F(C) bond lengths
(M = Ga — In) on the one hand and an increase in the
ionic character of the M—F bond on the other. These

(32) For alkali metal—C interactions see e.g.: (a) Eaborn, C.; Izod,
K.; Smith, J. D. J. Organomet. Chem. 1995, 500, 89. (b) Bock, H.;
Hauck, T.; Nather, C. Organometallics 1996, 15, 1527. (c) Mecozzi, S.;
West, A. P., Jr.; Dougherty, D. A. J. Am. Chem. Soc. 1996, 118, 2307.
(d) Dougherty, D. A. Science 1996, 271, 163 and references therein.

Figure 2. Molecule [Cs{(PhCH;);GaF}], in [3],*2MeCN
(50% probability level; without H atoms).

combined effects cause closer Cs—F contacts with stron-
ger electrostatic forces. A Cs—F distance of 3.005 A has
been reported for crystalline CsF.32

Longer Cs—C ([1]2*6MeCN, 3.75 A; [2],-6MeCN, 3.83
A; mean values) and Cs—N distances ([1].-6MeCN,
3.11(1), 3.18(1) A; [2]2:6MeCN, 3.139(4), 3.224(4) A) go
along with the reduction of the CsyF; ring sizes. The
CsyF>,M, cores of [1],°6MeCN and [2],-6MeCN are
almost planar (angular sum at F1, 360°), while the Ga
atoms in [3]2:2MeCN have a distinct distance from the
Cs,F, plane (0.88 A: angular sum at F1, 348°; Figure
2).

The Ga—F distances depend on the number of elec-
tronegative substituents at the metal center. The
observed values of 1.903(5) ([1].-6MeCN) and 1.864(2)
A ([3]2'2MeCN) are between those of 1.80 A in Cs-
[MesGaFs] or 1.84 A in Cs[(PhCH,).GaF;] and that of
1.947(2) A in [Mes,GaF],* THF with u,-bridging F~ ions.
An analogous rule cannot be developed for the softer In

(33) Wells, A. F. Structural Inorganic Chemistry, 5th ed.; Oxford
Science Publications: Oxford, U.K., 1990.
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center. The In—F bond length in [2],-6MeCN of
2.113(2) A is shorter than the 2.15 A (average) in Cs-
[MezInF] or the 2.168(3) A in Cs[i-PrzInF] but in the
same region than the 2.12 A observed in [Mes;InF]; with
u2-bridging F centers.

A nonlinear arrangement of the Cs—NCMe moities
like in [1]2-6MeCN and [2],-6MeCN with similar Cs—N
bond lengths has been found in [{ Cs(MeCN)2}{ F(i-Pr,-
InF)s}].2334 In all cases the acetonitrile molecules
coordinated to Cs™ ions are only loosely bound. The
nonlinear CsNC sequence is probably due to packing
effects. [1],-6MeCN—[3]2-2MeCN contain, in addition
to the coordinated solvent, MeCN molecules occupying
lattice sites without any metal nitrogen interactions.
Therefore, [1],:6MeCN—[3]2MeCN lose the solvent
already in a weak flow of argon under efflorescence.

As can be concluded from the Cs—C distances, only
the atoms C2, C21, and C22 of the phenyl ring belong
to the coordination sphere of the Cs* ion (sum of the
van der Waals radii: 4.17 A); the corresponding Mes
ligands are rotated around the M—C2 axis (M = Ga,
In) to enable this Cs—C contacts.

In contrast to [1],-6MeCN and [2],-6MeCN, the aryl
rings in [3]2:2MeCN must be described as #®%-bound,
although the interaction mode is likewise an ionic one.
The mean values are 3.57 (C11 — C16), 3.60 (C21 —
C26), and 3.57 A (C31 — C36). This is about 0.20 A
longer than in Cs[InMe,]®® but 0.10—0.15 A shorter than
the Cs—C distances in Cs[(PhCH,),GaF,].11 Cs[(PhCH,),-
GaF;] consists of a polymeric chain of CsyF, rings
shielded by #5-bound phenyl rings. The additional
phenyl ring in [3],2MeCN leads to a complete coverage
of the Cs—F four-membered ring. The coordination
geometry of the Cs center in [3],:2MeCN can be de-
scribed as a distorted square-pyramidal environment,
if one counts a phenyl ring as one ligand.

All mentioned salts Cs[R4-nMF,] (n = 1—3) possess
an identical construction principle: The center of the
formed structure is reserved for the interionic Cs—F
interactions, while the periphery is occupied by the
organic ligands, protecting the center. The number of
organic ligands per group 13 metal, the steric demand
of the ligands, and the M—F(C) bond lengths decide the
long-range order, whether rings, strings, layers, or
molecules of the heterocubane type are formed (Figure
3).

A long Ga—N distance of 2.207(5) A and a low
pyramidalization of the metal center, recognizable by
the sum of the C—Ga—C angles of 355°, infer a weak
donor—acceptor bond for 4 (Figure 4). An average
Ga—N distance of 2.15 A and an angular sum of 347° is
typical for known adducts [R3Ga(NR’3)]. A common rule
concerning the bulk of the substituents, the Ga—N bond
lengths, and the rate of pyramidalization does not
appear to exist.36742

(34) For Cs*-*NCR contacts, see: Bock, H.; Ruppert, K. Inorg. Chem.
1992, 31, 5094.

(35) Hoffmann, K.; Weiss, E. J. Organomet. Chem. 1973, 50, 17.

(36) Atwood, D. A.; Jones, R. A.; Cowley, A. H.; Bott, S. G. Atwood,
J. L. J. Organomet. Chem. 1992, 434, 143.

(37) Atwood, D. A.; Jones, R. A.; Cowley, A. H.; Bott, S. G.; Atwood,
J. L. Polyhedron 1991, 10, 1897.

(38) Bradley, D. C.; Dawes, H. M.; Hursthouse, M. B.; Smith, L. M.;
Thornton-Pett, M. Polyhedron 1990, 9, 343.

(39) Krause, H.; Sille, K.; Hausen, H.-D.; Weidlein, J. 3. Organomet.
Chem. 1982, 235, 253.

(40) Hallock, R. B.; Hunter, W. E.; Atwood, J. L.; Beachley, Jr., O.
T. Organometallics 1985, 4, 547.
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Figure 4. Computer-generated plot of 4 (50% probability
level; without H atoms).

The increase of the coordination number (CN) 3 at
GaMes; (Ga—C: 1.968(4) A 17) to CN 4 at 4 leads to a
weakening of the Ga—C bonds causing longer metal—
carbon distances [Ga—C: 2.00 A]. The average values
for [1]2°6MeCN (2.02 A), [2].-6MeCN (2.21 A), and [3].-
2MeCN (2.01 A) can be unterstood in this context. An
exception is the 1.941(8) A observed for Cs[MesGaF3],12
which can be attributed to the cumulation of electro-
negative bonding partners.
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