Conversion of a Diruthenium µ-Methylene Complex, Cp₂Ru₂(µ-CH₂)(µ-CO)(CO)₂, into Methane through Reduction with Hydrosilane: Reactivity of Silyl-µ-Methylene Intermediates Cp₂Ru₂(µ-CH₂)(SiR₃)(X)(CO)₂ (X = H, SiR₃) Relevant to Catalytic CO Hydrogenation and Activation of Si-H, C-H, and C-Si Bonds

Munetaka Akita,* Ruimao Hua, Tomoharu Oku, Masako Tanaka, and Yoshihiko Moro-oka*

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan

Received April 4, 1996[®]

Thermolysis (170 °C, 3 days) of a diruthenium μ -methylene complex, Cp₂Ru₂(μ -CH₂)(μ - $CO(CO)_2$ (1), in the presence of HSiMe₃ produces methane along with methylsilane (SiMe₄) and mononuclear organometallic products, CpRu(H)(SiR₃)₂(CO) (2) and CpRu(CO)₂(SiMe₃) (3). The reaction mechanism involving initial CO dissociation has been investigated by using a labile μ -methylene species, Cp₂Ru₂(μ -CH₂)(μ -CO)(CO)(MeCN) (4), the MeCN adduct of the coordinatively unsaturated species resulting from decarbonylation of 1. Treatment of 4 with HSiR₃ produces the hydrido-silyl- μ -methylene intermediate Cp₂Ru₂(μ -CH₂)(H)(SiR₃)(CO)₂ (5) and the disilyl $-\mu$ -methylene complex Cp₂Ru₂(μ -CH₂)(SiR₃)₂(CO)₂ (6) successively. Further reaction of 5 and 6 with HSiR₃ affords methane under milder conditions (120 $^{\circ}$ C, 12 h) compared to the methane formation from **1**. Meanwhile complicated exchange processes are observed for the silvlated μ -methylene species 5 and 6. The dynamic behavior of the hydrido-silyl species 5 giving a ¹H-NMR spectrum consistent with an apparent C_s structure at ambient temperature has been analyzed in terms of a mechanism involving intramolecular H- and R₃Si-group migration between the two ruthenium centers. It is also revealed that intramolecular exchange reaction of the hydride and μ -CH₂ atoms in 5 proceeds via the coordinatively unsaturated methyl intermediate $Cp_2Ru_2(CH_3)(SiR_3)(CO)_2$ (9). In addition to these intramolecular processes, the hydride, μ -CH₂, and SiR₃ groups in **5** and **6** exchange with external HSiR₃ via replacement of the η^2 -bonded H₂ or HSiR₃ ligand in μ -methylene or μ -silylmethylene intermediates Cp₂Ru₂(μ -CHX)(μ -CO)(CO)(η^2 -H-Y) [X, Y = H, SiR₃ (7), SiR₃, H (18), SiR₃, SiR₃ (16)] as confirmed by trapping experiments of 7 with L (CO, PPh₃) giving $Cp_2Ru_2(\mu$ -CHX)(μ -CO)(CO)(L) [X, L = H, CO (1), H, PPh₃ (11), SiR₃, CO (12), SiR₃, PPh₃ (13)]. Hydrostannanes (HSnR₃) also react with 4, in a manner similar to the reaction with HSiR₃, to give the hydrido-stannyl- μ -methylene intermediate Cp₂Ru₂(μ -CH₂)(H)(SnR₃)(CO)₂ (20) and the distannyl- μ -methylene complex Cp₂Ru₂(μ -CH₂)(SnR₃)₂(CO)₂ (21) successively (the stannyl analogues of **5** and **6**, respectively). The intramolecular exchange processes (H \leftrightarrow SnR₃, H \leftrightarrow μ -CH₂) are also observed for **20**. But the HSnPh₃ adduct **20c** is further converted to a mixture containing the μ - η^{1} : η^{2} -phenyl complex Cp₂Ru₂(μ -Ph)(SnCH₃Ph₂)(CO)₂ (22) and the bis(μ -stannylene) complex Cp₂Ru₂(μ -SnPh₂)₂(CO)₂ (23) instead of 21c. The isolation of **22** supports viability of the methyl species (**9**). These results suggest that methane formation from 1 follows (i) CO dissociation, (ii) H-SiR₃ oxidative addition giving the hydrido-silyl- μ -methylene intermediate 5, (iii) equilibrium with the methyl intermediate **9**, (iv) a second oxidative addition of $H-SiR_3$, and (v) elimination of methane repeating reductive elimination from mono- and dinuclear hydrido-methyl intermediates 27 and 28. The present reaction sequence can be viewed as a model system for methanation via the Fischer–Tropsch mechanism where hydrosilane behaves as a H_2 equivalent (pseudohydrogen). The molecular structures of 6d,e, 12a, 13a, 21a, and 22 have been determined by X-ray crystallography.

Introduction

Polynuclear transition metal complexes containing a bridging methylene (alkylidene) ligand¹ have been investigated as model compounds for surface-bound

S0276-7333(96)00258-0 CCC+ \$12.00

methylene species, which should play a pivotal role in surface-catalyzed transformations of carbon monoxide

© 1996 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, August 15, 1996.

 ^{(1) (}a) Herrmann, W. A. Adv. Organomet. Chem. **1982**, 20, 159. (b)
 Herrmann, W. A. J. Organomet. Chem. **1983**, 250, 319. (c) Saez, I. M.;
 Andrews, D. G.; Maitlis, P. M. Polyhedron **1988**, 7, 827. (d) Puddephatt,
 R. J. Polyhedron **1988**, 7, 767. (e) Knox, S. A. R. J. Organomet. Chem.
 1990, 400, 255.

and hydrocarbons (Scheme 1).^{2,3} Extensive studies on their reactivity with emphasis on coupling with hydrocarbyl species (e.g. another methylene ligand present in the complex and external alkenes and alkynes) have provided us with suggestive information on the mechanism of the carbon-chain propagation step of catalytic CO hydrogenation.⁴ In connection with the present study, various aspects of Cp₂Ru₂(µ-CR₂)(µ-CO or CR₂)-(CO)₂-type diruthenium bridging alkylidene complexes have been scrutinized by Knox and his co-workers.⁵ Meanwhile hydrogenation or protonation of a hydrocarbyl species releasing hydrocarbons serve as a model system for the termination step.

Reduction of organometallic compounds by using hydrosilane as a H₂ equivalent has been a subject of our research.⁶ Because the reaction features of the H-Si bond in hydrosilanes are quite similar to those of

(3) (a) Falbe, J. New Synthesis with Carbon Monoxide; Springer: Berlin, 1980. (b) Keim, W. Catalysis in C1 Chemistry, D. Reidel: Dordrecht, The Netherlands, 1983. (c) Anderson, R. B. The Fischer-Tropsch Synthesis; Academic Press: London, 1984. (d) Pines, H. The Chemistry of Catalytic Hydrocarbon Conversions, Academic Press: London, 1981. (e) Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; John Wiley & Sons: New York, 1994. (4) See, for example: Maitlis, P. M. J. Organomet. Chem. **1995**, 500,

239 and references cited therein.

(5) (a) Dyke, A. F.; Knox, S. A. R.; Morris, M. J.; Naish, P. J. J. Chem. Soc., Dalton Trans. 1983, 1417. (b) Colborn, R. E.; Dyke, A. F.; Knox, S. A. R.; Mead, K.; Woodward, P. J. Chem. Soc., Dalton Trans. 1983, 2099. (c) Colborn, R. E.; Davies, D. L.; Dyke, A. F.; Endesfelder, A.; Knox, S. A. R.; Orpen, A. G., Plaas, D J. Chem. Soc., Dalton Trans. A.; Knox, S. A. R.; Orpen, A. G., Plaas, D J. Chem. Soc., Datton Irans.
1983, 2661. (d) Adams, P. Q.; Davies, D. L.; Dyke, A. F.; Knox, S. A. R.; Mead, K.; Woodward, P J. Chem. Soc., Chem. Commun. 1983, 222.
(e) Forrow, N. J.; Knox, S. A. R.; Morris, M. J.; Orpen, A. G. J. Chem. Soc., Chem. Commun. 1983, 234. (f) Davies, D. L.; Knox, S. A. R.; Mead, K. A.; Morris, M. J.; Woodward, P J. Chem. Soc., Dalton Trans. 1984, 2293. (g) Davies, D. L.; Gracey, B. P.; Guerchais, V.; Dyke, A. F.; Knox, S. A. F.; Marking, C. M. B.; Orpen, A. G. J. Chem. Soc., Chem. Commun. 1983, 234. (f) Davies, D. L.; Knox, S. A. R.; Mead, K. A.; Morris, M. J.; Woodward, P J. Chem. Soc., Dalton Trans. 1984, 2293. (g) Davies, D. L.; Gracey, B. P.; Guerchais, V.; Dyke, A. F.; Knox, S. A. R.; Mead, K. A.; Morris, M. J.; Woodward, P J. Chem. Soc., Dalton Trans. 1984, 2293. (g) Davies, D. L.; Gracey, B. P.; Guerchais, V.; Dyke, A. F.; Knox, S. A. F.; K S. A. R.; Orpen, A. G. J. Chem. Soc., Chem. Commun. 1984, 841. (h) Connelly, N. G.; Forrow, N. J.; Gracey, B. P.; Knox, S. A. R.; Orpen, A. G. J. Chem. Soc., Chem. Commun. 1985, 14. (i) Colborn, R. E.; Davies, D. L.; Dyke, A. F.; Knox, S. A. R.; Mead, K.; Orpen, A. G. J. Chem. Soc., Dalton Trans. **1989**, 1799. (j) Doherty, N. M.; Howard, J. A.; Knox, S. A. R.; Terril, N. J.; Yates, M. I. J. Chem. Soc., Chem. Commun. 1989, 638. (k) Howard, J. A.; Knox, S. A. R.; Terril, N. J.; Yates, M. I. J. Chem. Soc., Chem. Commun. 1989, 640. (l) Fildes. M. J.; Knox, S. A. R.; Orpen, A. G.; Turner, M. L.; Yates, M. I. J. Chem. Soc., Chem. Commun. 1989, 1680. See also the following review articles: (m) Knox, S. A. R. J. Organomet. Chem. 1990, 400, 255. (n) Knox, S. A. R. J. Cluster Sci. 1992, 3, 385.

(6) (a) Akita, M.; Mitani, O.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1989, 527. (b) Akita, M.; Oku, T.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1990, 1790. (c) Akita, M.; Mitani, O.; Sayama, M.; Moro-oka, Y. Organometallics 1991, 10, 1394. (d) Akita, M.; Oku, T.; Tanaka, M.; Moro-oka, Y. Organometallics 1991, 10, 3080. (e) Akita, M.; Oku, T.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1992, 1031. (f) Akita, M.; Oku, T.; Hua, R.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1993, 1670. (g) Akita, M.; Noda, K.; Moro-oka, Y. Organo metallics 1994, 13, 4145. (h) Akita, M.; Moro-oka, Y. Stud. Surf. Sci. Catal. 1995, 92, 137. (i) Akita, M.; Noda, K.; Takahashi, Y.; Moro-oka, Y. Organometallics 1995, 14, 5209. (j) Akita, M.; Hua, R.; Oku, T.; Moro-oka, Y. Organometallics 1996, 15, 2548. (k) Akita, M.; Hua, R.; Oku, T.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1996, 541.

Scheme 3

H-SiR'3 M-R → H—R [M = CpFe(CO(L)] $\xrightarrow{\text{H-SiR'}_3}$ $\xrightarrow{\text{R}}$ $M_2 = Cp_2Ru_2(CO)_3$, $Cp_2Fe_2(CO)_3$

the H-H bond in dihydrogen [e.g. oxidative addition to a low-valent metal center and catalyzed addition reactions to unsaturated organic compounds (hydrogenation vs hydrosilation)], hydrosilane can be considered as a pseudo-hydrogen. In addition to these features, the oxygenophilic Si part induces Lewis acidic activation of oxygen-containing functional groups to promote hydride transfer leading to the formation of hydrocarbyl species after removal of the oxygen atom.⁷ Thus employment of hydrosilane as a H₂ equivalent would lead to successful modeling of two types of reduction steps, i.e. (i) deoxygenative reduction of O-containing functional groups and (ii) hydrogenolysis of M-C bonds.

In previous papers we reported deoxygenative reduction of acyl and carbonyl ligands giving alkyl, methylene, and alkylidyne species accompanied by elimination of siloxane (Scheme 2).^{6a,c,e,g,i} These ligand transformations may be viewed as model systems for formation step of hydrocarbyl intermediates in Fischer-Tropsch and Pichler-Schulz mechanisms. We also reported reduction of alkyliron complexes [CpFe(CO)₂R] with hydrosilane producing alkane (R-H), a formal hydrogenolysis product (reaction a in Scheme 3).^{6b,d} As an extension, we have studied reduction of a dinuclear complex with a difunctional hydrocarbyl ligand. Herein we disclose details of conversion of a μ -methylene complex of ruthenium, $Cp_2Ru_2(\mu$ -CH₂)(μ -CO)(CO)₂, into methane by treatment with hydrosilanes (reaction b in Scheme 3).8 Employment of HSiR₃ leads to successful isolation and characterization of intermediates which are stabilized by Ru-Si interactions. Furthermore combination of the present M-C bond hydrogenolysis with the previously reported deoxygenative reduction of Cp₂Ru₂(CO)₄ (reaction b in Scheme 2)^{6f} would lead to a model system for methanation.

Results and Discussion

Conversion of the *µ*-Methylene Ligand in Cp₂Ru₂- $(\mu$ -CH₂) $(\mu$ -CO)(CO)₂ (1) into Methane. Treatment of

^{(2) (}a) Masters, C. Adv. Organomet. Chem. **1979**, *19*, 63. (b) Muetterties, E. L.; Rhodin, T. N.; Band, E.; Brucker, C. F.; Pretzer, W. R. Chem. Rev. 1979, 79, 79. (c) Roofer-DePoorter, C. K. Chem. Rev. **1981**, *81*, 447. (d) Herrmann, W. A. *Angew. Chem., Int. Ed. Engl.* **1982**, *21*, 117. (e) Cutler, A. R.; Hanna, P. K.; Vites, J. C. *Chem. Rev.* **1988**, 88, 1363 and references cited therein. For carbide complexes: (f) Tachikawa, M.; Muetterties, E. L. Prog. Inorg. Chem. 1981, 28, 203. (g) Bradley, J. S. Adv. Organomet. Chem. 1983, 22, 1. (h) Shriver, D. ; Sailor, M. J. Acc. Chem. Res. 1988, 21, 374. See also: (i) Beck, W.; Niemer, B.; Wieser, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 923.

^{(7) (}a) The chemistry of organosilicon compounds; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: Chichester, U.K., 1989; Vols. 1 and 2. (b) Comprehensive Organometallic Chemistry I and II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1982 and 1995. (c) Colvin, E. W. Silicon in Organic Synthesis; Butterworths: London, 1981; Chapter 21. (d) Weber, W. P. Silicon Reagents for Organic Synthesis, Springer: Berlin; 1983; Chapter 17.

a toluene solution of the diruthenium μ -methylene complex **1** with monohydrosilane at 170 °C (in a sealed tube) produced a mixture of methane and methylsilane together with mononuclear Ru complexes, CpRu(H)-(SiR₃)₂(CO) (**2**) and CpRu(CO)₂-SiMe₃ (**3**)⁹ (eq 1). In

 CH_4 (42 %) + CH_3 -SiMe₃ (18 %) (1)

CpRu(H)(SiMe₃)₂(CO) (2:9%)

+ CpRu(CO)₂-SiMe₃ (**3**: 22 %)

contrast to the reaction with monohydrosilane, reaction with di- or trihydrosilanes resulted in reduction of the μ -CO ligand to give the di(μ -methylene) complex, Cp₂Ru₂-(μ -CH₂)₂(CO)₂, as we reported previously.^{6e,j,10}

Because the reaction conditions are much more vigorous compared to those of the alkane formation from the alkyliron complexes induced by hydrosilane [M = FeCp-(CO)₂ (90 °C, 10 h); Scheme 3a], it is suggested that the initial step may involve a CO-dissociation process, though some other mechanisms via coordinatively unsaturated intermediates arising from, for example, Cp slippage (an η^3 -Cp intermediate)¹¹ and CO insertion (a μ -ketene species)¹² are possible.

Reaction of Cp₂Ru₂(μ -CH₂)(μ -CO)(CO)(MeCN) (4) with Hydrosilanes Leading to Silylated μ -Methylene Species Cp₂Ru₂(μ -CH₂)(X)(SiR₃)(CO) [5 (X = H), 6 (X = SiR₃]. In order to investigate participation of initial CO dissociation, we examined reactivity of the labile MeCN adduct (4)^{5j} of the coordinatively unsaturated species "Cp₂Ru₂(μ -CH₂)(μ -CO)(CO)"¹³ arising from decarbonylation of 1 (Scheme 4). As a result, 4 readily reacted with hydrosilane at ambient temperature to give hydrido-silyl- μ -methylene Cp₂Ru₂(μ -CH₂)(H)(SiR₃)(CO)₂ (5) and disilyl- μ -methylene species Cp₂Ru₂(μ -CH₂)-(SiR₃)₂(CO)₂ (6) successively. Further heating of these μ -methylene complexes 5 and 6 at 120 °C in the presence of excess HSiMe₃ produced methane (eq 2). It

5a, 6a + HSiMe₃
$$\xrightarrow{120^{\circ}\text{C}, <12 \text{ h}}$$
 CH₄ (2) benzene

is notable that the reaction conditions for the methane formation (120 °C, <12 h) were much milder than those of eq 1 (170 °C, 3 days). Thus we have concluded that (i) the methane formation is initiated by rate-determining CO dissociation and (ii) it involves the silylated μ -methylene species **5** and **6** as reaction intermediates. Similar hydrocarbon elimination from a dinuclear bridging hydrocarbyl complex was reported by Casey et al.¹⁴ Photochemical reduction of a diiron μ -vinylidene comScheme 4

plex Cp₂Fe₂(μ -C=CH₂)(μ -CO)(CO)₂ with H₂ and HSiMe₃ produced ethylene and vinylsilane CH₂=CH-SiMe₃, respectively. Initial generation of a coordinatively unsaturated intermediate was proposed to be a key step on the basis of a ¹³CO-incorporation experiment.

From the next section each step of Scheme 4 is discussed in detail.

(i) Formation and Characterization of Hydrido– Silyl– μ -Methylene (5) and Disilyl– μ -Methylene Species (6). Addition of hydrosilane to a benzene or toluene suspension of 4 caused immediate dissolution of the solid to give a homogeneous solution of the hydrido–silyl– μ -methylene species 5 in a quantitative yield (Scheme 4). When the mixture was left for a prolonged time (>3 h) at ambient temperature or heated for 15 min at 55 °C, 5 was gradually converted to the disilyl– μ -methylene complex 6 quantitatively with evolution of H₂.¹⁵ (For complete conversion to 6 it was requisite to stir a mixture overnight, when the reaction was carried out at rt (room temperature)).

Formation of the hydrido-silyl- μ -methylene species **5** may follow the following reaction sequence: (i) displacement of the labile MeCN ligand by hydrosilane giving the η^2 -bonded intermediate **7**; (ii) oxidative addition of the H–Si bond leading to the hydrido-silyl species **8**; (iii) intramolecular migration of the H (or SiR₃) and μ -CO ligands (Scheme 5).

Because compounds **5** could not be isolated in a pure form owing to thermal instability resulting in the formation of **6**, they were characterized spectroscopically (Table 1). Although **5** shows dynamic behavior as described below, the ¹H-NMR spectrum of **5a** observed at -60 °C contains the hydride and SiMe₃ signals in addition to the μ -CH₂ and two Cp signals (Figure 1). The lack of a μ -CO vibration and comparison with **6** (see below) lead to the assignment to the structure depicted in Scheme 4, which is also consistent with the ¹³C-NMR data. While both of *cis*- and *trans*-structures are possible for **5**, the configuration cannot be determined by means of spectroscopic data alone.

⁽⁹⁾ Sosinsky, B. A.; Knox, S. A. R.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1975, 1633.

⁽¹⁰⁾ Thermal reaction with $HSnMe_3$ was also attempted, but $HSnMe_3$ decomposed under the reaction conditions.

⁽¹¹⁾ Casey, C. P.; O'Conner, J. M. Chem. Rev. 1987, 87, 307.
(12) (a) Lin, Y. C.; Calabrese, J. C.; Wreford, S. S. J. Am. Chem. Soc. 1983, 105, 1679. (b) Doherty, N. M.; Fildes, M. J.; Forrow, N. J.; Knox, S. A. R.; Macpherson, K. A.; Orpen, A. G. J. Chem. Soc., Chem. Commun. 1986, 1355. See also the following review: (c) Geoffroy, G. L.; Bassner, S. Adv. Organomet. Chem. 1988, 28, 1.

⁽¹³⁾ Photochemistry of the diiron μ -methylene complex Cp*₂Fe₂(μ -CH₂)(μ -CO)(CO)₂ at low temperatures was reported recently: Spooner, Y. H.; Mitchell, E. M.; Bursten, B. E. *Organometallics* **1995**, *14*, 5251.

⁽¹⁴⁾ Casey, C. P.; Austin, E. A. *J. Am. Chem. Soc.* **1988**, *110*, 7106.

⁽¹⁵⁾ Although catalytic formation of H_2 and $Me_3SiSiMe_3$ was observed during conversion of **4** to **5a** and **6a**, the turnover numbers were at most 2–3 (rt –50 °C).

			ומו	TAINI T AIG	V allu IV Dala IUI S	nyiateu allu Stal	π	ombrexes_		
				1H-NMF	~		13C	-NMR		IR
complex	solv	temp	CH_2	Cp	H Si(Sn)R ₃	CH2	Cp	CO	$Si(Sn)R_3$	ν(C≡0)
5a	CD_2Cl_2	rt –60	6.87 (d, 3.6), 6.93 (d, 3.6) 6.80 (d, 3.6), 6.93 (d, 3.6)	5.21 5.21 5.26	-10.01 0.37 -10.09 0.37	110.0 (t, 144)	88.6 (d, 177), 90.1 (d, 178)	203.3, 205.7	6.9 (q, 119)	1924
5b 5d	C ₆ D ₆ CD ₂ Cl ₂	3 t t	6.97 (d, 3.6), 7.07 (d, 3.6) 6.95 (d, 2.9), 7.11 (d, 2.9)	4.98 5.07	-9.95 0.33-1.28 (m, E -10.08 0.59, 0.70, 7.26-	(t) 109.0 (t, 143) - 110.7 (t, 142)	88.5 (d, 179), 89.4 (d, 179) 88.5 (d, 178), 90.1 (d, 178)	203.3, 205.3 203.5, 205.4	9.7 (q, 119), 10.9 (t, 118) b	$1924 \\ 1926$
		-20	6.93 (d, 2.9), 7.07 (d, 2.9)	5.04, 5.13	7.68 (m, Ph) -10.09 0.58, 0.70, 7.31- 7.64 (m. Ph)	I				
5e 5f	CD ₂ Cl ₂ CD ₂ Cl ₂	$^{-10}$	c 6.87 (d, 2.9), 4.58 (d, 2.9)	4.72, 5.06 5.26, 5.31	-10.19 7.1-7.6 (m, Ph) -9.98 3.53	113.2 (t, 144) 105.3 (t, 147)	88.7 (d, 180), 90.2 (d, 178) 89.1 (d, 175)	204.3, 205.3 201.8, 205.0	d 51.0 (q, 142)	1930 1936
6a 6b	CDCI CDCI	ヒヒリ	6.13 6.30 6.31	5.14 5.20 5.19	$\begin{array}{c} 0.32 \\ 0.7 - 1.1 \ (m, Et) \\ 0.5 - 1.42 \ (m, D) \end{array}$	117.0 (t, 141) 116.8 (t, 141) 110.5 (t, 128)	90.6 (d, 178) 89.9 (d, 178) 80.6 (d, 178)	206.7 206.5 206.3	3.9 (q, 118) 9.9 (q, 145), 11.9 (t, 120) 10.7 (c, 140) 10.6 (t, 135)	1904 1905 1006
99 91	CDCI ₃	t t	0.21 6.41	3.12 4.78	0.57, 0.64, 7.27	- 120.8 (t, 130)	00.0 (d. 177) 90.9 (d. 177)	200.2	10.7 (q, 140), 13.0 (t, 123), 24.0 (t, 114) 5.1 (q, 120), 5.9 (q, 119)	1908
6e Gf	CDCl ³	t t	7.15 7.06	4.53 5-21	7.2-7.6 (m, F1) 7.2-7.6 (m, Ph) 2.50	128.3 (t, 143) 108 4 (t 144)	91.8 (d, 180) 00 7 (d. 170)	207.8 205 5	f 5116-149)	1915
s =	CDCI	t	6.55 ^g (d, 13), ^c 9.00, 9.31	$4.47,^{\rm g} 4.67,$ 4.83, 5.12	с. Ч	109.4 (L, 144) 109.6 ^g (ddd, 7, 135, 144),	20.7 (u, 173) 87.8 (d, 174), § 88.3 (d, 174), 89.3 (d, 174), 90.9 (d, 173)	201.0, ^g 201.6	J 1.1 (4, 176)	1915, 1750
cis- 12a	CDC1 ₃	rt	10.10 J	5.21	0.15	9, 137, 142) 131.3 ^J (d, 112)	89.3 (d, 178)	199.2, 247.2	2.9 (q, 117)	1973, 1937,
trans-12a	CDCI ₃	rt	9.15 J	5.28, 5.36	0.23	k				1/82
cis- 12b trans- 12b	CDCI	ヒヒ	10.32 J 9.15 J	$5.12 \\ 4.98, 4.99$	7.05 - 7.84 7.05 - 7.84	115.4 ^{g, J} (d, 116) 117.5 ^J (d, 112)	90.0 (d, 178) ^g 90.9 (d, 178), 91.6 (d, 178)	197.8^{B} 200.0, 240.0, 244.2	-	$1984^{\rm B}$ 1942, 1788
13a	CDCI ₃	r	7.95 ^j (d, J _{PH} 13)	4.44, 4.87	0.33, 7.34–7.55	(Ph) 125.6 ³ (d, 120)	89.7 (d, 176), 89.9 (d, 182)	$201.6, 254.0$ (d, $J_{ m PH} = 11)$	ш	1917, 1747
13b ^g	CDC1 ₃	rt	8.15 ^{j, g} (d, J _{PH} 13) ^c	4.24, ^g 4.78, 4.45, 4.82	7.19-7.78	112.8 ^{gj} (dd, 117, J _{PC} 4) ^o	, 87.5 (d, 176), ^g 89.1 (d, 176), 89.9 (d, 178), 90.6 (d, 178)	200.7, ^g 202.7, 235.2, 250.6 (d, J _{PC} 11)	u	1917, ^g 1747
20a 20h	CeDe	tt	6.59 (d, 2.9), 6.90 (d, 2.9) 6.00 (d, 2.9), 6.54 (d, 2.9)	4.71, 4.89 4 30 4 39	-10.68 0.39 -10.12 n	101.0 (t, 142) 99 7 (t 142)	87.8 (d, 178), 88.6 (d, 178) 87.4 (d, 178), 88.6 (d, 177)	202.4, 205.5 205.5	-5.4 (q, 127)	1918 1915
20c	CeD,	: t	0.00 (u, 2.0), 0.04 (u, 2.0) C	4.05, 4.30	-10.22 6.46-7.39 (m, P	h) 102.1 (t, 145)	87.7 (d, 178), 88.9 (d, 179)	203.2, 205.3	ร่น	1925
21a 21b	CDCI CDCI	t t	5.59 5.68	5.07 5.13	0.24 s	98.7 (t, 139) 95.5 (t, 139)	86.8 (d, 178) 87.1 (d, 178)	204.4 205.2	–5.8 (q, 127) t	1899 1895
^a Chem sign of mu 142.1 (s), ^h $\delta_{\rm H}$ 7.24- signal. ^k N = 9, J _{CH} = 28.1, 30.5 CH ₃), 14.0	tical shift ultiplicit 145.0 (s) 145.0 (s) 7.65 (m Afinor co (t \times 2, .) (t, ¹ J _C -	ts are s y are s). ${}^{e} \delta_{C}$; Ph ar mpone $\delta_{C}(Ph)$ J = 12 H = 12	reported in ppm downfiel inglets. IR spectra were inglets. IR spectra were 127.1 (d. 155), 127.9 (d. 1 ad one of the CH ₂ signals, mt ¹ $\delta_{C}(Ph)$ 127.5, 128.9, nt ¹ $\delta_{C}(Ph)$ 128.1 (242)2). ^r $\delta_{C}(Ph)$ 128.1 2, (CH ₂)2). ^r $\delta_{C}(Ph)$ 128.1 25 Hz, ¹ J _{C-Sn} = 165 Hz,	ld from TMS. recorded in (60), 133.8 (d) $(1)^{-1} \delta_C$ 127.6 (d) 136.8, 139.1 136.8, 139.1 136.8, 139.1 128 (d), 159, 128 SnCH ₂), 27.6	. Multiplicity and coupli CH ₂ Cl ₂ . ^b $\delta_{\rm C}$ (Ph) 127.2 (L157), 146.9 (s). ^f $\delta_{\rm C}$ 127 1, 157, 146.9 (s). ^f $\delta_{\rm C}$ 127 1, 127.8 (d, 161, para), 129 ; 127.2, 128.7, 136.5, 138 not be located. ^p $\delta_{\rm H}$ 0.90 (8.4 (d, 159), 137.2 (d, 154 3, 30.2 (t × 2, 124, (CH ₂)	ng constants (in Hz; , d, 155), 127.9 (d, 160 1 (d, 156), 128.1 (d, 49, 129.54 (dd, 3 (Jc .8. $^{m}\delta_{C}(PPh)$) 136.4 t, J = 6 Hz, CH ₃), 0.5), 144.1 (s). s 0.90 (t, e).	J_{HH} or J_{CH} unless otherwise : 1), 133.3 (d, 151), 147.7 (s). $^{\circ}$ (f) 158), 136.3 (d, 156), 141.7 (s)), 161, meta), 134.2, 134.3 (d) (d, J_{PC} = 41, ipso), 134.4 (dd) 77 (t, J = 8 Hz, SnCH ₂), 1.53- J = 6, CH ₃), 0.97 (t, J = 8, S	stated) are shown in Dverlapped with the 1.142.3 (s). 143.5 (s). 4.10 (J _{CP}), 157), 135. (s). $J_{PC} = 9, J_{CH} = 161$. $J_{PC} = 9, J_{CH} = 161$. -1.71 ((CH ₂) ₂). $^{4} \delta_{C} = 1$. Tr (CH ₂), 1.53-1.71 [S]	parentheses. The signals Ph signal. ^d δ_C 126–137 (7 Ph signal. ^d δ_C 126–137 (8 A mixture of cis- and tras. 6, 136.3 (d, 32 (J _{CP}), ipso). 129.6 (d, 12H, 12H, 1(L, 14.0 (q, 123, CH ₂ CH ₂ CH ₃), 14.1 (L, 1hn(CH ₂ CH ₂ CH ₂ CH ₃)]. ^t δ_C 1	without the without the (1), 140.6 (s), uns-isomers. J_{μ} -CHSiR ₃ 7.7 (dd, J _{CP} 26, SnCH ₂), 13.7 (q, 124,

Table 1. NMR and IR Data for Silylated and Stannylated μ -Methylene Complexes^a

Conversion of Cp₂Ru₂(µ-CH₂)(µ-CO)(CO)₂ into CH₄

Organometallics, Vol. 15, No. 20, 1996 4165

Figure 1. Variable-temperature ¹H-NMR spectra of **5a** (μ -CH₂ and Cp regions) observed in CD₂Cl₂ at 90 MHz.

Upon warming of the sample, a ¹H-NMR spectrum consistent with an apparent C_s -symmetrical structure was obtained. The Cp resonances (1H-NMR) broadened and coalesced above 0 °C without any notable change of the AB quartet pattern of the μ -CH₂ signals. (The ¹³C-NMR Cp signals of **5** appeared as two sharp signals at room temperature.) As for the mechanism, an intermolecular one can be excluded, since external DSiMe₃ is not incorporated into 5a on the time scale of the VT measurement and **5a** is stable under reduced pressure. Therefore the fluxional behavior of 5 should be explained in terms of an intramolecular mechanism involving concerted migration of the hydride and SiR₃ groups between the two Ru centers. Plausible mechanisms for the metal-promoted dyotopic rearrangement of the cis- and trans-isomers¹⁶ are shown in Scheme 6, where the only difference is the change of the configuration at the Ru centers. In the case of the *cis*-isomer,

Akita et al.

(i) the two mobile groups migrate on the side closer to the μ -CH₂ ligand and (ii) the configuration at Ru (with respect to the Cp, CO, CH₂, and Ru moieties) and the overall geometry of the $Cp_2Ru_2(\mu-CH_2)(CO)_2$ part are retained throughout the process. On the other hand, the Ru atoms in the trans-isomer are attacked by the mobile groups from the back-side of the leaving groups and inversion of the Ru centers should result. In both mechanisms the inequivalent two methylene protons appear as an AB quartet, when the migration occurs at a rate faster than the NMR line-broadening time scale. A third mechanism involves conversion to an η^2 -H–Si coordinated structure (like 7 in Scheme 5), where intramolecular exchange with CO attached to the adjacent Ru atom and subsequent Si-H oxidative addition regenerates 5'. Because the first mechanism can accomplish the migration via least motion of the Ru auxiliaries, it may be preferable to the others. Therefore the configuration of 5 is tentatively assigned to the cis-structure.¹⁶ Similar rapid intramolecular migration of a silyl group on a dinuclear system was reported for the diruthenium μ -methylene complex (η^5 - C_5Me_5) $Ru_2(\mu$ -CH₂)(μ -Cl)(SiMe₃) by Girolami et al.¹⁷

The C_2 -symmetrical structure of the disilyl complex **6** (*trans*-configuration) has been readily characterized on the basis of the equivalent Cp, CH₂, CO, and SiR₃ signals and the absence of a μ -CO ligand. Furthermore the structure of the SiMe₂Ph (**6d**) and SiPh₃ derivatives (**6e**·hexane) has been determined by X-ray crystallography. An overview of **6d** and top and side views of its core part are shown in Figure 2, and ORTEP views of **6e** are included in the Supporting Information, because the core structure is quite similar to that of **6d** as compared in Table 2. The Ru–Ru distances are longer than that of **1**^{5f} by ca. 0.1 Å probably owing to the disappearance of the bridging carbonyl ligand, although significant difference is not observed for other parameters such as the Ru–CH₂ and Ru–CO lengths.

The intramolecular migration of the SiR₃ groups as observed for **5** (Scheme 6) does not operate for the disilyl complex **6**, because the diastereotopic Me₂ groups in **6d** are inequivalent even at 110 °C in toluene- d_8 .

(ii) Intra- and Intermolecular Exchange Processes of the Hydrido–Silyl– μ -Methylene Complexes 5. In addition to the intramolecular migration process mentioned above (Scheme 6), complexes 5 show quite complicated exchange behavior as summarized in

⁽¹⁶⁾ cis and trans refer to the configuration of the two Cp (or CO) ligands with respect to the dimetallacyclopropane core $[(\mu - \tilde{C}H_2)Ru_2]$ When it is assumed that H and SiR₃ groups project to the same side as does the μ -CH₂ ligand (as observed for **6**), two isomers are possible for each of the two configurations and Scheme 6 shows only one structure for each. When configuration at the Ru atoms in the partial structure $Cp_2Ru_2(\mu-CH_2)(CO)_2$ [5 - (H + SiR₃)] is considered, the configuration is retained in the case of the cis-structure [R(Ru1)- $S(\text{Ru2}) \leftrightarrow R(\text{Ru1}) - S(\text{Ru2})$ but it is inverted in the case of the *trans*structure $[R(Ru1) - R(Ru2) \leftrightarrow S(Ru1) - S(Ru2)]$. It is difficult to assign the structure by the spectral data alone, although one of reviewers suggests a *trans*-structure on the basis of the similar $\delta_{\rm H}$ values of H_a and H_b (cf. 1). In addition, several mechanisms such as the third mechanism and cis-trans isomerization are possible for the present fluxional behavior. A reviewer suggests the third mechanism because of the lack of the fluxional behavior of the disilyl complex 6, for which the η^2 -structure like **7** is not possible. But, in this case, too, a definite conclusion cannot be obtained on the basis of the results obtained so far.

⁽¹⁷⁾ Lin, W.; Wilson, S. R.; Girolami, G. S. Organometallics 1994, 13, 2309.

			-	-
	6d	6e · hexane	21a	cis-1 ^b
		Bond Lengths		
Ru1–Ru2	2.8054(6)	2.8298(9)	2.796(2)	2.707(1)
Ru1-Si1(Sn1)	2.417(2)	2.429(2)	2.649(1)	
Ru1–C1	2.074(6)	2.053(8)	2.06(1)	2.077(6)
Ru1-C11-15	2.211-2.232(7)	2.230-2.292(7)	2.22 - 2.27(2)	2.219-2.276(9)
Ru1-C16	1.831(6)	1.826(8)	1.62(2)	1.852(6)
Ru2-Si2(Sn2)	2.422(2)	2.429(2)	2.649(2)	
Ru2-C1	2.076(6)	2.047(8)	2.09(1)	2.079(5)
Ru2-C21-25	2.231-2.308(8)	2.225 - 2.324(8)	2.22-2.30(2)	2.231-2.290(8)
Ru2-C26	1.843(7)	1.822(8)	1.87(2)	1.844(7)
C1–H1A	1.09(5)	0.85(5)		
C1–H1B	0.96(5)	0.93(5)		
		Bond Angles		
Ru1-C1-Ru2	85.1(2)	87.3(3)	83.8(4)	81.3(2)
Ru2-Ru1-Si1(Sn1)	109.51(4)	108.75(5)	118.27(5)	
Ru2-Ru1-C1	47.5(2)	46.3(2)	48.2(3)	49.3(2)
Ru2-Ru1-C16	79.5(2)	82.7(2)	88.0(6)	98.7(2)
Si1(Sn1)-Ru1-C1	78.2(2)	75.5(2)	74.2(3)	
Si1(Sn1)-Ru1-C16	81.0(2)	82.6(2)	80.4(6)	
C1-Ru1-C16	109.0(3)	109.4(3)	99.1(7)	89.1(3)
Ru1-Ru2-Si2(Sn2)	108.91(5)	109.29(5)	117.28(5)	
Ru1-Ru2-C1	47.4(2)	46.4(2)	48.0(3)	49.4(2)
Ru1-Ru2-C26	80.8(2)	80.0(2)	90.2(5)	96.5(2)
Si2(Sn2)-Ru2-C1	77.0(2)	74.9(2)	73.2(3)	
Si2(Sn2)-Ru2-C26	81.4(2)	83.6(3)	76.7(5)	
C1-Ru2-C26	120.9(3)	106.3(3)	98.2(6)	85.0(2)

Table 2. Selected Structural Parameters for the μ -Methylene Complexes 6d,e and 21a^a

^{*a*} Bond lengths in Å and bond angles in deg. ^{*b*} Reference 5f.

Figure 2. Molecular structure of **6d** drawn at the 30% probability level: (a) an overview; (b) a top view; (c) a side view.

Scheme 7. Process a is an intramolecular H exchange between the hydride and CH_2 atoms, and by way of processes b and c both of the H and SiR₃ groups of external hydrosilane are incorporated into **5**.

Scheme 7

Treatment of **4** with DSiMe₃ resulted in complete H–D scrambling of the hydride and μ -methylene parts (eq 3). The result may be explained by either of the

mechanisms involving equilibrium with a coordinatively unsaturated methyl intermediate **9** or **10** via reversible reductive elimination—oxidative addition of a C–H(D) bond (Scheme 8).¹⁸ Path a is initiated by formation of the deuteride complex **5**- d_1 followed by H–D scrambling via the methyl intermediate **9**- d_1 . In the second mechanism (path b) H–D exchange takes place at the stage of the initial adduct **8**- d_1 by way of another methyl intermediate **10**- d_1 . Differentiation of these two mechanisms was attempted by a low-temperature NMR experiment. When a CD₂Cl₂ solution of **4** and DSiMe₂Ph was warmed from –60 °C, gradual formation of **5d**-dwas observed above –30 °C as shown in Figure 3. In

⁽¹⁸⁾ Another possible mechanism for conversion of $\mathbf{8}$ into $\mathbf{5}$ involves R_3Si -group migration instead of the H migration shown in Scheme 8.

Figure 4 distribution of H atoms in the μ -CH₂ and hydride parts is plotted against the measurement temperature, and it is found that the μ -CH₂ + CHD/ hydride intensity ratio of 5d-d is constant (ca. 1.5) throughout the temperature range. Although we expected detection of the deuteride complex $5c-d_1(a)$ (see the structure shown in Figure 3) with the ratio of 2/0, a mixture of all the possible three isomers $5c - d_1(a - c)$ was present even at a very early stage of the reaction. This result indicates that the H-D exchange follows the second mechanism (path b) or the H-D exchange in path a $(\mathbf{5} \cdot d_1 \rightarrow \mathbf{9} \cdot d_1 \rightarrow \mathbf{5'} \cdot d_1)$ is much faster than the preceding intramolecular hydride transfer (8- $d_1 \rightarrow 5c$ d_1). On the basis of the reaction with HSnPh₃ (see below) supporting the viability of 9, path a is preferable to path b, though the mechanisms cannot be differentiated by the data obtained so far. Bergman et al. reported a similar intramolecular hydrogen shift on early-late heterobimetallic (ELHB) hydrido-µ-methylene complexes, $Cp_2Ta(\mu-CH_2)_2Ir(\eta^5-C_5Me_5)(H)(Ta-Ir)$ and $Cp_2Ta(\mu-CH_2)_2M(H)_2(CO)(L)(Ta-M)$ (M = Rh, Ir; L = CO,PPh₃).¹⁹ In the case of the former complex, isomerization needs heating at 105 °C probably because of the robust Ir-H bond.

In addition to the above-mentioned intramolecular process, intermolecular exchange processes are observed for **5**. Treatment of **5a** with 5 equiv of DSiMe₃ for 5 h at rt produced the deuterated product **5a**- d_3 along with **6a**- d_2 and HSiMe₃ (eq 4). Furthermore addition of an

equimolar amount of HSiEt₃ to 5a afforded 5b (rt, 1 h;

Figure 3. ¹H-NMR spectra (μ -CH₂ and hydride regions) of a low-temperature reaction between **4** and DSiMe₂Ph in CD₂Cl₂ observed at 400 MHz.

Figure 4. Distribution of H atoms during the reaction between **4** and $DSiMe_2Ph$ in CD_2Cl_2 .

60% conversion, 80% selectivity; eq 5) along with a small amount of **6b**. Thus not only the hydride and CH_2 atoms but also the SiR₃ group in **5** exchange with external hydrosilane.

(iii) Intermolecular Exchange Processes of the Disilyl Complexes 6. Treatment of 6b with 6 equiv of DSiMe₃ for 1 h at ambient temperature produced 6a- d_2 (eq 6). Furthermore heating a sealed benzene- d_6 solution of a mixture of 6a and HSiPh₃ (3 eq) for 2 h at 60 °C resulted in quantitative formation of 6e accompanied by elimination of HSiMe₃ (eq 7), though no apparent reaction was observed at room temperature. When the resulting sealed tube was left for 24 h at ambient temperature, the SiMe₃ complex 6a was recovered quantitatively. Thus the CH₂ and SiR₃ moieties in 6 also exchange with external HSiR'₃, and judging from eq 7, 6 bearing a less bulky R group is more stable than that with a bulky group.

^{(19) (}a) Hostetler, M. J.; Butts, M. D.; Bergman, R. G. *J. Am. Chem. Soc.* **1993**, *115*, 2743. (b) Butts, M. D.; Bergman, R. G. *Organometallics* **1994**, *13*, 2668.

Mechanism of Intermolecular Exchange Processes of the Silyl- μ -Methylene Complexes 5 and 6. In order to find a clue to the mechanism of the incorporation of hydrosilane into the diruthenium μ methylene complexes 5 and 6 (Scheme 4), participation of coordinatively unsaturated intermediates was examined at first by treatment of the two silylated μ -methylene complexes 5 and 6 with trapping agents (L: 2edonor).

Addition of CO or PPh₃ (L) to the hydrido-silyl species **5a** resulted in spontaneous, quantitative formation of adducts $Cp_2Ru_2(\mu$ -CH₂)(μ -CO)(CO)L) [**1** (L = CO), **11** (L = PPh₃)] accompanied by elimination of HSiMe₃ (eq 8). This result can be interpreted by taking into

account the equilibrium between **5** and **7** (Scheme 9; see also Schemes 5 and 8). Replacement of the weakly coordinating η^2 -H-SiR₃ ligand in **7** would give **1** and **11**. The intermolecular exchange reaction of the H and R₃Si groups in **5** (eqs. 4 and 5) can also be accounted for in terms of the η^2 -H-SiR₃ intermediate **7**. Exchange with external HSiR'₃ would result in the formation of the scrambled products. Therefore both of the H- and R'₃Si parts should be incorporated into **5** by way of a single reaction (paths b and c in Scheme 7).

The disilyl complexes **6a,e** did not react with CO and PPh₃ at ambient temperature. However, heating their benzene solution at 80 °C resulted in quantitative formation of isomeric mixtures of μ -silylmethylene complexes, *cis*- and *trans*-Cp₂Ru₂(μ -CHSiR₃)(μ -CO)(CO)-(L) [**12** (L = CO), **13** (L = PPh₃)], also accompanied by elimination of hydrosilane (1 equiv) as observed by ¹H-NMR (eq 9). Though several isomers are possible for **12** (2 *cis* + 1 *trans*) and **13** (2 *cis* + 2 *trans*), a lesser number of isomers are detected by NMR (**12a**, 1 *cis* + 1 *trans*; **12b**, 2 isomers; **13a**, 1 isomer; **13b**, 2 isomers). The SiMe₃ derivatives **12a** and **13a** have been structurally characterized by X-ray crystallography (Figures 5 and 6 and Table 3), and the structure is in accord with the change in the coupling pattern of the bridging

carbon signal [triplet (μ -CH₂ in **6**) \rightarrow doublet (μ -CHSiR₃ in **12** and **13**)] and appearance of a $\nu(\mu$ -CO) vibration. The most striking structural feature of **12** and **13** is that the SiR₃ group initially bonded to the Ru center is transferred to the bridging methylene carbon atom. In addition, one of the two silyl groups is eliminated from the organometallic products as is consistent with the results of GLC and NMR analyses. The core parts of **12a** and **13a** resemble that of *cis*-**1** as compared in Table 3.

A plausible formation mechanism of 12 and 13 prompted by this structural change is delineated in Scheme 9 involving activation of C-H, Si-H, and Si-C bonds. Thermolysis of 6 may induce reductive elimination of the methylene carbon atom and one of the two silyl groups to give a coordinatively unsaturated silylmethyl species **14**. Subsequent oxidative addition of a $C(\alpha)$ – H bond in the resultant CH_2SiR_3 group gives rise to the μ -silylmethylene intermediate **15**, which is finally converted to **12** and **13** via replacement of the η^2 coordinated silane ligand (16) by a trapping agent (L). This mechanism has been confirmed by observation of the reverse process. When the η^2 -intermediate **16** (R = Me) is generated by treatment of the MeCNstabilized, labile μ -silylmethylene species **17** with HSiMe₃ (eq 10), the instantaneous reaction results in quantita-

tive formation of **6a**, which follows Si–H oxidative addition, C–H reductive elimination, and finally Si– C(sp³) oxidative addition (Scheme 9). Recombination of the CH₂ and silyl groups closely related to the present system was also reported by Girolami et al. for the diruthenium silyl– μ -methylene complex (η^{5} -C₅Me₅)Ru₂-(μ -CH₂)(μ -Cl)(SiMe₃)¹⁷ mentioned above. For example, protonation with CF₃COOH at 25 °C afforded Cp*₂-Ru₂(μ -CHSiMe₃)(μ -Cl)(μ -CF₃COO) with a Si–C bond accompanied by evolution of H₂. Although Scheme 9 suggests that thermolysis of **6** in the absence of a trapping agent may afford the hydrido–silyl– μ -silyl-methylene species Cp₂Ru₂(μ -CHSiR₃)(H)(SiR₃)(CO)₂, a complicated reaction mixture is merely obtained.

A similar reaction sequence can be depicted for the η^2 -H₂ intermediate **18** as also shown in Scheme 9. The reaction pathway may lead to the formation of the hydrido-silyl- μ -methylene species **5** via reductive elimination of the H and μ -CHSiR₃ moieties followed by oxidative addition of the CH₂-SiR₃ bond (**19**). In contrast to the reaction of **17** with hydrosilanes, the

(eqs. 6 & 7)

reaction with H₂ afforded a mixture containing a small amount of **5a** (eq 10). This is probably due to the higher reactivity of the resulting **5** toward H₂ compared to that of the starting compound **17** (see below). Anyway it has proved that the reactions of **17** with hydrogen and hydrosilane are quite similar to each other. Furthermore, if the η^2 -H₂ ligand in **18** is replaced by H–SiR₃ (**18** \rightarrow **16**), the reaction sequence summarized in Scheme 9 can account for the mechanism of the conversion of **5** into **6** (Scheme 4). Thus the two silylated μ -methylene complexes **5** and **6** are linked with each other by a combination of oxidative addition–reductive elimination processes of Si–H, Si–C, and C–H bonds. The conversion should be driven forward by diffusion of H₂ into the gas phase.

The mechanism can also explain the intermolecular exchange of the μ -C H_2 and SiR₃ groups in **6** (eqs 6 and

7), which would be caused by substitution of the η^2 -coordinated silane in **16** by external silane (HSiR'₃).

It has proved that the hydrido-silyl- μ -methylene intermediate **5** is in equilibrium with the isomeric form (**5**"), the coordinatively unsaturated methyl (**9**) and silylmethyl intermediates (**19**), and the η^2 -H-SiR₃ species (**7**) by way of intramolecular H and R₃Si migration and reversible oxidative addition-reductive elimination processes of C-H, Si-H, and Si-C(sp³) bonds (Scheme 10). Although Si-C(sp²) bond cleavage is often observed as typically exemplified by redistribution of arylhydrosilanes in the presence of a transition metal species,²⁰ examples of Si-C(sp³) bond cleavage processes are still quite rare. They may be classified into (i) intermolecu-

⁽²⁰⁾ See, for example: Bell, L. G.; Gustavson, W. A.; Thanedar, S.; Curtis, M. D. *Organometallics* **1983**, *2*, 740.

12a		13a		cis-1 ^b	
		Bond Lengths			
Ru1–Ru1*	2.698(1)	Ru1–Ru2	2.7349(8)	2.707(1)	
Ru1–C1	2.092(5)	Ru1–C1	2.122(6)	2.077(6)	
		Ru2–C1	2.109(6)	2.079(5)	
Ru1-C17	1.838(5)	Ru1-C16	1.829(7)	1.852(6)	
Ru1-C16	2.046(6)	Ru1-C26	2.073(6)	2.019(4)	
		Ru2-C26	1.984(7)	2.035(6)	
C1-Si1	1.841(7)	C1-Si1	1.857(7)		
Si1-C31	1.863(9)	Si1-C31	1.867(8)		
Si1-C32	1.866(7)	Si1-C32	1.881(8)		
		Si1-C33	1.870(8)		
Ru1-C(11-15)	2.207-2.298(6)	Ru1-C(11-15)	2.239-2.325(7)	2.219-2.276(9)	
		Ru2 - C(21 - 25)	2.219 - 2.291(7)	2.231 - 2.290(8)	
C16-O16	1.154(8)	C26-O26	1.171(7)	1.156(8)	
C17-O17	1.140(6)	C16-O16	1.158(8)	1.179(6)	
		Ru2–P1	2.294(2)		
C1-H1	0.91(6)	C1-H1	0.90(6)	1.02, 0.84(7)	
		Pond Angles		, , , , ,	
D.1 C1 D.1*	80.2(2)	Bond Angles	80 5 (9)	91 9(9)	
$Rui = Ci = Rui^{+}$	80.3(2) 100.0(0)	Ru1 = C1 = Ru2	80.3(2)	81.3(2)	
Ru1-C1-S11	128.8(2)	Rui = Ci = Sii	119.4(3)		
D-1* D-1 C1	40.0(1)	Ru2 = CI = SII	128.3(3)	40.0(0)	
$RuI^* - RuI - CI$	49.8(1)	Ruz-RuI-CI	49.5(2)	49.3(2)	
$RuI^{*}-RuI-CI6$	48.7(1)	Ruz-RuI-C26	46.2(2)	48.4(2)	
Rul*-Rul-Cl7	101.3(2)	Ruz-Ru1-C16	86.3(2)		
		Ru1-Ru2-CI	49.9(2)	49.4(2)	
		Ru1-Ru2-C26	49.0(2)		

Table 3. Selected Structural Parameters for the μ -Methylene Complexes 12a and 13a^a

^a Bond lengths in Å and bond angles in deg. ^b Reference 5f.

Figure 5. Molecular structure of **12a** drawn at the 30% probability level.

lar reaction of simple silanes and strained cyclosilanes and (ii) intramolecular version on alkylsilyl and silylalkyl complexes $M-(CH_2)_n-SiR_3$ (n = 0-2) giving an alkyl-silene species (n = 0), an alkylidene-silyl species (n = 1), or a silyl-ethylene species (n = 2).²¹ The present system ($5 \rightarrow 19$ and $14 \rightarrow 6$ in Scheme 9) falls in the second category.

Reaction of $Cp_2Ru_2(\mu$ - $CH_2)(\mu$ -CO)(CO)(MeCN) (4) with Hydrostannanes Leading to Stannylated μ -Methylene Species $Cp_2Ru_2(\mu$ - $CH_2)(X)(SnR_3)(CO)$ [20 (X = H) and 21 (X = SnR_3). Reactivity of the MeCN complex 4 toward hydrostannanes (HSnR₃) has been studied as a comparative system of the HSiR₃

Figure 6. Molecular structure of **13a** drawn at the 30% probability level.

reduction discussed above. As a result, it is found that $HSnR_3$ shows reactivities quite similar to that of hydrosilanes (Scheme 11). Quantitative formation of the hydrido-stannyl- μ -methylene intermediate **20** is followed by gradual conversion to the distannyl- μ -methylene complex **21** with the exception of the case of $HSnPh_3$ (see below). The structure of the (SnMe_3)₂ derivative (**21a**) with virtual C_2 symmetry determined by X-ray crystallography (Figure 7 and Table 2) is similar to that of the Si analogues **6b**,e.

The spectroscopic features of the stannyl complexes **20** and **21** (Table 1) are essentially the same as those of the silyl complexes **5** and **6**, respectively, except for the absence of fluxional property via intramolecular H and R_3Sn group exchange (interconversion between **20** and **20**'; cf. Scheme 4), which may come from the robust Ru–Sn bond compared to the Ru–Si bond. In accord with this observation, reaction rates of exchange of H

⁽²¹⁾ See, for example: (a) Yamashita, H.; Tanaka, M.; Honda, K. J. Am. Chem. Soc. **1995**, *117*, **8873**. A few examples of catalytic redistribution of functionalized alkylsilanes (e.g. halosilanes) are also known. (b) Curtis, M. D.; Epstein, P. S. Adv. Organomet. Chem. **1981**, *19*, 213. For intramolecular reactions, see ref 17. A reaction system closely related to ours was reported in this paper. See also references cited in these papers.

and SnR₃ groups in 20 with external HSnR₃ (Scheme 12) and formation of the distancyl complexes ($20 \rightarrow 21$; Scheme 11) were slower than those of the corresponding Si systems, and treatment of 20a with CO and PPh₃ did not result in elimination of HSnMe₃ (cf. eq 8).²² However, exchange between the hydride and CH_2 atoms in **20** proceeded as fast as that of the Si system (reaction a in Scheme 7), since ¹H-NMR spectra of a lowtemperature reaction mixture of $4-d_2$ and HSnMe₃ revealed formation of almost equal amounts of all the three possible isotopomers **20a**- $d_2(a-c)$ even at an early stage of the reaction (Figure 8²³ and Scheme 12). Further standing at ambient temperature caused exchange with external HSnMe₃ in a manner similar to the Si system (eq 8) as indicated by the appearance of a pair of doublets (¹H-NMR) assignable to $4 - d_1(f)$ or $4 - d_0$.

Figure 7. Molecular structure of **21a** drawn at the 30% probability level.

Scheme 12

° °

Reaction of **4** with triphenylhydrostannane (HSnPh₃) produced 20c at first (Scheme 11), but upon standing at rt, it was not converted to **21c** but to a mixture containing the bridging phenyl complex **22**, the bridging stannylene complex 23,24 and the mononuclear stannyl complex CpRu(CO)₂SnPh₃ (24).²⁵ The structure of the μ -phenyl complex **22** has been confirmed by X-ray crystallography (Figure 9 and Table 4). Characteristic structural features are (i) the μ - η^1 : η^2 coordination of the bridging phenyl group arising from cleavage of one of the Sn–Ph bonds and (ii) transformation of the μ -CH₂ ligand into the SnCH₃ functional group. A cyclohexatrienyl-like structure (C31-C36) is suggested by the localized double-bond character as indicated by bond lengths summarized in Chart 1, though bond alteration is not so clear. The trend in the changes in the C-Cbond lengths of the phenyl groups is similar to the previously reported heterotrinuclear μ - η^1 : η^2 -phenyl cluster compound (Chart 1).²⁶ μ - η ¹: η ²-Aryl complexes, in particular, C₆H₅ complexes, are a rather rare class of compounds, though more examples are reported for μ - η^1 : n^{1} -derivatives^{26,27} and μ - η^{1} : η^{2} -heteroaryl complexes (e.g.

Akita et al.

⁽²²⁾ Thermolysis of **21a** in the presence of a 2e-donor did not afford the μ -stannylmethylene complex analogous to **12** (**13**) but a μ -stannylene complex Cp₂Ru₂(μ -CH₂)(μ -SnMe₂)(CO)₂ with quantitative elimination of SnMe₄: Hua, R.; Akita, M.; Moro-oka, Y. Unpublished result.

tion of SnMe₄: Hua, R.; Akita, M.; Moro-oka, Y. Unpublished result. (23) From the spectra shown in Figure 8 it is impossible to discriminate the isomers **20a**- $d_2(b,c)$ from **20a**- $d_1(d,e)$, respectively, as indicated by a reviewer. However, because the intensity ratios of the μ -CH₂ and Ru–H signals at lower temperatures (~1:1) are in accord with **20a**- $d_2(b,c)$ and the appearance of a pair of doublets (H_{e,f}) after 8 h at rt suggests the formation of **20a**- d_1 , the low-temperature products have been assigned to **20a**- $d_2(b,c)$ and the H_{a,b,c,d} signals come come from the structures shown in Figure 8.

⁽²⁴⁾ The structure of **23** was confirmed by X-ray crystallography, though it could not be refined owing to the poor quality of the crystal. (25) Ellis, J. E.; Faltynek, R. A.; Hentges, S. G. *J. Organomet. Chem.* **1975**, *120*, 389.

^{(26) (}a) Farrugia, L. J.; Miles, A. D.; Stone, F. G. A. *J. Chem. Soc., Dalton Trans.* **1984**, 2415. (b) Dickson, R. S.; Jenkins, S. M.; Skelton, B. W.; White, A. H. *Polyhedron* **1988**, *7*, 859.

⁽²⁷⁾ Cluster compounds containing a μ - η ¹: η ²-phenyl ring which is linked to another metal center at the m- or p-positions are known. See, for example: Chi, Y.; Shu, H.-Y.; Peng, S.-M.; Lee, G.-H. *J. Chem. Soc., Chem. Commun.* **1991**, 1023.

Figure 8. ¹H-NMR spectra (μ -CH₂ and hydride regions) of a low-temperature reaction between $4 - d_2$ and HSnMe₃ in CD₂Cl₂ observed at 400 MHz. (Peaks with asterisks are due to impurities.)

Figure 9. Molecular structure of 22 drawn at the 30% probability level.

furyl and thienyl complexes).²⁸ Partial loss of aromaticity is also demonstrated by NMR data assigned with the aid of H-H COSY and C-H HETCOR spectra. The C32–H32 signals are observed in considerably higher field [$\delta_{\rm H}$ 5.08 (d, J = 6.1 Hz); $\delta_{\rm C}$ 77.7 (d, J = 150 Hz)], whereas the C31 signal ($\delta_{\rm C}$ 162.8) is shifted to lower field. These NMR features are similar to those of μ - η^1 : Organometallics, Vol. 15, No. 20, 1996 4173

Table 4. Selected Structural Parameters for	or 22ª
---	--------

Table 4. Selected Structural Paralleters for 22"								
Bond Lengths								
Sn-Ru2	2.636(2)	Ru2-C26	1.81(2)					
Sn-C1	2.14(2)	O16-C16	1.15(2)					
Sn-C41	2.18(2)	O26-C26	1.17(2)					
Sn-C51	2.14(1)	С-С (С11-15)	1.35 - 1.42(3)					
Ru1-C11-15	2.13 - 2.25(2)	C-C (C21-25)	1.35 - 1.41(2)					
Ru1-C16	1.85(2)	C-C (C41-46)	1.32 - 1.41(2)					
Ru2-C21-25	2.23-2.26(2)	С-С (С51-56)	1.36 - 1.42(2)					
	Bond	Angles						
Ru2-Sn-C1	114.8(5)	Ru1-C31-Ru2	79.9(4)					
Ru2-Sn-C41	115.9(3)	Ru1-C31-C32	74.1(8)					
Ru2-Sn-C51	110.3(4)	Ru1-C31-C36	119(1)					
C1-Sn-C41	105.7(6)	Ru2-C31-C32	124(1)					
C1-Sn-C51	102.7(6)	Ru2-C31-C36	121(1)					
C41-Sn-C51	106.3(5)	C32-C31-C36	115(1)					
Ru2-Ru1-C16	95.8(5)	Ru1-C32-C31	69.6(7)					
Ru2-Ru1-C31	47.5(3)	Ru1-C32-C33	119.2(9)					
Ru2-Ru1-C32	74.6(3)	C31-C32-C33	121(1)					
Sn-Ru2-Ru1	125.36(5)	C32-C33-C34	119(2)					
Sn-Ru2-C26	84.0(4)	C33-C34-C35	121(2)					
Sn-Ru2-C31	76.9(4)	C34-C35-C36	121(2)					
Ru1-Ru2-C26	82.9(4)	C31-C36-C35	122(2)					
Ru1-Ru2-C31	52.5(4)	C-C-C(C41-46)	117-125(2)					
Ru1-C16-O16	172(2)	C-C-C(C51-56)	119-124(2)					
Ru2-C26-O26	171(1)							

^a Bond lengths in Å and bond angles in deg. See also Chart 1.

 η^2 -alkenyl complexes.²⁹ Because **22** is not fluxional at rt, the η^2 -coordination has proved to be rigid.

The formation of 22 should be initiated by C-H reductive elimination from **20c** leading to the unsaturated methyl intermediate 25 (Scheme 13). The Sn-Ph part is so nucleophilic that subsequent irreversible migration of a Ph group gives the μ -stannylene intermediate 26. Subsequent reductive elimination of the CH₃ and SnPh₂ parts followed by η^2 -coordination of the Ph group furnishes **22**. The isolation of **22** containing the CH₃ group supports the viability of the methyl species 9 assumed as an intermediate for the H-D exchange (Scheme 8). The formation mechanism of 23 has remained unknown, though elimination of methane $(\sim 30\%)$ and benzene $(\sim 120\%)$ was detected by GLC analysis of a reaction mixture.

Consideration of the Formation Mechanism of Methane from 1. (i) Reaction of the Silylated μ -Methylene Complexes 5 and 6 with Hydrogen.

^{(28) (}a) Himmelreich, D.; Müller, G. Chem. Ber. 1985, 297, 341. (b) Arce, A. J.; Manzur, J.; Marquez, M.; De Sanctis, Y. J. Organomet. Chem. 1991, 412, 177.

⁽²⁹⁾ See for example, ref 5a.

The hitherto described results reveal that the most stable species present in a reaction mixture of **4** and hydrosilane is the disilyl– μ -methylene complex **6**. It is notable that catalytic evolution of 2–3 equiv of H₂ was observed during the reaction.¹⁵ Therefore it is anticipated that methane formation (eq 1) may follow hydrogenolysis of **6**. As expected, treatment of **6** with H₂ produced methane along with a complicated organometallic mixture containing the trinuclear hydride complex, Cp₃Ru₃(μ -H)₃(μ -CO)₃³⁰ as a major component (eq 11). But remarkable difference in the reaction rates

6 -	H ₂ (1 atm) ►	CH₄ -	+ CH ₃ -CH ₃	+ CH ₃ -CH ₂ -CH ₃ -	+
	R= Me (6a) ^a	18 (96)	0	0	
	R= Et (6b)	53	46	0	
	R= n-Pr (6c)	102	0	38	
			Cp ₃ F	Ru ₃ (μ-H) ₃ (μ-CO) ₃ (31)	(11)
				trace (22)	
				85	
				45	

 a Yields in parentheses are for the reaction at 65°C for 7 h. Other reactions were carried out for 3 days at r. t.

was observed for the SiMe₃ (6a) and SiEt₃ derivatives (6b). The reaction of the SiEt₃ derivative (6b) proceeded even at room temperature, whereas the SiMe₃ derivative 6a produced methane when heated above 50 °C. Let us point out that ethane was formed from 6b. In order to confirm the source of ethane (coupling of μ -methylene ligands or decomposition of the SiEt₃ group), hydrogenolysis of the n-propyl derivative **6c** was carried out. The reaction of **6c** proceeded at room temperature in a manner similar to **6b** to give a mixture of methane and propane. Because no trace of ethane was detected in the reaction mixture, ethane and propane arose from decomposition of the SiR₃ part in **6b**,**c**, respectively, probably via oxidative addition of the Si-R bond. Then the carbon and hydrogen source of methane arising from H₂ treatment of **6a** was determined by labeling experiments. As a result, the ¹³C content of methane arising from a ¹³C-labeled sample Cp₂Ru₂(*u*-*CH₂)(SiMe₃)₂ (*CO)₂ ($6a^{-13}C$) (*C: ca. 25% ¹³C-enriched) was found to be close to that of the starting compound **6a**- ^{13}C (eq 12), and D₂

$$6a^{-13}C \xrightarrow{H_2} {}^{\bullet}CH_4 \qquad (12)$$

$$6a^{-}d_2 \xrightarrow{D_2} {}^{\bullet}CD_4 \qquad (13)$$

treatment of $Cp_2Ru_2(\mu-CD_2)(SiMe_3)_2(CO)_2$ (**6a**-*d*₂) afforded CD_4 (eq 13), though H–D exchange was evident. It was concluded that H₂ treatment of **6a** produced methane via hydrogenolysis of the μ -CH₂ moiety.

Hydrogenolysis of the hydrido-silyl- μ -methylene intermediate **5** proceeded much faster than the disilyl complex **6**. The reaction was completed within 12 h to produce methane along with a complicated mixture of organometallic products (eq 14).

5a
$$\xrightarrow{H_2}$$
 CH₄ (14)
r. t., <12 h (72 %)

(30) Forrow, N. J.; Knox, S. A. R.; Morris, M. J.; Orpen, A. G. J. Chem. Soc., Chem. Commun. **1983**, 234.

(ii) Methane Formation Mechanism from 1 and **HSiR**₃. On the basis of the reaction sequence summarized in Scheme 9 and the hydrogenolysis experiments discussed above, we propose a plausible formation mechanism of methane from the μ -methylene complex **1** as shown in Scheme 14. Decarbonylation followed by oxidative addition of HSiR₃ affords the hydrido-silyl- μ -methylene intermediate **5**, and further reaction with excess HSiR₃ leads, via η^2 -bonded intermediates **18** and **16**, to the formation of the disily $l-\mu$ methylene complex **6**, which is the major organometallic species present in a reaction mixture. But 6 may not be the direct precursor for production of methane. The hydrido-silyl species 5 is converted to the disilyl complex **6** with evolution of H_2 as discussed above. In the sealed tube reaction the evolved H₂ is still present in the gas phase. In addition, catalytic formation of 2-3equiv of H₂ was noted.¹⁵ Therefore the formation of **6** may be reverted by the action of H_2 under the reaction

conditions to regenerate **5**, which is in equilibrium with the coordinatively unsaturated methyl species **9**, as confirmed by the labeling experiments. Subsequent reductive elimination followed by oxidative addition of HSiR₃ may give the dinuclear hydrido-methyl intermediate **27**. Further reductive elimination of the H and CpRu(CO)(CH₃)(SiR₃) parts generates the mononuclear hydrido-methyl species **28**, final reductive elimination from which produces methane.

Reductive elimination at the last stage of the reaction releases 2 equiv of coordinatively unsaturated silyl species **29**, which will be trapped by either HSiR₃ or CO (released at the initial stage) to afford the mononuclear organometallic products **2** or **3**, respectively. Another route to methane involves hydrogenolysis of **9** releasing **28** and a mononuclear hydride species **30**. Trimerization of **30** produces the trinuclear hydride complex $Cp_3Ru_3(\mu-H)_3(\mu-CO)_3$ (**31**).^{5e} Further reaction of the hydride cluster **31** with HSiR₃ affords the mononuclear hydride complex **3** as confirmed by a separate experiment. Similar reaction sequence starting from the disilyl complex **6** would afford the methylsilane (**6** \rightarrow **14** \rightarrow **32** \rightarrow **33** \rightarrow CH₃SiR₃).

Concluding Remarks. Reduction of the diruthenium μ -methylene complex **1** with HSiR₃ produces methane via silylated μ -methylene species **5** and **6**. The μ -methylene complex **1** itself can be obtained by deoxygenative reduction of the ruthenium carbonyl complex $Cp_2Ru_2(\mu-CO)_2(CO)_2$ with H_2SiR_2 (path b in Scheme 2) as we reported previously.^{6f} Thus combination of these two reaction systems leads to successful modeling of the thorough reaction sequence of methanation via Fischer-Tropsch mechanism (Scheme 15). The features of the present system are as follows: (i) Every transformation takes place on the dinuclear system. (ii) A CO ligand in $Cp_2Ru_2(CO)_4$ is converted into the μ -CH₂ species (1) by the action of the pseudo-hydrogen, i.e. HSiR₃ (deoxygenative reduction). (iii) The resultant μ -methylene species (1) is further reduced by HSiR₃ to produce CH₄ via the hydrido– μ -methylene species 5 and hydrido– methyl intermediates such as **27** and **28**. (iv) CH_2-H coupling on 5 leads to equilibrium with the methyl intermediate 9. (v) The carbon and hydrogen atoms in methane come from CO attached to Ru and HSiR₃ employed as a H_2 equivalent, respectively. These aspects have been realized by the reaction features of hydrosilane as a pseudo-hydrogen as mentioned in the Introduction.

Detailed analysis of dynamic behavior and H–D exchange processes of the silylated μ -methylene species **5** and **6** reveal that Si–H, C–H, and Si–C bonds are cleaved quite readily on a dinuclear reaction field. This means that, if a bond is disposed with appropriate orientation toward a reactive metal center, it may be cleaved efficiently via oxidative addition. In the present case, the orientation of the ligand to be cleaved is regulated through the σ -bond to one metal center and bond activation occurs on the other unsaturated metal center (e.g. **9**, **14**, **19**). This type of bond activation belongs to "bimetallic activation", a concept proposed by Suzuki.³¹

Finally, further systematic study on the reactivity peculiar to a dinuclear system, typically displayed by the present study, would lead to exploitation of new methods for functionalization of organosilanes.³²

Experimental Section

General Methods. All manipulations were carried out under an inert atmosphere by using standard Schlenk tube techniques. Ether, hexanes, and toluene (Na-K alloy) and CH₂Cl₂ and CH₃CN (P₂O₅) were treated with appropriate drying agents, distilled, and stored under argon. Dinuclear μ -methylene complexes $\mathbf{1}^{33}$ and $\mathbf{4}^{5j}$ were prepared according to the literature procedures. Hydrosilanes and HSnMe3 were prepared by reduction of corresponding chlorosilane and BrSnMe₃ (prepared by exothermic conproportionation of SnMe₄ and SnBr₄) with LiAlH₄, respectively. Labeling experiments were carried out as described for the H compounds by using appropriate labeled compounds. The μ -CD₂ complex **1**- d_2 was prepared by treatment of $Cp_2Ru_2(CO)_4{}^{34}$ with $Li\bar{D}BEt_3{}^{33}$ The ¹³CO-labeled µ-methylene complex 1-¹³C (µ-CH₂ and CO carbon atoms ca. 25% ¹³C-enriched) was prepared by treatment of $Cp_2Ru_2(CO)_4$ -¹³C with LiHBEt₃.³³ [$Cp_2Ru_2(CO)_4$ -¹³C was obtained by carbonylation [¹³CO (1-2 atm); >90% ¹³C-enriched] of Cp₂Ru₂(CO)₃(MeCN)^{5c,6j} in benzene at room temperature.] Deuteriosilanes were prepared by treatment of appropriate chlorosilanes with LiAlD₄. Chromatography was performed

⁽³¹⁾ Takao, T.; Yoshida, S.; Suzuki, H.; Tanaka, M. Organometallics 1995, 14, 3856 and references cited therein.

⁽³²⁾ Recent progress in activation of organosilicon compounds on metal complexes is reviewed in the following paper: Braunstein, P.; Knorr, M. J. Organomet. Chem. **1995**, 500, 21.

⁽³³⁾ Berry, D. H.; Bercaw, J. E. Polyhedron 1988, 7, 759.

⁽³⁴⁾ Doherty, N. M.; Knox, S. A. R.; Morris, M. J. *Inorg. Synth.* **1990**, *28*, 189.

on alumina [column, aluminum oxide, activity II–IV (Merck Art. 1097); preparative TLC, aluminum oxide $60PF_{254}$ (Type E) (Merck Art. 1103)]. ¹H- and ¹³C-NMR spectra were recorded on JEOL EX-90 (¹H, 90 MHz), GX-270 (¹H, 270 MHz; ¹³C, 67 MHz), EX-400 (¹H, 400 MHz; ¹³C, 100 MHz), and GX-500 spectrometers (¹H, 500 MHz; ¹³C, 125 MHz). Solvents for NMR measurements containing 1% TMS were dried over molecular sieves, degassed, distilled under reduced pressure, and stored under Ar. IR and MS spectra were obtained on a JASCO FT/IR 5300 spectrometer and a Hitachi M-80 mass spectrometer, respectively. Volatile products were quantified by GLC [hydrocarbons (Porapak Q/FID); H₂, CO (Molecular Sieves 5A/TCD); Hitachi gas chromatograph 163].

Thermolysis of the μ -Alkylidene Complexes in the **Presence of Hydrosilane.** To a C₆D₆ solution (0.4 mL) of 1 (15.8 mg, 0.029 mmol) in an NMR tube was added HSiMe₃ (20 μ L, 0.17 mmol). The NMR tube was sealed by a torch and heated at 170 °C in a GLC oven. The reaction was monitored occasionally by ¹H-NMR. When 1 was consumed, the yields of organometallic products 2 and 3 were determined by ¹H-NMR (internal standard: residual C₆D₅H). Then the NMR tube was placed in a glass autoclave filled with Ar together with a magnetic stirring bar. After the autoclave was closed, it was shaken vigorously so that the NMR tube was broken. After addition of propane and butane (internal standards) through a rubber septum, the yields of CH₄ and SiMe₄ were determined by GLC analysis of the gas and liquid phases. The organometallic products were identified after separation with preparative TLC. 2 (colorless oil): ¹H-NMR (C₆D₆) 4.56 (5H, s, Cp), 0.51 (18H, s, (SiMe₃)₂), -10.87 (s, 1H, Ru-H). ¹³C-NMR (C₆D₆) 201.9 (s, CO), 88.1 (d, J = 177 Hz, Cp), 10.3 (q, J = 119 Hz, SiMe₃). IR (CH₂Cl₂) ν (C=O) 1942 cm⁻¹. Anal. Calcd for C₁₂H₂₄OSi₂Ru: C, 42.20; H, 7.08. Found: C, 42.48; H, 7.28. 3 was identified by comparison with the reported data.5

Formation of Hydrido–Silyl– μ -Methylene Species 5. To a benzene suspension of 4 was added HSiR₃ (1.2 equiv) via a microsyringe. As soon as HSiR₃ was added, the solid 4 dissolved to give a deep orange red homogeneous solution. Soon after that all the volatiles were removed under reduced pressure to leave orange red oily product 5. Quantitative formation of 5 was observed by ¹H-NMR experiments carried out in C₆D₆. Attempted isolation of a pure sample of 5 was unsuccessful because of its thermal lability. Then 5 was characterized on the basis of the spectroscopic data (Table 1) and comparison with the unequivocally characterized disilyl complexes **6** (see text).

The reaction with DSiMe_3 was carried out in a similar manner.

Preparation of Disilyl-µ-Methylene Complexes 6. To a benzene suspension (5 mL) of 4 (60.0 mg, 0.13 mmol) was added $HSiR_3$ (0.32 mmol) via a syringe. The resulting homogeneous solution was left overnight at ambient temperature or heated for 15 min above 50 °C. Volatiles were removed under reduced pressure, and the residue was subjected to preparative TLC separation (eluent: CH₂Cl₂/hexanes = 1/5 - 1/8). Complex **6a** was isolated by recrystallization from MeOH, and complexes **6b**-**f** were isolated by recrystallization from CH₂Cl₂-hexanes mixed solvent. All the 6-type compounds were isolated as orange yellow solid. The spectroscopic data are summarized in Table 1. Isolated yields and analytical data of 6 are summarized as follows (analytically pure samples of **6a**,**b**,**f** were not obtained due to the high solubility in organic solvents). **6a** (35% yield): Calcd for C₁₉H₃₀O₂Si₂Ru₂: C, 41.60; H, 5.47. Found: C, 41.07; H, 5.36. 6b (27% yield): Calcd for C25H42O2Si2Ru2: C, 47.46; H, 6.64. Found: C, 45.97; H, 7.01. 6c (53% yield): Calcd for C₃₁H₅₄O₂Si₂Ru₂: C, 51.95; H, 7.54. Found: C, 51.91; H, 7.37. 6d (33% yield): Calcd for C29H34O2Si2Ru2: C, 51.78; H, 5.06. Found: C, 51.32; H, 5.21. 6e (46% yield): Calcd for C₄₉H₄₂O₂Si₂Ru₂: C, 63.89; H, 4.60. Found: C, 63.44; H, 4.98. 6f (70% yield): Calcd for C₁₉H₃₀O₈Si₂Ru₂: C, 35.38; H, 4.65. Found: C, 34.56; H, 4.61.

Exchange Reactions of 5 and 6. A crude sample of **5** generated as described above or an isolated sample of **6** (5–10 mg) was taken in an NMR tube. After addition of C_6D_6 (0.5 mL) a ¹H-NMR spectrum was recorded to check the initial concentration of **5** or **6** by comparison with the intensity of the residual C_6D_5H signal. Then appropriate hydrosilane or deuteriosilane was added and capped with a rubber septum (or sealed by a torch when the sample was heated). The extent of the D incorporation and conversion was monitored occasionally by ¹H-NMR.

Low-Temperature Reaction of 5a with DSiMe₂Ph (Figures 3 and 4). An NMR tube containing a CD_2Cl_2 solution (0.5 mL) of 4 (5.3 mg, 0.012 mmol) was capped with a rubber sepum. To the sample cooled at -78 °C was added DSiMe₂Ph (3 μ L, 0.018 mmol) via a microsyringe through the rubber septum. After being shaken vigorously, the sample tube was transferred to the NMR probe precooled at -60 °C. The probe temperature was raised to the temperature indicated in Figure 4, and ¹H-NMR spectra were recorded: $\delta_{\rm H}$ (at -40 °C) 6.86, 6.99 (s, H_{c,d}), 6.92 (s, μ -CH₂ of 4), -10.14, -10.15(s, H_{α,β}); $\delta_{\rm H}$ (at -25 °C) 6.91, 7.05 (d, J = 4 Hz, H_{a,b}), 6.89, 7.03 (s, H_{c,d}), (s, μ -CH₂ of 4), -10.12, -10.13 (s, H_{α,β}).

Reaction of 5a with CO or PPh₃. CO was passed through a C_6D_6 solution of **5a** in situ prepared as described above, or PPh₃ (1.2 equiv) was added to a C_6D_6 solution of **5a**. ¹H-NMR analysis after 10 min revealed quantitative formation of **1** or **11**, respectively. **11** was isolated as yellow crystals after preparative TLC separation followed by crystallization from CH₂Cl₂-hexanes. Anal. Calcd for C₃₁H₂₇O₂PRu₂: C, 56.02; H, 4.09. Found: C, 56.32; H, 4.30.

Thermolysis of 6a, e in the Presence of CO. A benzene solution (2 mL) of **6a** (16.3 mg, 0.03 mmol) was placed in a 10 mL-glass autoclave, which was pressurized with CO (5 atm) and then heated for 2 h at 80 °C with stirring. After cooling and removal of the volatiles, the residue was subjected to TLC separation (silica; eluted with CH₂Cl₂:hexanes = 1:10). Recrystallization of the yellow fraction from hot hexanes afforded **12a** (14.9 mg, 0.027 mmol, 93% yield) as yellow crystals. Anal. Calcd for C₁₇H₂₀O₃SiRu₂: C, 40.63; H, 3.98. Found: C, 40.51; H, 3.89. The reaction of **6e** was carried out in the same method. **12b** (98% yield, yellow crystals): Anal. Calcd for C₃₂H₂₆O₃SiRu₂: C, 55.81; H, 3.78. Found: C, 55.62; H, 3.65.

Thermolysis of 6a,e in the Presence of PPh₃. A benzene solution (1 mL) of **6a** (23.4 mg, 0.043 mmol) and PPh₃ (34.0 mg, 0.13 mmol) was heated for 2 h at 80 °C with stirring. After cooling and removal of the volatiles, the residue was subjected to TLC separation (silica; eluted with ether:hexanes = 1:7). Recrystallization of the yellow fraction from toluene–hexanes afforded **13a** (40.0 mg, 0.031 mmol, 74% yield) as yellow crystals. Anal. Calcd for $C_{34}H_{35}O_2PSiRu_2$: C, 55.43; H, 4.75. Found: C, 55.87; H, 4.33. The reaction of **6e** was carried out in the same method. **13b** (92% yield, yellow crystals): Anal. Calcd for $C_{49}H_{41}O_2PSiRu_2$: C, 63.77; H, 4.45. Found: C, 64.00; H, 4.71.

Reaction of Cp₂Ru₂(\mu-CHSiMe₃)(\mu-CO)(CO)(MeCN) (17) with HSiMe₃. An acetonitrile solution (150 mL) of 12a (30 mg, 0.06 mmol) was photolyzed by a high-pressure mercury lamp (Ushio UM-452) for 6 h.^{5j} After consumption of 12a was confirmed by IR, the volatiles were removed under reduced pressure and the residue was washed with ether. Though an analytically pure sample of 17 was not obtained, it was characterized spectroscopically: ¹H-NMR (CD₃CN) \delta_{\rm H} 7.18 (1H, s, \mu-CH), 5.09, 4.72 (5H × 2, s × 2, Cp₂), 0.12 (9H, s, SiMe₃); IR (CH₃CN) \nu(C=O) 1915, 1750 cm⁻¹. Addition of 3 equiv of HSiMe₃ to a C₆D₆ solution of 17 produced 6a immediately as observed by ¹H-NMR.

Formation of Stannylated μ **-Methylene Compounds 20 and 21a,b.** The reaction was carried out in essentially the same manner as described for the Si analogues (6) with use of hydrostannanes in place of hydrosilanes. The hydrido– stannyl– μ -methylene species **20** was formed quantitatively as observed by the reaction conducted in C₆D₆. Compounds **20**

complex	6d	6e •hexane	12a	13a	21a	22
formula	$C_{29}H_{34}O_2Si_2Ru_2$	$C_{51}H_{56}O_2Si_2Ru_2$	C17H20O3SiRu2	C ₃₄ H ₃₅ O ₂ SiPRu ₂	$C_{19}H_{30}O_2Sn_2Ru_2$	$C_{31}H_{28}O_2SnRu_2$
fw	672.9	1007.4	502.6	736.9	730.0	753.4
space group	$P2_{1}2_{1}2_{1}$	$P2_1/a$	$P2_1/m$	$P\overline{1}$	$P2_1$	$P2_1/c$
a/Å	12.504(1)	19.337(2)	6.936(2)	11.407(5)	8.387(2)	10.724(1)
<i>b</i> /Å	23.643(3)	17.656(2)	14.947(2)	14.631(5)	10.144(2)	13.220(2)
c/Å	9.551(2)	14.023(2)	9.520(4)	9.750(2)	14.273(4)	19.802(2)
α/deg				100.80(2)		
β/deg		92.310(8)	95.12(2)	98.41(1)	109.58(2)	98.42(3)
γ/deg				78.60(3)		
V/Å3	2823.6(7)	4784(1)	929.9(5)	1556.7(10)	1209.4(5)	2777.1(6)
Ζ	4	4	2	2	2	4
$d_{\rm calcd}/{\rm g}\cdot{\rm cm}^{-3}$	1.58	1.40	1.80	1.57	2.00	1.80
μ/cm^{-1}	11.6	7.2	16.7	10.9	32.6	19.9
20/deg	5 - 55	2-45	5 - 60	5 - 50	5 - 55	5 - 50
no. of data collcd	3687	7323	3021	5794	3133	5419
no of unique data with $I > 3\sigma(I)$	3013	4754	2073	4090	2225	2407
no. of params refined	324	528	115	365	225	325
R	0.030	0.043	0.036	0.041	0.041	0.056
$R_{ m w}$	0.026	0.043	0.035	0.043	0.035	0.040

Table 5. Crystallographic Data for 6d, 6e hexane, 12a, 13a, 21a, and 22

were not obtained analytically pure and were characterized by means of spectroscopy (see Table 1). Isolated yields and analytical data of **21** are as follows. **21a** (52% yield, yellow solid): Anal. Calcd for $C_{19}H_{30}O_2Sn_2Ru_2$: C, 31.26; H, 4.11. Found: C, 31.20; H, 4.95. **21b** (47% yield, yellow solid): Anal. Calcd for $C_{37}H_{66}O_2Sn_2Ru_2$: C, 45.21; H, 6.72. Found: C, 45.48; H, 7.01.

Low-Temperature Reaction of 4- d_2 with HSnMe₃. The low-temperature reaction of 4- d_2 with HSnMe₃ was carried out as described for the low-temperature reaction of 4 with DSiMe₂Ph (see above).

Reaction of 4 with HSnPh₃. The MeCN complex 4 (75.0 mg, 0.17 mmol) and HSnPh₃ (300 mg, 0.85 mmol) were allowed to react in benzene (2.5 mL) for 24 h at rt. After removal of the volatiles under reduced pressure the residue was subjected to preparative TLC separation (eluted with CH₂Cl₂:hexanes = 4:1). The mononuclear stannyl complex **24** (27.2 mg, 0.047 mmol, 14% yield) was identified by comparison of NMR and IR data with those of reported data.²⁵ 22 (58.6 mg, 0.078 mmol, 46% yield): ¹H-NMR (CDCl₃) $\delta_{\rm H}$ 7.62–7.16 (m, Ph), 5.31, 5.02 (5H × 2, s × 2, Cp₂), 0.38 (s, ${}^{2}J_{Sn-H} = 43$ Hz, SnMe); see also Chart 1. ¹³C-NMR (CDCl₃): $\delta_{\rm C}$ CO signals, 205.2, 202.0 (s \times 2, CO); Ph signals, 150.4 (d, J = 162 Hz), 146.2 (s, ipso), 146.1 (s, ipso), $1\overline{4}3.3$ (d, J = 160 Hz), 136.3 (J = 156Hz), 136.2 (d, J = 156 Hz), 127.7 (d, J = 160 Hz), 127.5 (d, J = 160 Hz), 127.4 (d, J = 161 Hz), 127.3 (d, J = 161 Hz), for the bridging Ph signals, see Chart 1; Cp signals, 86.0 (d, J =178 Hz), 82.9 (d, J = 178 Hz); SnMe, -5.8 (q, J = 128 Hz). IR (CH_2Cl_2) : $\nu(C=O)$ 1906 cm⁻¹. Anal. Calcd for $C_{31}H_{28}O_2Ru_2$ -Sn: C, 48.42; H, 3.72. Found: C, 48.21; H, 3.91. 23 (12.7 mg, 0.013 mmol, 8% yield): ¹H-NMR (CDCl₃) δ_H 7.83-6.95 (20H, m, Ph), 4.81 (10H, s, Cp₂). ¹³C-NMR (CDCl₃): $\delta_{\rm C}$ 200.7 (CO), 153.0 (s, ipso), 135.6 (d, J = 161 Hz, Ph), 135.4 (d, J = 159Hz, Ph), 127.2 (d, J = 166 Hz, Ph), 79.3 (d, J = 180 Hz, Cp). IR (CH_2Cl_2) : $\nu(C=O)$ 1908 cm⁻¹. Anal. Calcd for $C_{36}H_{30}O_2Sn_2Ru_2$: C, 46.28; H, 3.22. Found: C, 46.02; H, 3.40.

Reaction of 6a with H₂. A glass autoclave containing a C_6D_6 solution (0.50 mL) of **6a** (15.2 mg, 0.028 mmol) was cooled in a dry ice bath and then evacuated. After being filled with hydrogen gas (1 atm), it was closed and placed in a GLC oven (at 65 °C). After 2 h propane (20 μ L; internal standard) was added through a rubber septum and then the yield of methane was determined by GLC. The organometallic products were analyzed by ¹H-NMR.

Reaction of 5a with H₂. A sample of **5a** was prepared by the reaction of **4** (21.3 mg, 0.048 mmol) with HSiMe₃ (10 μ L, 0.12 mmol) in benzene (2 mL) for 5 min (see above). After removal of the volatiles C₆D₆ (0.30 mL) was added and the resulting solution was transferred to a thick-walled NMR tube, and the tube was closed with a screw cap. Then hydrogen was introduced as described above. After stirring of the mixture for 15 h at rt propane (50 μL ; internal standard) was added through a rubber septum and then the yield of methane was determined by GLC.

Single-Crystal X-ray Crystallography. Single crystals of 6d, 6e hexane, 21a, 22, 12a, and 13a were obtained by recrystallization from CH₂Cl₂-hexanes. Suitable crystals were mounted on glass fibers. Diffraction measurements were made on a Rigaku AFC-5R automated four-circle diffractometer by using graphite-monochromated Mo K α radiation (λ = 0.710 59 Å). The unit cells were determined and refined by a least-squares method using 20 independent reflections (2heta \sim 20°). Data were collected with an ω -2 θ scan technique. If $\sigma(F)/F$ was more than 0.1, a scan was repeated up to three times and the results were added to the first scan. Three standard reflections were monitored at every 150 measurements. The data processing was performed on a micro Vax II computer (data collection) and an IRIS Indigo computer (structure analysis) by using the teXsan structure solving program system obtained from the Rigaku Corp., Tokyo, Japan. Neutral scattering factors were obtained from the standard source.³⁵ In the reduction of data, Lorentz and polarization corrections and an empirical absorption correction (ψ scan) were made. The crystallographic data and the results of analyses are summarized in Table 5.

The structures were solved by a combination of the direct methods and Fourier synthesis (SAPI91 and DIRDIF). All the non-hydrogen atoms except the hexane carbon atoms in **6e**-hexane were refined anisotropically. The μ -CH₂ and μ -CHSiMe₃ hydrogen atoms except those of **21a** were located by examination of the difference Fourier maps and were refined isotropically. The remaining hydrogen atoms were fixed at the calculated positions (C-H = 0.95 Å) and were not refined.

Acknowledgment. Financial support from the Ministry of Education, Science, Sports, and Culture of the Japanese Government (Grants-in-Aid for Scientific Research on Priority Area, No. 05236103; Grant-in-Aid for Scientific Research, No. 07651048) is gratefully acknowledged. R.H. thanks the Tsuji Asia Scholarship Foundation for the generous support.

Supporting Information Available: Tables of positional parameters and B_{eq} values, anisotropic thermal parameters, and bond lengths and angles for the structures and figures showing the atomic numbering schemes of **6e** hexane (25 pages). Ordering information is given on any current masthead page.

OM960258R

⁽³⁵⁾ International Tables for X-Ray Crystallography; Kynoch Press: Birmingham, U.K., 1975; Vol. 4.