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Summary: Reaction of 2,3-dimethylindole in thf with
nBuLi and CO2 gives a lithium carbamate complex
(2‚thf)n, which has a unique tetrameric solid-state
structure (n ) 4) containing two boat-shaped (-LiO-
COLiOCO-) rings joined by four inter-ring Li-O con-
nections. The two-coordinate O atoms of these rings are
near to the 2-Me groups of the indolyl residues, suggest-
ing an explanation for second lithiation (and subsequent
electrophilic substitution) of 2-alkylindoles and related
heterocyclics occurring specifically at the 2-alkyl position.

Much is now known about the one-off structures of
lithiated organic molecules prepared specifically for such
structural examination (alkyls, amides, and enolates,
for example).1 Given this, it is timely to examine like
species as they occur as intermediates during multistep
organic syntheses.2 There, understandably enough, one-
pot conversions (often very specific ones, regio- and/or
stereoselectively) of precursors to products are usually
described by linked equations which cite the generation
of lithiated molecules, their treatment with electro-
philes, and then workup. Lithium intermediates are
typically shown as monomers (rare in practice) and as
unsolvated (unlikely, since polar media are normally
used). The routeslet alone the detailed mechanisms
must be speculative, and in particular the origins of any
selectivity remain unclear. Recently therefore we have
begun to examine a series of organic protocols which
involve lithiations, by isolating, identifying, and struc-
turally characterizing lithium intermediates.3 Here we
report preliminary results of this approach as applied
to an important method4 for the specific electrophilic

substitution of 2-alkylindoles at the 2-alkyl position
(Scheme 1).
The key mechanistic feature proposed for this protocol

is that, after lithiation in thf, CO2 insertion (1 to 2)
serves both to protect the N-H position and to somehow
direct second lithiation (2 to 3) to the 2-alkyl position.
We reacted a chilled (-78 °C) solution of 2,3-dimeth-
ylindole (1) in thf with 1 equiv of nBuLi, warmed to room
temperature to give a dark orange solution, and then
treated this with CO2. Chilling of the solution afforded
pale yellow cubic crystals of the lithium carbamate,
(2‚thf)n, in 67% first batch yield.5 X-ray crystallogra-
phy6 has revealed a tetrameric structure (n ) 4)
unprecedented in alkali metal coordination chemistry
(Figure 1).
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From symmetry and by inspection of bond lengths,
the core of the structure is best viewed (west to east) as
comprising two eight-membered boat-shaped (-LiO-
COLiOCO-) rings joined by four inter-ring Li-O con-
nections [north to south: Li(1c)-O(2a), O(2b)-Li(1),
O(2c)-Li(1a), Li(1b)-O(2)] all of length 1.966(3) Å. This
core is shown more clearly in Figure 2. Apart from the
inter-ring Li-O connections (shown as open bonds) and
a bond to thf [1.905(3) Å], each Li+ is attached within
its own ring to a two-coordinate [Li-O, 1.908(3) Å] and
to a three-coordinate [Li-O, 1.993(3) Å] carboxylate
oxygen, the latter being the oxygen involved in the inter-
ring bonding. Eight-membered (-LiOCO-)2 rings have
been found before, in the molecular chair-shaped dimer
(Ph2NCO2Li‚tmeda)23a and in various polymeric hy-
drated lithium carboxylates.7 However, we can find no
structures having two such rings joined together, as in
(2‚thf)4.
The final noteworthy structural feature in (2‚thf)4

may have mechanistic implications, especially regarding
the conversion of 2 to 3 (Scheme 1) and precisely how
the CO2 unit directs and/or stabilizes second lithiation
at the 2-alkyl position. Thus, each merely two-coordi-
nate oxygen in the structure is positioned quite close to
a 2-methyl group [e.g., O(1a)-C(10) in Figure 1; all such
O-C distances are 2.758(3) Å].8 Such oxygen centers
may therefore complex the added second equivalents of
butyllithium, bringing them nearby the 2-methyl groups,
and/or they may complex the second lithium centers
postlithiation. Of course, such further reaction occurs
in solution. It is impossible to prove conclusively that
(2‚thf)4 is the major or the only species present in
solution, awaiting further lithiation and subsequent
electrophilic substitution. It could be that a complex
of general type (2‚xthf)n, with x * 1 and n * 4, remains
in solution. It could also be that such a complex merely

crystallizes as (2‚thf)4 [i.e., that this is the lowest energy
solid-state formulation] and that, by implication, (2‚thf)4
reverts to (2‚xthf)n on dissolution in thf. However,
notwithstanding these critical qualms, we have gath-
ered two pieces of evidence which suggest that specif-
ically (2‚thf)4 is the most likely dominant solution
species. First, although the initial yield of this solid
complex is only 67%, continued refrigeration of the
reaction solution affords more of it (91% final yield),
with no other solid species being isolable. Second, 7Li
NMR spectra (25 °C, 155.5 MHz) of solid (2‚thf)4
dissolved in dmso and of the filtrate (plus dmso) left
after isolation of the first batch of (2‚thf)4 both show a
single, very sharp resonance at the same frequency (δ
0.98 relative to Ph7Li in dmso). It can be noted finally
that even if solid (2‚thf)4 is present in solution as a
dimer, (2‚2thf)2, or as a monomer, (2‚3thf), the above-
noted short O‚‚‚CH3 contacts would likely be retained.
In conclusion, the study illustrates the value of

isolating, identifying, and structurally characterizing
lithiated species proposed to occur during organic
syntheses involving deprotonations by lithium bases.
Here, the proposed simple unsolvated monomer 2
(Scheme 1) prepared by lithiation and carboxylation of
2,3-dimethylindole (1) is shown to be a complicated
tetrameric and solvated structure, (2‚thf)4. The precise
structural features of this indicate much more clearly
than hitherto why second lithiation is directed to the
2-methyl position. We are now attempting to isolate
and to structurally characterize this dilithiated inter-
mediate 3.
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Figure 1. View of the molecular structure of (2‚thf)4 with
hydrogen atoms omitted for clarity.

Figure 2. Core of the structure of (2‚thf)4 showing the
Li-O connections (open bonds) between the two boat-
shaped (-LiOCOLiOCO-) rings.
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