Reactivity of R_2AlH (R = Me, Bu^i) and Me_3M (M = Al, Ga, In) toward the Silylphosphines P(SiMe₃)₃ and HP(SiMe₃)₂

Larry K. Krannich,* Charles L. Watkins,* Steven J. Schauer, and Charles H. Lake

Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294

Received May 29, 1996[®]

The reactivities of Me₂AlH with P(SiMe₃)₃ and of Me₃M (M = Al, Ga, In) and Buⁱ₂AlH with P(SiMe₃)₃ and HP(SiMe₃)₂ were monitored with multinuclear NMR to determine the trend for adduct formation and establish the role that the Me and Buⁱ moieties and M play in influencing the nature of the possible 1,2-elimination product. 1:1 adducts were obtained in the $Me_3M/P(SiMe_3)_3$ systems with no tendency toward room-temperature, 1,2-elimination reactivity. Thermolysis at 100 °C gave the following order of reactivity for SiMe₄ elimination: $Me_3In \cdot P(SiMe_3)_3 > Me_3Ga \cdot P(SiMe_3)_3 >> Me_3Al \cdot P(SiMe_3)_3$. With the $Me_3M/$ HP(SiMe₃)₂ systems, only Me₃Al gave an isolable adduct, which eliminated CH₄ upon heating to form [Me₂AlP(SiMe₃)₂]₂. Although NMR spectral data indicated adduct formation in the Me_3Ga and Me_3In systems, these underwent CH_4 elimination to yield the respective [Me₂-MP(SiMe₃)₂]₂ species. The variable-temperature, multinuclear NMR study of the Me₂AlH/ $P(SiMe_3)_3$ system indicated adduct formation at -90 °C and subsequent conversion to cyclic oligomeric [Me₂AlP(SiMe₃)₂]_n[Me₂AlH]_m species at -80 °C that ultimately produced [Me₂-AlP(SiMe₃)₂]₂. The reactivity of Buⁱ₂AlH toward P(SiMe₃)₃ and HP(SiMe₃)₂ is much slower then that of Me₂AlH. In the $Bu_{2}^{i}AlH/HP(SiMe_{3})_{2}$ system, H_{2} elimination is favored and $[Bu_{2}^{i}-$ AlP(SiMe_3)₂]₂ and Buⁱ₂AlP(SiMe₂)₂·Buⁱ₂AlP(H)SiMe₃ are formed. An X-ray structure analysis of $[Bu_{2}^{i}AlP(SiMe_{3})_{2}]_{2}$ establishes the planarity of the $(AlP)_{2}$ core.

Introduction

There has been an increasing interest in silylated phosphines for use in the synthesis of single source group 13-phosphide precursors for material science applications.^{1–3} P(SiMe₃)₃ has been used to synthesize a wide variety of organo Al,4-6 Ga,7-14 and In9,15-23 silylphosphine derivatives via adduct formation and 1,2elimination reactions. For example, Et₂AlCl,⁴ AlCl₃,⁶

- (7) Dillingham, M. D. B.; Burns, J. A.; Byers-Hill, J.; Gripper, K. D.; Pennington, W. T.; Robinson, G. H. Inorg. Chim. Acta 1994, 216, 267
- (8) Wells, R. L.; Aubuchon, S. R.; Self, M. F.; Jasinski, J. P.; Woudenberg, R. C.; Butcher, R. J. Organometallics **1992**, *11*, 3370.
- (9) Wells, R. L.; Baldwin, R. A.; White, P. S. Organometallics 1995, 14, 2123.
- (10) Burns, J. A.; Pennington, W. T.; Robinson, G. H. Organometallics 1995, 14, 1533.
- (11) Aubuchon, S. R.; McPhail, A. T.; Wells, R. L.; Giambra, J. A.; (11) Aubuchon, S. K.; MCFHan, A. T., Webs, E. E., Sammer, J. R. Chem. Mater. 1994, 6, 82.
 (12) Wells, R. L.; Self, M. F.; McPhail, A. T.; Aubuchon, S. R.;
 Woudenberg, R. C.; Jasinski, J. P. Organometallics 1993, 12, 2832.
- (13) Wiedmann, D.; Hausen, H.-D.; Weidlein, J. Z. Anorg. Allg. Chem. 1995, 621, 1351
- (14) Wells, R. L.; Baldwin, R. A.; White, P. S.; Pennington, W. T.; Rheingold, A. L.; Yap, G. P. A. *Organometallics* **1996**, *15*, 91.
- (15) Stuczynski, S. M.; Opila, R. L.; Marsh, P.; Brennan, J. G.; Steigerwald, M. L. Chem. Mater. **1991**, *3*, 379.
- (16) Self, M. F.; McPhail, A. T.; Jones, L. J. III; Wells, R. L. Polyhedron 1994, 13, 625
- (17) Wells, R. L.; McPhail, A. T.; Jones, L. J., III; Self, M. F. J. Organomet. Chem. 1993, 449, 85.

 Ph_3Ga ,⁸ (Me₃CH₂)₂GaCl,¹⁴ and Me₃In¹⁵ form isolable adducts with P(SiMe₃)₃. Thermolysis of Me₂GaCl/ P(SiMe₃)₃,¹³ sonication of GaCl₃/P(SiMe₃)₃,¹² and stirring of (Me₃CCH₂)₂GaCl/P(SiMe₃)₃¹⁴ mixtures produce [Me₂-GaP(SiMe₃)₂]₂, [Cl₂GaP(SiMe₃)₂]₂, and [(Me₃CCH₂)(Cl)- $GaP(SiMe_3)_2]_2$, respectively, via a 1,2-elimination or dehalosilylation process. Thermolysis of the Me₃In/ P(SiMe₃)₃ adduct results in Me₄Si elimination and formation of [Me₂InP(SiMe₃)₂]₂.¹⁵ With Al-H bondcontaining systems, i.e. Cl₂AlH and Me₂AlH, Et₂PSiMe₃ readily undergoes HSiMe₃ elimination to form [Cl₂-AlPEt₂]₃ and [Me₂AlPEt₂]₂, respectively.²⁴ However, in the reaction of Buⁱ₂AlH with H₂PSiPh₃ the 1,2-elimination of H₂ produces [Buⁱ₂AlP(H)SiPh₃]₂.²⁵ Thus, both P-Si and P-H bonds can be involved in 1,2-elimination reactions in $H_x P(SiR_3)_{3-x}$ systems, depending upon the nature of the group 13 species.

Recently we reported the reactivity of Me₂AlH with HP(SiMe₃)₂,²⁶ wherein the preferred mode of reactivity is HSiMe₃—as opposed to H₂—elimination. Transpho-

- (18) Jones, L. J., III; McPhail, A. T.; Wells, R. L. Organometallics 1994, 13, 2504.
- (19) Wells, R. L.; Aubuchon, S. R.; Kher, S. S.; Lube, M. S. Chem. Mater. 1995, 7, 793.
- (20) Wells, R. L.; McPhail, A. T.; Self, M. F. Organometallics 1992, 11, 221
- (21) Wells, R. L.; McPhail, A. T.; Self, M. F. Organometallics 1993, 12. 3363.
- (22) Healy, M. D.; Laibinis, P. E.; Stupik, P. D.; Barron, A. R. J. Chem. Soc. Chem. Commun. 1989, 359.
- (23) Douglas, T.; Theopold, K. H. Inorg. Chem. 1991, 30, 594.
 (24) Fritz, G.; Emül, R. Z. Anorg. Allg. Chem. 1975, 416, 19.
 (25) Cowley, A. H.; Jones, R. A.; Mardones, M. A.; Atwood, J. L.;
 Bott, S. G. Angew. Chem. Int. Ed. Engl. 1990, 29, 1409.
 (26) Komputeh L. K.; Weithers, C. L. S. L. 1990, 29, 1409.
- (26) Krannich, L. K.; Watkins, C. L.; Schauer, S. J. Organometallics 1995 14 3094

© 1996 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, August 15, 1996.

⁽¹⁾ Buhro, W. E. Polyhedron 1994, 13, 1131.

⁽²⁾ Fritz, G. Comments Inorg. Chem. 1982, 1, 329.

⁽³⁾ David, L. D. U.S. Patent 4 798 701, 1989; Chem. Abst. 1989,

⁽⁴⁾ Wells, R. L.; McPhail, A. T.; Self, M. F.; Laske, J. A. Organo-metallics 1993, 12, 3333.

⁽⁵⁾ Rösch, L.; Schmidt-Fritsche, W. Z. Anorg. Allg. Chem. 1976, 426, 99

⁽⁶⁾ Wells, R. L.; McPhail, A. T.; Laske, J. A., White, P. S. Polyhedron **1994**, *13*, 2737.

sphination with HP(SiMe₃)₂ produced several intermediate Me₂AlP(SiMe₃)₂-containing species with the major product being [Me₂AlP(H)SiMe₃]₂·Me₂AlP(SiMe₃)₂. In this paper, we report the extension of this study to the reactivities of Me₂AlH with P(SiMe₃)₃ and of Me₃M (M = Al, Ga, In) and $Bu_{2}^{i}AlH$ with P(SiMe_{3})_{3} and HP-(SiMe₃)₂ to note the tendency for adduct formation and the role that R and M play in influencing the nature of the 1,2-elimination product. Reactions of Me₂AlH and Buⁱ₂AlH with P(SiMe₃)₃ and of Buⁱ₂AlH with HP(SiMe₃)₂ were monitored by NMR to elucidate the reaction pathways to the stable products. All new isolable compounds were characterized using melting points, ¹H, ¹³C, and ³¹P NMR, IR, EI MS or cryoscopic molecular weight determinations, and elemental analyses. The X-ray structure of the dimeric phosphinoalane [Buⁱ₂AlP- $(SiMe_3)_2]_2$ was determined, and the structural data are compared with those of [Me₂AlP(SiMe₃)₂]₂²⁷ and [Et₂- $AlP(SiMe_3)_2]_2.4$

Experimental Section

General Information. All reagents and products were handled using standard inert-atmosphere techniques. P(SiMe₃)₃ and HP(SiMe₃)₂ were purchased from Quantum Design, Inc., Austin, TX, and their purity was checked by ¹H, ¹³C, and ³¹P NMR. Me₂AlH and Me₃Ga were obtained as a gift from Morton Advanced Materials, Danvers, MA. Me₃Al (Ethyl Corp.), Bui₂AlH (Texas Alkyls), and Me₃In (Morton Advanced Materials) were used without further purification. Benzene d_6 and toluene- d_8 (Aldrich) were stored over molecular sieves. [Me₂AlP(SiMe₃)₂]₂ was prepared by an alternate synthetic route as described below. Me3In·P(SiMe3)3 was prepared as previously reported. 15 $\,^{1}\text{H},\,\,^{13}\text{C},\,\,\text{and}\,\,\,^{31}\text{P}\,\,\,\text{NMR}\,\,\text{spectra}\,\,\text{were}$ recorded on a GE (Nicolet) 300 MHz multinuclear FT NMR operating at 300.1, 75.4, and 121.5 MHz, respectively. ³¹P NMR spectra were externally referenced to H₃PO₄ with downfield shifts assigned to positive δ 's. Low-resolution EI-MS data were recorded on a HP5986A GC/MS spectrometer operating at 70 eV with a 2400 V electron multiplier. IR data were recorded as Kel-F and Nujol mulls on KBr plates using a Nicolet IR/42 FT spectrophotometer. Carbon and hydrogen elemental analyses were obtained from E+R Microanalytical Laboratory, Inc., Corona, NY.

Synthesis of Adducts. $Me_3Al\cdotP(SiMe_3)_3$, $Me_3Ga\cdotP(SiMe_3)_3$, and $Me_3Al\cdotHP(SiMe_3)_2$ were synthesized by the following general procedure. Approximately 2.5 mmol of Me_3M and an equal amount of the respective phosphine were combined with 10 mL of hexane. The solution was stirred for 30 min, followed by removal of the solvent under vacuum. $Me_3Al\cdotP(SiMe_3)_3$, $Me_3Ga\cdotP(SiMe_3)_3$, and $Me_3Al\cdotHP(SiMe_3)_2$ were isolated as clear crystalline solids and purified by sublimation at 50 °C under vacuum, with yields of 94, 85, and 92%, respectively.

Me₃Al·P(SiMe₃)₃. Mp: 215–217 °C. NMR (C₆D₆): ¹H δ 0.25 (d, $J_{PH} = 4.87$ Hz, 27 H, SiCH₃), -0.26 (s, 9 H, AlCH₃); ¹³C δ 2.88 (d, $J_{PC} = 8.33$ Hz, SiCH₃), -4.85 (AlCH₃); ³¹P δ -233.6. IR (cm⁻¹): 2956 (s), 2929 (s), 2884 (s), 2815 (w), 1305 (w), 1251 (m), 1177 (m), 972 (w, br), 845 (s), 827 (s), 756 (m), 721 (m), 626 (m), 516 (w), 455 (m). EI-MS: m/z 307 (M – CH₃⁺). Anal. Calcd for C₁₂H₃₆AlPSi₃: C, 44.67; H, 11.25. Found: C, 44.12; H, 10.99.

Me₃Ga·P(SiMe₃)₃. Mp: dissociation above 80 °C. NMR (C₆D₆): ¹H δ 0.29 (d, $J_{PH} = 4.53$ Hz, 27 H, SiCH₃), 0.10 (s, 9 H, GaCH₃); ¹³C δ 3.75 (d, $J_{PC} = 10.23$ Hz, SiCH₃), -2.07 (GaCH₃); ³¹P δ -231.9. IR (cm⁻¹): 2961 (m), 2903 (w), 1419 (w), 1256 (s), 1212 (s), 1097 (s), 1038 (s), 851 (s), 760 (m), 696 (w), 596 (m), 543 (m), 491 (w). Cryoscopic molecular weight:

Calcd $M_{\rm r}$, 365.73; obsd $M_{\rm r}$ (m), 360 (0.169), 353 (0.083). Due to the instability of the solid complex, a satisfactory elemental analysis could not be obtained.

Me₃Al·HP(SiMe₃)₂. Mp: melts with decomposition and evolution of gas at 175 °C. NMR (C_6D_6): ¹H δ 0.14 (d, $J_{PH} = 5.6$ Hz, 18 H, SiCH₃), 1.28 (d, $J_{PH} = 262.9$ Hz, 1 H, PH), -0.27 (s, 9 H, AlCH₃); ¹³C δ 1.77 (d, $J_{PC} = 9.0$ Hz, SiCH₃), -5.43 (AlCH₃); ³¹P δ -201.8. IR (cm⁻¹): 2956 (s), 2927 (vs), 2885 (s), 2817 (m), 2317 (w), 1411 (m), 1322 (w), 1253 (vs), 1178 (s), 1053 (w), 1024 (w), 994 (w), 942 (m), 846 (vs), 760 (m), 689 (vs), 688 (s), 516 (m), 447 (m), 407 (m). Anal. Calcd for C₉H₂₈-AlPSi₂: C, 43.16; H, 11.27. Found: C, 42.88; H, 11.05.

Synthesis of [Me₂AlP(SiMe₃)₂]₂. A solution of Me₂AlH (0.119 g, 2.05 mmol) and P(SiMe₃)₃ (0.513 g, 2.05 mmol) in 10 mL of toluene was stirred at room temperature for 24 h and then concentrated by removal of solvent under vacuum. Recrystallization at -15 °C gave colorless crystals of [Me₂AlP-(SiMe₃)₂]₂ (0.131 g, 83% yield). Anal. Calcd for C₁₆H₄₈Al₂P₂-Si₄: C, 40.99; H, 10.32. Found: C, 40.85; H, 10.25. Melting point and ¹H and ¹³C NMR spectra are consistent with those previously reported;²⁷ however, the ³¹P NMR chemical shift, reported as -226.7 ppm, was observed here at -240.5 ppm.

Synthesis of [Buⁱ₂AlP(SiMe₃)₂]₂. Buⁱ₂AlH (0.286 g, 2.01 mmol) and P(SiMe₃)₃ (0.506 g, 2.02 mmol) were combined with 25 mL of hexane. The resultant solution was stirred and heated to reflux for 6 h, after which the volume of the solution was reduced by removal of solvent under vacuum. Upon cooling of the solution to -30 °C, crystalline [Buⁱ₂AlP(SiMe₃)₂]₂ (0.461 g, 72% yield) was obtained. Mp: 235–236 °C. NMR (C₆D₆): ¹H δ 2.17 (m, 4 H, CH), 1.24 (d, 24 H, CH₃), 0.62 (d, 8 H, CH₂), 0.45 (d, *J*_{PH} = 1.2 Hz, 36 H, SiCH₃); ¹³C δ 28.52, (CH₃), 27.55 (CH), 26.62 (CH₂), 4.82 (vt, *J*_{PC}(sum) = 8.47 Hz, SiCH₃); ³¹P δ –245.3. IR (cm⁻¹): 2950 (s), 2861 (m), 1460 (m), 1401 (w), 1376 (w), 1359 (w), 1319 (w), 1247 (m), 1157 (w), 1061 (s), 942 (w), 847 (s), 760 (m), 661 (m), 624 (w), 456 (w), 424 (w). EI-MS: *m*/z 579 (M – Bu⁺). Anal. Calcd for C₂₈H₇₂Al₂P₂Si₄: C, 52.78; H, 11.39. Found: C, 52.37; H, 11.46.

Reactions of Me₃M (M = Al, Ga) with HP(SiMe₃)₂ and of Me₃M (M = Al, Ga, In) with P(SiMe₃)₃. Each of the reaction systems was carried out in toluene- d_8 using solutions that were 0.2 M in each reactant. Each of the reaction systems was then monitored by ¹H, ¹³C, and ³¹P NMR spectroscopy. Identification of the respective [Me₂MP(SiMe₃)₂]₂ (M = Al,²⁷ Ga,^{7,13} In¹⁵) product was determined by comparison of NMR spectral data with those reported in the literature. The Me₃-Al/HP(SiMe₃)₂ system was followed at 90 °C, the Me₃Ga/HP-(SiMe₃)₂ system at room temperature, and the Me₃M/P(SiMe₃)₃ (M = Al, Ga, In) systems at 100 °C.

Variable-Temperature Reactions. VT studies were carried out on the Me₃In/HP(SiMe₃)₂, Buⁱ₂AlH/HP(SiMe₃)₂, Me₂-AlH/P(SiMe₃)₃, and Buⁱ₂AlH/P(SiMe₃)₃ systems using 1:1 mol ratios of the reactants in toluene-*d*₈. An additional reaction for the Me₂AlH/P(SiMe₃)₃ system at a 2:1 mol ratio was also carried out. The reactants were loaded into J Young NMR tubes at -115 °C using a previously published procedure.²⁸ The NMR tube was then placed into the precooled (-95 °C) probe of the NMR spectrometer, and the reaction was monitored by ¹H, ¹³C, and ³¹P NMR spectroscopy with respect to temperature and time.

³¹**P** NMR Data. The following is a list of additional ³¹P NMR chemical shift data (ppm) independently determined in our laboratory at room temperature in benzene- d_6 solution for compounds used in this study: P(SiMe₃)₃, -251.7; HP(SiMe₃)₂, -236.3; Me₃In·P(SiMe₃)₃, -230.0; Me₃Ga·HP(SiMe₃)₂, -203.0; Me₃In·HP(SiMe₃)₂, -213.3 (-40 °C, toluene- d_8); [Me₂AlP-(SiMe₃)₂]₂, -240.5; [Me₂GaP(SiMe₃)₂]₂, -217.8; [Me₂InP-(SiMe₃)₂]₂, -238.4; Buⁱ₂AlP(H)SiMe₃·Buⁱ₂AlP(SiMe₃)₂, -214.9 (P(H)Si, $J_{PH} = 261.4$ Hz, $J_{PP} = 203.9$ Hz), 237.9 (PSi₂).

X-ray Structure Analysis for $[Bu^i_2AIP(SiMe_3)_2]_2$. A crystal (dimensions: 0.25 mm × 0.25 mm × 0.20 mm) was

⁽²⁷⁾ Hey-Hawkins, E.; Lappert, M. F.; Atwood, J. L.; Bott, S. G. J. Chem. Soc. Dalton Trans. 1991, 939.

⁽²⁸⁾ Krannich, L. K.; Watkins, C.. L.; Srivastava, D. K. Polyhedron 1990, 9, 289.

empirical formula	AlPSi ₂ C ₁₄ H ₃₆	
cryst size, mm	0.35 imes 0.30 imes 0.20	
cryst system	monoclinic	
space group	C2/c	
unit cell dimens		
<i>a</i> , Å	19.0263(34)	
<i>b</i> , Å	12.4408(36)	
<i>c</i> , Å	19.2032(19)	
β , deg	106.8760(117)	
V, Å ³	4351(2)	
Ζ	4	
fw	637.1	
$\rho_{\rm calc}, {\rm g/cm^3}$	0.973	
abs coeff, mm^{-1}	0.265	
<i>F</i> (000)	1408	
$2\dot{\theta}$ range, deg	5.0 - 45.0	
scan type	ω	
index ranges	$0 \le h \le 20; 0 \le k \le 13;$	
-	$-20 \leq l \leq 20$	
reflcns collcd	2956	
indepdt reflcns	$2838 \ (R_{\text{merge}} = 2.46\%)$	
obsd reflcns	1704 ($F > 4.0\sigma$)	
min/max transm	0.8384/0.8950	
no. of params	164	
final \hat{R} (obsd data)	$R = 5.07\%, R_{\rm w} = 7.37\%$	
final R (all data)	$R = 9.27\%, R_{\rm w} = 9.72\%$	
goodness of fit	0.90	
largest Δ/σ	0.001	
mean Δ/σ	0.000	
data to param ratio	17.3:1	
largest diff peak (e Å ⁻³)	0.51	
largest diff hole (e Å $^{-3}$)	-0.41	

sealed into a thin-walled capillary under anaerobic conditions. It was then mounted and aligned on an Enraf Nonius CAD4 diffractometer with κ -geometry. Details of the data collection are given in Table 1.

The crystal belongs to the monoclinic crystal system (2/m diffraction symmetry) with space group C2/c (No. 15). Although systematic absences *hkl* for h + k = 2n + 1 and *h*0*l* for l = 2n + 1 define either the centrosymmetric space group C2/c (No. 15) or the noncentrosymmetric space group Cc (No. 9), intensity statistics favored the former. The choice was subsequently verified by successful solution and refinement of the crystal structure. All crystallographic calculations were carried out with the use of the Siemens SHELXTL-PC²⁹ program package. The analytical scattering factors for neutral atoms were corrected for both $\Delta f'$ and $i \Delta f''$ components of anomalous dispersion.³⁰ The structure was solved by the use of direct methods. Positional and anisotropic thermal parameters of all non-hydrogen atoms were refined. Hydrogen atoms were not located directly but were input in calculated positions with $d(C-H) = 0.96 \text{ Å}^{31}$ and with the appropriate staggeredtetrahedral geometry. The isotropic thermal parameter of each hydrogen atom was defined as equal to the U_{eq} value of that carbon atom to which it was bonded. Following refinement, the extreme features left on the difference-Fourier map were a peak of height 0.51 e $Å^{-3}$ and a negative feature of -0.41 e Å⁻³. Refinement of the model converged with R =5.07% and $R_{\rm w} = 7.37\%$ for 164 parameters refined against those 1704 reflections with $|F_0| > 4.0\sigma|F_0|$ and R = 9.27% for all data.

Results and Discussion

A. Reaction of Me_3M (M = Al, Ga, In) with P(SiMe₃)₃ and HP(SiMe₃)₂. The 1:1 reactions of Me_3M (M = Al, Ga, In) with P(SiMe_3)_3 produced high

yields of the 1:1 adducts Me₃Al·P(SiMe₃)₃, Me₃Ga· $P(SiMe_3)_3$, and $Me_3In \cdot P(SiMe_3)_3$, respectively, which are stable in solution at room temperature. The NMR data indicated the formation of 1:1 adducts. The ¹H and ¹³C NMR spectral data for Me₃In·P(SiMe₃)₃ agreed with those previously reported.¹⁵ For each adduct, the ³¹P NMR chemical shift value was downfield from that of the uncomplexed P(SiMe₃)₃ (-251.7 ppm). This is consistent with such data for other Al, $\bar{4-6}$ Ga, 8,9,14 and In^{9,16} containing adducts of P(SiMe₃)₃. The Me–Al ¹³C NMR data for Me₃Al·P(SiMe₃)₃ are representative of those for coordination of a very sterically demanding phosphine in Me₃Al·PR₃ adducts³² and are similar to that reported for Me₃Al·PBu^t₃ and Me₃Al·P(c-C₆H₁₁)₃.

Although Me₃Al·P(SiMe₃)₃ and Me₃In·P(SiMe₃)₃ are stable as neat solid adducts at room temperature in an inert atmosphere, Me₃Ga·P(SiMe₃)₃ dissociates upon standing. Because of its high volatility, the Me₃Ga slowly evaporates, which leaves behind liquid P(SiMe₃)₃ that wets the solid adduct. This may explain the illdefined melting point and our inability to obtain a satisfactory elemental analysis of the compound. However, cryoscopic molecular weight data in benzene indicated that a 1:1 Me₃Ga·P(SiMe₃)₃ adduct exists in solution.

Solution NMR studies of the three adducts in benzene d_6 indicated room-temperature adduct stability with respect to dissociation or 1,2-elimination of tetramethylsilane. This is consistent with the reactivity reported for Me₃In·P(SiMe₃)₃,¹⁵ which required heating to induce the 1,2-elimination reaction. However, these results are inconsistent with the reported room-temperature tetramethylsilane elimination of Me₃Ga·P(SiMe₃)₃ to form $[Me_2GaP(SiMe_3)_2]_2$.⁷ Thermolysis of the adducts at 100 °C in toluene- d_8 suggested the following trend toward SiMe₄ elimination: $Me_3In \cdot P(SiMe_3)_3 > Me_3Ga \cdot P(SiMe_3)_3$ >> Me₃Al·P(SiMe₃)₃. Me₃In·P(SiMe₃)₃ reacted within 4.5 days to produce [Me₂InP(SiMe₃)₂]₂. After 10 days of heating, Me₃Ga·P(SiMe₃)₃ showed only partial conversion (~10%) to $[Me_2GaP(SiMe_3)_2]_2$, while Me_3Al . P(SiMe₃)₃ displayed no observable reactivity.

The 1:1 reactions of Me₃Al, Me₃Ga, and Me₃In with $HP(SiMe_3)_2$ were carried out in benzene- d_6 or toluene d_8 and monitored by NMR. At room temperature, Me₃-Al and $HP(SiMe_3)_2$ form an isolable adduct. Heating a toluene solution of this adduct at 90 °C for 2 months resulted in 1,2-elimination of CH₄ and a 50% conversion to [Me₂AlP(SiMe₃)₂]₂,²⁷ which was identified by comparison of the NMR data with the dimer prepared from the reaction of Me₂AlH with P(SiMe₃)₃ (see Experimental Section). The combination of Me_3Ga and $HP(SiMe_3)_2$ resulted in the elimination of CH₄ at room temperature. The NMR chemical shift data indicated initial Me₃Ga· HP(SiMe₃)₂ adduct formation with a slow quantitative conversion to [Me₂GaP(SiMe₃)₂]₂⁷ over a period of 2 months. Mixing Me₃In and HP(SiMe₃)₂ resulted in rapid CH₄ evolution and quantitative conversion to $[Me_2InP(SiMe_3)_2]_2^{15}$ at room temperature within 10 min. A variable-temperature NMR study was then conducted on the reaction mixture between -60 and 0 °C. Adduct formation was noted at -60 °C and [Me₂InP(SiMe₃)₂]₂ formation was first observed at -40 °C. The reaction was almost complete within 1 h upon raising the temperature to -20 °C. Thus these studies indicate the

⁽²⁹⁾ Siemens SHELXTL-PC Manual, release 4.1; Siemens Analytical Instruments: Madison, WI, 1990. (30) International Tables for X-Ray Crystallography; Kynoch

Press: Birmingham, England, 1974; Vol. 4, pp 99–101, 149–150. (31) Churchill, M. R. *Inorg. Chem.* **1973**, *12*, 1213.

following order of increasing ease of CH_4 , 1,2-elimination for the reactions of Me_3M with $HP(SiMe_3)_2$: $Me_3Al < Me_3Ga < Me_3In$.

B. Reaction of Me₂AlH with P(SiMe₃)₃ and of Buⁱ₂AlH with P(SiMe₃)₃ and HP(SiMe₃)₂. Variabletemperature NMR studies of the reactions of Me₂AlH with P(SiMe₃)₃ and of Buⁱ₂AlH with P(SiMe₃)₃ and HP-(SiMe₃)₂ were carried out in toluene- d_8 . The 1:1, 2:1, and 1:2 Me₂AlH/HP(SiMe₃)₂ reaction systems have been previously reported.²⁶ The progress of each reaction was monitored by ¹H, ¹³C, and ³¹P NMR as a function of temperature and time.

The variable-temperature ¹H, ¹³C, and ³¹P NMR spectra suggest that the following reactions occur in the 1:1 Me₂AlH/P(SiMe₃)₃ reaction system:³³

$$Me_2AlH + P(SiMe_3)_3 \rightleftharpoons Me_2AlH \cdot P(SiMe_3)_3$$
 (1)

$$Me_{2}AlH + P(SiMe_{3})_{3} \stackrel{\leftarrow}{=}$$

"Me_{2}AlP(SiMe_{3})_{2}" + HSiMe_{3} (2)

$$n^{*}\text{Me}_{2}\text{AlP}(\text{SiMe}_{3})_{2}^{"} + m\text{Me}_{2}\text{AlH} \rightleftharpoons [\text{Me}_{2}\text{AlP}(\text{SiMe}_{3})_{2}]_{n}[\text{Me}_{2}\text{AlH}]_{m} (3)$$

$$2^{\text{``Me}_2\text{AlP}(\text{SiMe}_3)_2\text{''}} \rightleftharpoons [\text{Me}_2\text{AlP}(\text{SiMe}_3)_2]_2 \quad (4)$$

At -90 °C, an equilibrium is initially established (eq 1) that can be characterized by slow exchange owing to the presence of individual ³¹P NMR peaks for free and complexed phosphine at -255.3 and -232.6 ppm, respectively. The presence of a very low intensity peak in the ${}^{13}C$ NMR spectrum at -2.67 ppm indicates the formation of a trace amount of HSiMe₃. Above -60 °C, 1,2-elimination of HSiMe₃ readily proceeds (eq 2) with conversion of the adduct to cyclic oligomeric species of the general form $[Me_2AIP(SiMe_3)_2]_n[Me_2AIH]_m$ (eq 3). Analogous oligomeric species have been observed for the Me₂AlH/HP(SiMe₃)₂²⁶ reaction system as well as for other Al-N³⁴⁻³⁷ and Al-P³⁸ systems where Me₂AlH is involved. With increasing temperature, there is a change in relative intensities of the peaks associated with the various oligomeric species as Me₂AlH is consumed in the HSiMe₃ elimination reaction (eq 2). At -20 °C, the NMR spectrum indicates the presence of $[Me_2AlP(SiMe_3)_2]_2$ which is the final product in the reaction. As has been observed previously for analogous reaction systems involving Me₂AlH,³⁴⁻³⁸ the final dimeric product does not form until sufficient Me₂AlH has been consumed to permit dimerization of "Me2AlP-(SiMe₃)₂"³³ (eq 4). Upon increase of the reaction mixture temperature to room temperature, 60% conversion to [Me₂AlP(SiMe₃)₂]₂ had occurred, and greater than 90% is observed after 12 h at room temperature.

Further evidence to support the suggested route to $[Me_2AIP(SiMe_3)_2]_2$ was obtained by studying the reaction system at 2:1 stoichiometry. With this higher stoichio-

metric ratio of Me₂AlH:P(SiMe₃)₃, the NMR spectra indicated that all the P(SiMe₃)₃ was complexed at -90°C. The presence of NMR peaks associated with HSiMe₃ and the [Me₂AlP(SiMe₃)₂]_n[Me₂AlH]_m species were observed at -80 °C. Upon warming of the sample to room temperature, the intensities of the peaks associated with HSiMe₃ and the oligomeric species increase and those assigned to Me₂AlH·P(SiMe₃)₃ decrease. At room temperature, only a trace of [Me₂AlP(SiMe₃)₂]₂ is observed and the major Al–P-containing products are the oligomeric species.²⁶ Thus, the additional Me₂AlH in the 2:1 system complexes "Me₂AlP(SiMe₃)₂" (eq 3) and precludes its dimerization (eq 4).

A variable-temperature NMR study of the 1:1 Buⁱ2-AlH/P(SiMe₃)₃ system was carried out to note what effect the steric demand of R has on the R₂AlH reactivity with P(SiMe₃)₃. Between -90 and -20 °C, the spectra indicate the presence of only the starting materials. Above -20 °C, peaks assignable to trace amounts of HSiMe₃ and oligomeric Al-P species are observed. Reactivity proceeds very slowly at room temperature. After 2 months, the spectra indicate only a trace of [Bui₂-AlP(SiMe₃)₂]₂ and a large amount of unreacted P(SiMe₃)₃. Thus, adduct formation and 1,2-elimination are greatly influenced by the steric demand of the Buⁱ group in Buⁱ₂-AlH. [Buⁱ₂AlP(SiMe₃)₂]₂ was independently synthesized from the thermolysis of a hexane solution of Bui₂AlH and P(SiMe₃)₃ (see Experimental Section). In each case, the pathway to the $[R_2AIP(SiMe_3)_2]_2$ dimer involves the association of R_2AlH with " $R_2AlP(SiMe_3)_2$ " to form oligomeric species that are ultimately converted to the dimer as the associated R₂AlH is consumed in reaction with P(SiMe₃)₃.

The 1:1 Bui₂AlH/HP(SiMe₃)₂ reaction system was also followed by variable-temperature NMR to compare results with those previously reported for the Me₂AlH/ HP(SiMe₃)₂ system wherein HSiMe₃ elimination was the preferred mode of reactivity.²⁶ Below -40 °C, the spectra indicate the presence of only the starting materials. Above -40 °C, the ¹³C NMR spectra indicate the formation of HSiMe₃, while the ³¹P spectra indicate the concurrent formation of both "Buⁱ₂AlP(H)SiMe₃"and "Bui2AlP(SiMe3)2"-containing oligomers arising from HSiMe₃ and H₂ elimination, respectively. Spectral identification was made using coupled and decoupled ³¹P spectra to note the presence of H bound to P. Reactivity increases with increasing temperature, and spectral intensities suggest that H₂-elimination products are formed in greater yield than HSiMe₃-elimination species. There was no evidence for transphosphination reactions involving species such as H₂PSiMe₃ and PH₃ which were observed in the Me₂AlH/HP(SiMe₃)₂ system.²⁶ Peaks assignable to Al–P oligomeric species were observed in the NMR spectra. These species are postulated to be analogous to those previously discussed for the Me₂AlH reaction system. At 0 °C, spectral peaks for [Buⁱ₂AlP(SiMe₃)₂]₂ are observed and these grow in intensity with increasing temperature and consumption of HP(SiMe₃)₂ at room temperature. The reaction goes to completion within 2 weeks to give [Buⁱ₂AlP(SiMe₃)₂]₂ and a species having the composition Buⁱ₂AlP(SiMe₃)₂. Buⁱ₂AlP(H)SiMe₃ as the major (85%) and minor (15%) products, respectively. Although the minor product could not be isolated, peak assignments were made on the basis of coupled and decoupled ³¹P spectra. This

⁽³³⁾ Due to the presence of mixed oligomeric Al–P species, specific monomers will be referred to as single species (i.e. "Me₂AlP(SiMe₃)₂") without implying that they exist as true monomers in solution.

⁽³⁴⁾ Watkins, C. L.; Krannich, L. K.; Thomas, C. J.; Srivastava, D. Polyhedron 1994, 13, 3299.

⁽³⁵⁾ Glore, J. D.; Hall, R. E.; Schram, E. P. *Inorg. Chem.* **1972**, *11*, 550.

 ⁽³⁶⁾ Glore, J. D.; Schram, E. P. *Inorg. Chem.* 1972, *11*, 1532.
 (37) Bernstein, J. D. Ph.D Thesis, SUNY at Buffalo, Buffalo, NY, 1975.

⁽³⁸⁾ Beachley, O. T.; Victoriano, L. Inorg. Chem. 1986, 25, 1948.

Figure 1. Molecular structure of [Buⁱ₂AlP(SiMe₃)₂]₂.

species could arise from the combination of the "Buⁱ₂-AlP(SiMe₃)₂" and "Buⁱ₂AlP(H)SiMe₃" units after the consumption of Buⁱ₂AlH bound in the oligomers by analogy to the formation of [Me₂AlP(H)SiMe₃]₂·Me₂AlP-(SiMe₃)₂, which was isolated and characterized in the Me₂AlH/HP(SiMe₃)₂ system.²⁶ Whereas HSiMe₃ elimination is the preferred mode of reactivity of Me₂AlH with HP(SiMe₃)₂,²⁶ H₂ elimination is favored in the Buⁱ₂-AlH/HP(SiMe₃)₂ system. In both cases, oligomeric species containing associated R₂AlH serve as precursors to the final products.

C. Crystal Structure of [**Bu**ⁱ₂**AIP**(**SiMe**₃)₂]₂. The unit cell consists of four dimeric molecules of [**Bu**ⁱ₂AlP-(SiMe₃)₂]₂ each of which are separated by normal van der Waals distances. The labeling of the atoms is presented in Figure 1. Selected interatomic distances and angles are given in Table 2. The dimeric molecule has precise C_2 symmetry with the atoms P(2) and P(3) lying on a crystallographic 2-fold axis (0, *y*, ¹/₄). This feature demonstrates the planarity of the (AIP)₂ core. The distances associated with this ring are Al(1)-P(2) = Al(1A)-P(2) = 2.469(2) Å and Al(1)-P(3) = Al(1A)-P(3) = 2.483(2) Å, and the internal angles are P(2)-Al-(1)-P(3) = P(2)-Al(1A)-P(3) = 89.0(1)^{\circ}, Al(1)-P(2)-Al(1A) = 91.3(1)^{\circ}, and Al(1)-P(3)-Al(1A) = 90.7(1)^{\circ}.

 Table 2. Selected Bond Distances (Å) and Angles (deg) for [Buⁱ₂AlP(SiMe₃)₂]₂

· 0	/ L		
Al(1)-P(2)	2.469(2)	Al(1)-C(1)	1.976(4)
Al(1)-P(3)	2.483(2)	Al(1)-C(5)	1.978(5)
Al(1)Al(1A)	3.532	P(2)···P(3)	3.471
P(2)-Si(2)	2.255(2)	P(3)-Si(3)	2.267(2)
P(2)-Al(1)-P(3)	89.0(1)	C(1)-Al(1)-C(5)	117.1(2)
Al(1)-P(2)-Al(1A)	91.3(1)	Si(2) - P(2) - Si(2A)	107.3(1)
Al(1)-P(3)-Al(1A)	90.7(1)	Si(3)-P(3)-Si(3A)	105.2(1)

Table 3. Comparison of Average Structural Data (Å, deg) for [R₂AlP(SiMe₃)₂]₂ (R = Me, Et, Buⁱ)

	$[Me_2 \ AlP(SiMe_3)_2]_2$	$[Et_2 \ AlP(SiMe_3)_2]_2$	$[Bu^i{}_2AlP(SiMe_3)_2]_2$
Al-P	2.457(2)	2.458(1)	2.476(2)
Al-C	1.959(4)	1.972(4)	1.977(5)
P-Si	2.259(1)	2.260(1)	2.261(2)
P-Al-P	89.4(3)	89.83(4)	89.0(1)
C-Al-C	113.4(2)	114.2(2)	117.1(2)
Al-P-Al	90.60(5)	90.17(4)	91.0(1)
Si-P-Si	108.35(6)	107.95(5)	106.3(1)

The cross-ring distances are clearly nonbonding, with $Al(1)\cdots Al(1A) = 3.532$ Å and $P(2)\cdots P(3) = 3.471$ Å.

A comparison of several bond distances and angles for [Bui2AlP(SiMe3)2]2 and the related compounds [Me2-AlP(SiMe₃)₂]₂²⁷ and [Et₂AlP(SiMe₃)₂]₂⁴ are given in Table 3. As the R groups on aluminum become increasingly more bulky, there is a corresponding increase in the interligand angle about the aluminum atoms (C-Al-C) and a decrease associated with the Si-P-Si angles of the bridging phosphido groups. It is interesting to note that all three structures possess planar fourmembered $(AIP)_2$ cores and that the increase of the steric bulk of the alkyl groups associated with the aluminum atoms (ranging from Me to Buⁱ) does not appear to cause significant distortions among the internal angles of the (Al-P)₂ ring. The Al-P, Al-C, and P-Si bonds for the series of compounds [R₂AlP(SiMe₃)₂]₂ show no statistically significant increase in bond length with increasing size of R.

Supporting Information Available: Tables listing positional and thermal parameters and complete bond distances and angles (4 pages). Ordering information is given on any current masthead page.

OM9604177