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Università di Milano, Via G. Venezian, 21, 20133 Milano, Italy

Received April 1, 1996X

Summary: A high-yield procedure is described for the
preparation, from [M(CO)3Cl2]2 (M ) Ru, Os) and
aqueous NaOH, of the new water-soluble and air-stable
species [Ru(CO)2Cl(OH)]n, [Ru(CO)2(OH)2]n, [Os(CO)3Cl-
(OH)]2, and [Os(CO)3(OH)2]x (x ) 2 or n).

Although organotransition-metal hydroxides have
been known for a long time, the synthesis and reactivity
of late-metal complexes bearing hydroxo ligands have
been left relatively unexplored for many years.1
Whereas Cr, Mo, W, Mn, and Re hydroxo carbonyl

complexes are well-known,2,3 there has been no report
on coordination compounds of group VIII metals with
carbonyl and hydroxo ligands only. Thus, [Rh(1,5-
COD)(OH)]2,4a [Rh(PPh3)2(OH)]2,4b and [Rh(CO)(PPh3)2-
(OH)]4c are known but the related [Rh(CO)2(OH)]2 is not
stable enough, in contrast to [Rh(CO)2(OR)]2 (R ) Me,5a
Ph,5a SiPh35b). Similarly, whereas hydroxo complexes
of ruthenium(II) and osmium(II) with phosphines,6,7
cyclopentadiene,8 or arenes6,9 as ligands are known, no
simple hydroxoruthenium(II) or -osmium(II) carbonyl
complexes have been reported, with the exception of
some hydroxoruthenium and -osmium carbonyl clus-
ters.2,6,10 The only related Os(II) compounds are the
oxocarbonyl species [Os4O4(CO)12] and [Os6O6(CO)16],
obtained as byproducts of the carbonylation of OsO4
to [Os3(CO)12].11 In addition, the species [Ru(NH3)x-
(OH)y(CO)z]n+ (n < 3) entrapped in zeolite supercages

was supposed to be the active catalyst for the water-
gas shift reaction, but it has no homogeneous equiva-
lent.12

In this communication, we describe a report on the
synthesis and characterization of new water-soluble
and air-stable chlorohydroxo and dihydroxo Ru(II)
and Os(II) carbonyl complexes obtained by reaction of
[M(CO)3Cl2]2 (M ) Ru, Os) with aqueous NaOH.
[Ru(CO)2Cl(OH)]n and [Ru(CO)2(OH)2]n. Treat-

ment of â-[Ru(CO)3Cl2]213,14 in dichloromethane with
aqueous NaOH (molar ratio NaOH:Ru ) 1:1) for 40 min
at room temperature, followed by workup,15 resulted in
the clean formation of a new brown ruthenium species,
which was characterized by elemental analysis and
infrared spectroscopy (Table 1) and by 1H NMR spec-
troscopy.15 The compound is highly soluble in water and
has a low volatility.
In addition, we established a simple method to define

the number of carbonyl ligands: addition of aqueous
HCl to an ethanolic solution of â-[Ru(CO)3Cl2]2 or cis-
[Ru(CO)2Cl2]n cleanly affords fac-[Ru(CO)3Cl3]- 16 and
[Ru(CO)2Cl2(EtOH)2] (isomer with CO groups in cis
positions),6,16,17 respectively (cis-[Ru(CO)2Cl4]2- is readily
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converted to [Ru(CO)2Cl2(EtOH)2] in ethanol).18 Addi-
tion of aqueous HCl to an ethanolic solution of our new
brown ruthenium complex causes a shift of the carbonyl
bands from 2062 (s) and 1991 (s) cm-1 to 2066 (s) and
1996 (s) cm-1, characteristic of [Ru(CO)2Cl2(EtOH)2]
with cis CO groups. Evaporation of the solvent affords
cis-[Ru(CO)2Cl2]n.19 These observations, elemental analy-
sis, and the evidence of the presence of hydroxo ligands
by infrared and 1H NMR spectroscopy, together with
the typical insolubility in nondonor solvents and the low
volatility, would suggest a polymeric [Ru(CO)2Cl(OH)]n
structure with a chloride- and hydroxide-bridged chain.
The carbonyl groups are probably in cis positions, by
analogy with the known structures of the related
polymeric halides [Ru(CO)2X2]n20 and alkyl sulfides [Ru-
(CO)2(S2R2)]n,21 which show a similar infrared pattern
in the carbonyl region. In agreement with the presence
of bridging chlorine, the Ru-Cl absorption of the new
complex is in the range of frequencies reported for the
bridging chlorine ligands of cis-[Ru(CO)2Cl2]n.19

The new complex dissolves only in donor solvents
which cleave chloro and hydroxo bridges, affording
soluble monomeric species such as [Ru(CO)2Cl(OH)L2]
(L ) donor solvent) with cis CO groups, as suggested
by the infrared spectrum (Table 1 and by analogy with
the behavior of cis-[Ru(CO)2Cl2]n or â-[Ru(CO)3Cl2]2.13
The monomeric nature of the chlorohydroxoruthe-
nium carbonyl species dissolved in water has been
confirmed by molecular weight determination using
both gel permeation chromatography and osmometry
techniques.22

A related brown non-chlorinated complex of ruthe-
nium(II) is obtained by following the same procedure,15
but with a 2:1 NaOH:Ru molar ratio. With the biphasic
system CH2Cl2/NaOH in H2O, the reaction is already
complete after 15 min.23 The low solubility in nondonor
solvents of this compound, its low volatility, and the
presence of hydroxo and carbonyl infrared absorptions,

together with the lack of a Ru-Cl infrared absorption
band, elemental analysis (Table 1), and finally the
reaction of an ethanolic solution with aqueous HCl,
which selectively affords [Ru(CO)2Cl2(EtOH)2] with cis
CO groups, would suggest also in this case a polymeric
cis-[Ru(CO)2(OH)2]n structure, with bridging hydroxo
ligands.
However, the species initially formed in water by

reaction of aqueous NaOH with â-[Ru(CO)3Cl2]2 (molar
ratio NaOH:Ru ) 2:1) has probably three carbonyl
ligands per ruthenium, as suggested by the reaction
with HCl of the water solution, obtained when the
reaction is completed and diluted with ethanol, which
affords mainly fac-[Ru(CO)3Cl3]- and only traces of
[Ru(CO)2Cl2(EtOH)2] with cis CO groups. Therefore,
the species initially formed in water is probably a water-
soluble complex such as mer-[Ru(CO)3(OH)2(H2O)], as
suggested also by the infrared carbonyl absorptions in
ethanol at 2041 (s) and 1966 (s) cm-1.13,19 By evapora-
tion of the solvent to dryness, this ruthenium species
polymerizes, losing CO to give a solid residue consisting
of a mixture of [Ru(CO)3(OH)2]n and [Ru(CO)2(OH)2]n.
Only further thermal treatment, for instance under
vacuum for 4 h at 120 °C, gives pure [Ru(CO)2(OH)2]n.
As expected, the tendency to polymerize is much higher
with hydroxide than with chloride ligands; for instance
â-[Ru(CO)3Cl2]2 must be heated at 200 °C under vacuum
in order to generate the polymer cis-[Ru(CO)2Cl2]n.13

By analogy with the infrared spectrum in the carbonyl
region of polymeric species such as cis-[Ru(CO)2X2]n20
and cis-[Ru(CO)2(S2R2)]n,21 [Ru(CO)2(OH)2]n also has
presumably a hydroxide-bridged chain structure with
cis carbonyl groups. The degree of polymerization
increases on standing in the solid state, as shown by
the decrease with time of solubility in donor solvents.
In water the hydroxo bridges are cleaved, affording
monomeric [Ru(CO)2(OH)2(H2O)2] species, as shown by
both gel permeation chromatography and osmometry.22

Unfortunately, we are unable at the moment to obtain
for both of the new compounds suitable crystalline
samples for X-ray investigations.
[Os(CO)3Cl(OH)]2 and [Os(CO)3(OH)2]x (x ) 2 or

n). By the procedure described for the ruthenium dimer
analogue, R-[Os(CO)3Cl2]214,24 dissolved in dichloro-
methane is hydrolyzed at room temperature by aqueous
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required for conversion. Because the dihydroxoruthenium carbonyl
complex is much less soluble in acetone than [Ru(CO)2Cl(OH)]n, it was
purified by column chromatography (Sephadex G10) using water as
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Table 1. Yieldsa and Infrared and Analytical Data of New Ruthenium and Osmium Complexes
elem anal.

compd yield (%) νCO (cm-1)
νOH (cm-1)
(KBr)

νMCl (cm-1)b
(polyethene) calcd found

[Ru(CO)2Cl(OH)]n 95 2068 (s), 1995 (s) (KBr) 3422 (br) 322 (m) C, 11.5 C, 11.5
2062 (s), 1991 (s) (ethanol) H, 0.5 H, 0.5
2050 (s), 1979 (s), 1944 (w) (acetone) Cl, 16.9 Cl, 17.4

[Ru(CO)2(OH)2]n 85 2041 (s), 1968 (s) (KBr) 3415 (br) no abs C, 12.5 C, 12.3
2040 (s), 1964 (s) (ethanol) H, 1.1 H, 1.3

[Os(CO)3Cl(OH)]2 90 2129 (m), 2031 (s), 1947 (m) (KBr) 3445 (br) 320 (w), 287 (m) C, 11.0 Cl, 11.1
2122 (m), 2117 (sh), 2029 (vs), 1961 (m) (ethanol) H, 0.3 H, 0.4
2121 (m), 2111 (sh), 2027 (vs), 1947 (m) (acetone) Cl, 10.9 Cl, 10.9

[Os(CO)3(OH)2]x (x ) 2, n) 81 2123 (m), 2024 (vs), 1933 (m) (KBr) 3416 (br) no abs C, 11.7 C, 11.9
2115 (m), 2024 (vs), 1946 (s) (ethanol) H, 0.6 H, 0.9
2117 (m), 2021 (vs), 1938 (m) (acetone)

a Yields are of pure materials. b M = Ru, Os.
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NaOH (molar ratio NaOH:Os ) 1:1 or 1:2).25 In this
latter case, the alkaline hydrolysis is slower than with
the Ru complex, 5 and 3 h being necessary to hydrolyze
one and two Os-Cl bonds, respectively.
The new complexes were characterized by elemental

analysis and by infrared spectroscopy (Table 1), by 1H
NMR spectroscopy, which gives further evidence for OH
ligands,25 and by their reaction with aqueous HCl, which
affords fac-[Os(CO)3Cl3]- 19 in both cases, as occurs with
R-[Os(CO)3Cl2]2. As expected for a dimer,21c,26 the white
chlorinated complex is very soluble in donor solvents
such as acetone, ethanol, and water, even after a long
time under vacuum, whereas the beige non-chlorinated
derivative has a lower solubility, being only slightly
soluble in weak donor solvents such as acetone although
rather soluble in ethanol and in water.
The dimeric structure [Os(CO)3Cl(OH)]2 was con-

firmed by a peak at m/e 652 in the mass spectrum. In
this spectrum, there was also the molecular ion peak of
[Os(CO)3O]4 at m/e 1160, associated with its known
fragmentation pattern.11 No higher polynuclear species
such as [Os6O6(CO)16]11 was detected. Freshly prepared
[Os(CO)3Cl(OH)]2 was not contaminated with [Os-
(CO)3O]4, as shown by elemental analysis and by
infrared spectroscopy, the spectrum of [Os(CO)3O]4 in
the carbonyl region11 being very different from that of
[Os(CO)3Cl(OH)]2 (see Table 1). In addition, we could
not separate any [Os(CO)3O]4 by treatment with CHCl3;
this latter compound is soluble, while [Os(CO)3Cl(OH)]2
is totally insoluble. Therefore, it appears that some [Os-
(CO)3Cl(OH)]2 condenses to [Os(CO)3O]4, with elimina-
tion of HCl, under the conditions used to measure the
mass spectrum (high vacuum and temperature of about
200 °C). The beige dihydroxoosmium carbonyl complex
condenses even more easily to [Os(CO)3O]4, with elimi-
nation of water, since only this species could be observed
by mass spectroscopy, no molecular ion peak corre-
sponding to [Os(CO)3(OH)2]2 being detected. Also in this
case, the compound was not originally contaminated by
[Os(CO)3O]4 on the basis of both infrared spectra and
lack of extraction with CHCl3. As a matter of fact, mass
spectra confirm the presence of three carbonyl ligands
per osmium atom in both complexes.
We cannot at the moment clearly distinguish, on the

basis of only infrared spectra, a dimeric structure with
chloride or hydroxide bridges for [Os(CO)3Cl(OH)]2,
because we cannot definitely assign the Os-Cl stretch-
ing frequencies (Table 1) to bridging chloride ligands.
Besides, the dimeric or polymeric nature of the dihy-
droxoosmium species cannot be well established. The
similarity of its infrared carbonyl absorption bands with

those of [Os(CO)3Cl(OH)]2 (Table 1) and the easy forma-
tion of [Os(CO)3O]4 by thermal treatment would suggest,
at least initially, a dimeric structure with hydroxide
bridges. However, the relatively low solubility even in
donor solvents, which decreases with time, would sug-
gest a progressive polymerization. In water, [Os(CO)3Cl-
(OH)]2 and [Os(CO)3(OH)2]x (x ) 2 or n) are converted
to monomeric [Os(CO)3Cl(OH)(H2O)] and [Os(CO)3-
(OH)2(H2O)], respectively, as shown by gel permeation
chromatography and by osmometry.22

The low tendency of chlorohydroxo- and dihydroxoos-
mium(II) carbonyl complexes to lose CO, in comparison
to their ruthenium analogues, is expected, since the
conversion of [Os(CO)3I2]2 to [Os(CO)2I2]n requires more
drastic conditions26 than the conversion of [Ru(CO)3I2]2
to [Ru(CO)2I2]n.13 It is worth pointing out the great
tendency of both osmium complexes, as opposed to the
related ruthenium complexes, to lose thermally either
HCl or H2O, with retention of three carbonyl ligands,
affording µ-oxo bridges.
Preliminary experiments show that an excess of

base (for example, a 3:1 NaOH:M molar ratio) leads to
water-soluble species, probably anions of the type
[Os(CO)3(OH)3]- and [Ru(CO)x(OH)3(H2O)3-x]- (x ) 2,
3), as suggested by their rather low carbonyl stretching
frequencies in KBr (Os, 2022 (sh), 2005 (s), 1935 (sh),
1905 (s) cm-1; Ru, 2028 (s), 1935 (s) cm-1) and by the
reaction of their solutions with aqueous HCl, which
affords fac-[Os(CO)3Cl3]- and a mixture of fac-[Ru(CO)3-
Cl3]- and [Ru(CO)2Cl2(EtOH)2], respectively. The sta-
bility of the carbonyl ligands in these Os(II) compounds
toward nucleophilic attack of OH- is quite unexpected.27

Conclusion. The new hydroxoruthenium and -os-
mium carbonyl complexes described here are a new class
of stable, water-soluble carbonyl compounds. We have
preliminary evidence28 that they could be the active
species involved in the high-yield silica-mediated syn-
thesis of various osmium29 and ruthenium30 carbonyl
clusters starting from [M(CO)3Cl2]2 (M ) Ru, Os) in the
presence of alkali-metal carbonates. In addition, they
could find application as homogeneous catalysts, by
analogy with other Ru(II) and Os(II) complexes, in
particular for the water-gas shift reaction1,12,27 and for
the hydration of unsaturated organic compounds.1,31
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1H NMR measurements.
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