ORGANOMETALLICS

Volume 15, Number 19, September 17, 1996

© Copyright 1996 American Chemical Society

Communications

Synthesis, Characterization, and Molecular Structure of Bis{(*tert*-butyldimethylsilyl)tetramethylcyclopentadienyl}lead

Steven P. Constantine, Peter B. Hitchcock, and Gerard A. Lawless*

School of Chemistry and Molecular Sciences, University of Sussex, Brighton, U.K.

Received June 25, 1996[®]

Summary: The reaction of 2 equiv of $LiCp^{s}$ [$Cp^{s} = C_{5}Me_{4}$ -(SiMe₂Bu^t)] with PbCl₂ affords the corresponding metallocene, [Pb(η^{5} -Cp^s)₂], in high yield. A single-crystal X-ray analysis reveals the planar cyclopentadienyl rings to be parallel.

Recently we reported the synthesis of $[Sn(\eta^5-Cp^s)_2]$ in which the sterically demanding cyclopentadienyl ligands, Cp^s , are parallel.¹ To date no such parallel configuration has been structurally characterized for any metallocenes of Pb^{II}, all of which exhibit nonparallel rings,^{2–5} although the cyclopentadienyl rings become more parallel as the steric bulk of the ring substituents increases. It has been suggested that, by analogy with the Sn analogue,⁶ Pb(η^5 -C₅Ph₅)₂ also possesses parallel rings⁷ (Table 1). We now report the synthesis and molecular structure of [Pb(η^5 -Cp^s)₂], the first structurally characcompd

 $[Pb{\eta^5-C_5(CH_2Ph)_5}_2]^d$

inactive lone pair.

 $[Pb(\eta^{5}-C_{5}H_{5})_{2}]^{a,b}$

[Pb(n⁵-C₅Me₅)₂]^c

 $[Pb(\eta^5 - Cp^s)_2]^e$

work.

Table 1. Selected Structural Data for

Plumbocenes

M₁-Pb-M₂ angle/deg

123

151

153

180

^a Reference 2. ^b Reference 3. ^c Reference 4. ^d Reference 5. ^e This

terized metallocene of Pb^{II} possessing a stereochemically

PbCl₂ in Et₂O afforded [Pb(η^5 -Cp^s)₂] in high yield (84%).⁸

Recrystallization from hexane-toluene produced red

needlelike crystals of which a single-crystal X-ray

analysis revealed that the molecular structure of [Pb-

in Et₂O (40 mL). On warming of the solution to *ca.* -20 °C, a color change from white to yellow was observed. After stirring of the mixture at room temperature for 2 h, a white precipitate was formed

and the color of the solution changed to deep orange. After a further

2 h of stirring, the solution was filtered and the Et₂O removed in vacuo

to afford $[Pb(\eta^5-Cp^s)_2]$ (1.20 g, 1.80 mmol) in 84% yield. Recrystallization from hexane-toluene afforded red needles. Mp: 178.5 °C. ¹H

(8) Synthesis of $[Pb(\eta-Cp^s)_2]$: To a Schlenk tube charged with a slurry of PbCl₂ (0.60 g, 2.15 mmol) in Et₂O (40 mL) at -78 °C was added over a 2 min period, with stirring, LiCp^s (1.04 g, 4.30 mmol) dissolved

The reaction of 2 equiv of the lithium salt of Cp^s with

Pb-M dist/Å

2.502, 2.820

2.525, 2,497

2.507, 2.500

2.460

 $[\]ast$ To whom correspondence should be addressed. E-mail: G.A.Lawless@susx.ac.uk.

Abstract published in Advance ACS Abstracts, August 15, 1996.
 (1) Constantine, S. P.; Hitchcock, P. B.; Lawless, G. A.; De Lima, G. M. J. Chem. Soc., Chem. Commun. 1996, 1101–1102.

⁽²⁾ Bombieri, G.; Panattoni, C. Acta Crystallogr. 1966, 20, 595.

⁽³⁾ Panattoni, C.; Bombieri, G.; Croatto, U. *Acta Crystallogr.* **1966**, *21*, 823–826.

⁽⁴⁾ Atwood, J. L.; Hunter, W. E.; Cowley, A. H.; Jones, R. A.; Stewart,
C. A. *J. Chem. Soc., Chem. Commun.* **1981**, 925–927.
(5) Schumann, H.; Janiak, C.; Hahn, E.; Kolax, C.; Loebel, J.;

⁽⁵⁾ Schumann, H.; Janiak, C.; Hahn, E.; Kolax, C.; Loebel, J.; Rausch, M. D.; Zuckerman, J. J.; Heeg, M. J. *Chem. Ber.* **1986**, *119*, 2656–2667.

⁽⁶⁾ Heeg, M. J.; Janiak, C.; Zuckerman, J. J. J. Am. Chem. Soc. 1984, 106, 4259–4261.

⁽⁷⁾ Heeg, M. J.; Herber, R. H.; Janiak, C.; Zuckerman, J. J.; Schumann, H.; Manders, W. F. *J. Organomet. Chem.* **1988**, *346*, 321–332.

WILZ). 0^{-} -3.11. ..., PU(TI) INIK (C₆D₆, 104.01 MHZ): 0^{-} -4395. ¹³C CP MAS NMR (400.13 MHZ): δ 129, 128, 112, 30, 24, 16, 14, 4. ²⁹Si CP MAS NMR (79.48 MHZ, 10.5 KHZ): $\delta - 1$. ²⁰Pb CP MAS NMR (83.69 MHZ): δ -4692. EI MS: M⁺, m/z 678; M⁺ - Cp^s, m/z 443; M⁺ - Cp^s - Pb, m/z 235. Anal. Calcd (found) for C₃₀H₅₄Si₂Pb: C, 52.66 (53.14); H, 8.04 (8.03).

Figure 1. Molecular structure of $[Pb(\eta^5-Cp^s)_2]$ and atomnumbering scheme with selected bond lengths (Å) and angles (deg): Pb-M(1) 2.460(5), Pb-C(1) 2.707(5), Pb-C(2) 2.731(5), Pb-C(3) 2.770(5), Pb-C(4) 2.773(5), Pb-C(5) 2.736(5), Si-C(1) 1.869(5), Si-C(10) 1.874(6), Si-C(11) 1.866(6), Si-C(12) 1.899(6), M(1)-Pb-M(1') 180.0. M(1) denotes the centroid of the ring C(1)-C(5).

 $(\eta^5$ -Cp^s)₂] was isomorphous with its Sn analogue.⁹ The Pb atom sits on an inversion centre between equidistant cyclopentadienyl rings which are planar, staggered, and exactly parallel (Figure 1). The SiMe₂Bu^t substituents are rotated by 180° with respect to one another, with the Me groups directed toward, and the Bu^t group away from, the Pb. Despite the bulk of the cyclopentadienyl ligands the Pb–centroid distance, 2.460(5) A, is shorter than those previously measured for any metallocene of Pb^{II} (Table 1). The average cyclopentadienyl ring C–C bond lengths and angles are unexceptional [1.427(16) Å, 108(10)°].

The solution-state ²⁰⁷Pb NMR spectrum of $[Pb(\eta^5 Cp^{s}_{2}$ consists of a single resonance at δ –4595 which compares well with other mononuclear Pb^{II} metallocenes for which ²⁰⁷Pb NMR data have been reported (Table

Table 2. Solution-State ²⁰⁷Pb NMR Chemical Shift Data for Metallocenes of Pb^{II}

compd	$\delta(^{207}\mathrm{Pb})$
$[Pb(\eta^5-C_5Me_5)_2]^{a,b}$	-4390 or -4384
$PD[\eta^{3}-C_{5}Me_{4}{SIMe_{2}(C_{5}HMe_{4})}]_{2}^{c}$ $[Pb(\eta^{5}-Cp^{s})_{2}]^{d}$	-4538 -4595
$\mathbf{Pb}(\eta^5 - \mathbf{C}_5\mathbf{H}_3\mathbf{Bu}^t_2)_2^e$	-4756
$[Pb(\eta^{\circ}-C_{5}H_{5})_{2}]^{a}$	-5030

^a Reference 12. ^b Jutzi, P.; Dickbreder, R.; Nöth, H. Chem. Ber. 1989, 122, 865–870. ^c Kohl, F. X.; Dickbreder, R.; Jutzi, P.; Müller, G.; Huber, B. Chem. Ber. 1989, 122, 871-878. d This work. e Jutzi, P.; Dickbreder, R. J. Organomet. Chem. 1989, 373, 301-306.

2). The solid-state 207 Pb NMR isotropic shift, δ_{iso} , is -4692.^{10,11} Interestingly, though no solution-state ²⁰⁷Pb NMR data have been reported for $Pb(\eta^5-C_5Ph_5)_2$, due to its insolubility in common organic solvents, the solidstate ²⁰⁷Pb δ_{iso} is reported as -6150.¹² The large difference between these two values may be due to either (i) a substantial difference in the structures of $Pb(\eta^{5}-C_{5}Ph_{5})_{2}$ and $[Pb(\eta^{5}-Cp^{s})_{2}]$ {corresponding solidstate ¹¹⁹Sn NMR data for $[Sn(\eta^5-Cp^s)_2]^{11}$ and $[Sn(\eta^5-C_5 Ph_5)_2]^{12}$ ($\delta_{iso} = -2236$ and -2215, respectively) differ little, and on the basis of these data, the predicted ²⁰⁷Pb chemical shifts for Pb(η^5 -C₅Ph₅)₂ and [Pb(η^5 -Cp^s)₂] would be $\delta_{iso} = -4929$ and -5043, respectively}¹³ or (ii) a difficulty, due to the large csa associated with solid-state ²⁰⁷Pb NMR spectroscopy, in the original assignment of δ_{iso} for Pb(η^5 -C₅Ph₅)₂.

Acknowledgment. We thank Dr. J. McVie (Dow Corning) for a CASE award (S.P.C.) and the EPSRC for financial support.

Supporting Information Available: Tables of X-ray data, positional and thermal parameters, bond distances and angles, and least-squares planes (7 pages). Ordering information is given on any current masthead page.

OM960511N

(9) Crystal data for [Pb(η⁵-Cp^s)₂] (C₃₀H₅₄PbSi₂): Crystallographic measurements were made on an Enraf-Nonius CAD4 diffractometer using Mo K α radiation, $\lambda = 0.710$ 73 Å. The structure was solved by direct methods and refined on F^2 by a full-matrix least-squares procedure. T = 173(2) K. Data: specimen $0.3 \times 0.3 \times 0.2$ mm; M =678.1; monoclinic, space group P_{21}/n (nonstandard No. 14); a = 12.945(3), b = 9.219(4), c = 13.661(4) Å; $\beta = 93.96(2)^{\circ}; V = 1626.4(9)$ Å³; $D_c = 1.39$ g cm⁻³; Z = 2. For reflections with $2 < \theta < 28^{\circ}, R(F) = 1.39$ g cm⁻³; Z = 2. 0.044 for 2734 observed reflections $[I > 2\sigma(I)]$ and $wR(F^2) = 0.104$ for all 3903 reflections.

83, 601-607.

⁽¹⁰⁾ A sample of $[Pb(\eta^5-Cp^s)_2]$ was ground in a glovebox operating at <1 ppm H₂O and <1 ppm O_2 and packed into zirconia rotors with Kel-F end caps and spun with N2. NMR experiments were performed on a Bruker DMX-400 spectrometer (89 mm wide-bore magnet) with a 4 mm variable temperature double-bearing probe. The irradiation and detection frequencies were 400.13 and 83.69 MHz for ¹H and ²⁰⁷Pb, respectively. At spin rates in excess of 8 kHz a variable-amplitude (triangular ramp \pm 30%) cross-polarization contact pulse was employed. The principal components of the chemical shift tensors have