Formation of a Dirhenium Carbene Complex from Reaction of $(\eta^5-C_5H_4Li)Re(CO)_3$ with $(\eta^5-C_5H_5)Re(CO)_3$

Charles P. Casey,* Curtis J. Czerwinski, and Randy K. Hayashi

Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706

Received June 4, 1996[®]

The ring-metalated complex (η^{5} -C₅H₄Li)Re(CO)₃ generated by reaction of (η^{5} -C₅H₅)Re(CO)₃ with *n*-BuLi in THF at -78 °C reacted with additional (η^{5} -C₅H₅)Re(CO)₃ to produce the dirhenium acyl anion (η^{5} -C₅H₅)(CO)₂Re(C=O)[(η^{5} -C₅H₄)Re(CO)₃]⁻Li⁺. Protonation of this acyl anion gave the dirhenium hydroxycarbene complex (η^{5} -C₅H₅)(CO)₂Re=C(OH)[(η^{5} -C₅H₄)-Re(CO)₃], while methylation gave the methoxycarbene complex (η^{5} -C₅H₅)(CO)₂Re=C(OCH)-[(η^{5} -C₅H₄)Re(CO)₃], which was characterized by X-ray crystallography. The methoxycarbene complex reacted with *n*-BuLi to produce the butylcarbene complex (η^{5} -C₅H₅)(CO)₂Re=C(CH₂CH₂CH₂CH₂CH₃)[(η^{5} -C₅H₄)Re(CO)₃].

Introduction

Recently we reported a five-step synthesis of the tethered acyl anion $[(CO)_2 Re(C=O)CH_2 CH_2(\eta^5-C_5H_4)]^-Li^+$ (1) from $(\eta^5-C_5H_5)Re(CO)_3$ (2) (Scheme 1).¹ Protonation of this anion gave an equilibrium mixture of hydroxycarbene complex $(CO)_2 Re=C(OH)CH_2 CH_2(\eta^5-C_5H_4)$ (3) and the isomeric acyl hydride *trans*-H(CO)_2-Re(C=O)CH_2 CH_2(\eta^5-C_5H_4) (4). Methylation of anion 1 with $(CH_3)_3 O^+BF_4^-$ gave the methoxycarbene complex $(CO)_2 Re=C(OCH_3)CH_2 CH_2(\eta^5-C_5H_4)$ (5), while methylation with CH_3 I produced the methyl acyl complex *trans*-CH₃(CO)_2 Re(C=O)CH_2 CH_2(\eta^5-C_5H_4).

In an attempt to develop a shorter and more efficient synthesis of **1**, we initiated a study of the reaction of the ring-metalated anion (η^5 -C₅H₄Li)Re(CO)₃ (**6**) with ethylene as an alternative route to ((η^5 -C₅H₄)CH₂CH₂-Li)Re(CO)₃ (**7**). Here we report that, instead of reacting with ethylene to eventually form **1**, the ring-metalated anion **6** reacts with a carbonyl ligand of (η^5 -C₅H₅)Re-(CO)₃ (**2**).

Results and Discussion

Chemoselectivity of Reaction of *n***-BuLi with** (η^5 -**C**₅**H**₅)**Re**(**CO**)₃ (2). The reaction of 2 with *n*-BuLi is strongly solvent and temperature dependent. Fischer reported that *n*-BuLi in Et₂O at room temperature adds to a carbonyl ligand of 2 to give the acyl anion [(η^5 -C₅H₅)(CO)₂Re(C=O)CH₂CH₂CH₂CH₂CH₃]⁻Li⁺ (8), which was then converted to (η^5 -C₅H₅)(CO)₂Re=C(OCH₃)CH₂CH₂-CH₂CH₃ (9) in 8% overall yield.² In contrast, Nesmeyanov reported that *n*-BuLi in THF at low temperature ring-metalates 2 to give **6**, which reacts with CO₂ to give ((η^5 -C₅H₄)CO₂H)Re(CO)₃ in 93% overall yield after hydrolysis.³ To determine whether the change in chemose-

lectivity is a solvent or temperature effect, we have studied the reactions of n-BuLi with 2 in more detail.

$$\begin{array}{c|c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ &$$

In Et_2O at -78 °C, there is no reaction between *n*-BuLi and **2**. For example, when *n*-BuLi was added to **2** in Et₂O at -78 °C and then quenched with CD₃OD at -78 °C after 3 h, **2** was recovered unchanged in 100% yield, and mass spectral analysis showed <1% ($\eta^{5-}C_{5}H_{4}D$)Re(CO)₃. Similarly, when *n*-BuLi was added to **2** in Et₂O at -78 °C and then quenched with CH₃I at -78 °C after 3 h, **2** was recovered unchanged in 84% yield, and ¹H NMR analysis showed no formation of the known ($\eta^{5-}C_{5}H_{4}CH_{3}$)Re(CO)₃ (**10**).⁴ We confirmed that reaction of **2** with *n*-BuLi at room temperature in Et₂O produced the acyl anion **8**, which was converted to butylmethoxycarbene complex **9** in 17% isolated yield.

In contrast, in *THF* at -78 °C, reaction of **2** with *n*-BuLi for 3 h followed by quenching with CD₃OD at -78 °C gave (η^5 -C₅H₄D)Re(CO)₃, which was isolated in 94% yield and was shown by mass spectral analysis to be 75% d₁. Similarly, reaction of **2** with *n*-BuLi in

[®] Abstract published in Advance ACS Abstracts, September 15, 1996. (1) Casey, C. P.; Czerwinski, C. J.; Hayashi, R. K. J. Am. Chem. Soc. **1995**, 117, 4189.

⁽²⁾ Fischer, E. O.; Reidel, A. Chem. Ber. 1968, 101, 156.

^{(3) (}a) Nesmeyanov, A. N.; Anisimov, K. N.; Kolobova, N. E.; Makarov, Yu. V. *Dokl. Akad. Nauk SSSR* **1968**, *178*, 111. (b) Nesmeyanov, A. N.; Anisimov, K. N.; Kolobova, N. E.; Makarov, Yu. V. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1968**, 686.

⁽⁴⁾ Lewis, L. N.; Caulton, K. G. Inorg. Chem. 1981, 20, 1139.

Figure 1. Structure of $(\eta^5 - C_5H_5)(CO)_2Re = C(OCH_3)[(\eta^5 - C_5H_4)Re(CO)_3]$ (11).

Scheme 2

THF at -78 °C followed by quenching with CH₃I at -78 °C after 3 h gave (η^{5} -C₅H₄CH₃)Re(CO)₃ (**10**) in 84% isolated yield with no (η^{5} -C₅H₅)Re(CO)₃ observed. While the greater reactivity of *n*-BuLi in THF compared to that in Et₂O is well precedented, we do not understand the observed solvent dependence of chemoselectivity.

Attempted Reaction of Ethylene with (η^5 -C₅H₄Li)-**Re(CO)**₃ (6). In an attempt to develop a shorter synthesis of tethered anion 1, we studied the reaction of 6 with ethylene. Additions of carbanions to ethylene, styrene, isobutylene, and propene are known.⁵

Ring-metalated anion **6** was generated by treating **2** with *n*-BuLi in THF at -78 °C. After 3 h, ethylene was condensed into the solution at -78 °C in an effort to generate (η^{5} -C₅H₄CH₂CH₂Li)Re(CO)₃ (**7**). The solution was warmed to room temperature, and (CH₃)₃O⁺BF₄⁻ was added. Earlier we showed that **7** forms tethered anion **1**, which reacts with (CH₃)₃O⁺BF₄⁻ to give the methoxycarbene complex **5**.¹ However, no **5** was detected in the reaction mixture. Instead, the dinuclear methoxycarbene complex (η^{5} -C₅H₅)(CO)₂Re=C(OCH₃)-[(η^{5} -C₅H₄)Re(CO)₃] (**11**) was isolated by thin-layer chromatography as an orange solid in 13% yield.

Table 1. Selected Bond Lengths (Å) and Angles (deg) for (η⁵-C₅H₅)(CO)₂Re=C(OCH₃)[(η⁵-C₅H₄)Re(CO)₃] (11)

(-)				
Bond Distances				
Re1-C1	1.876(13)	C3-C12	1.52(2)	
Re1-C2	1.93(2)	Re2-C4	1.91(2)	
Re1-C2	1.93(2)	Re2-C5	1.92(2)	
Re1-C3	2.025(12)	Re2-C6	1.93(2)	
C1-01	1.16(2)	C4-O4	1.14(2)	
C2-O2	1.16(2)	C5-O5	1.16(2)	
C3-O3	1.30(2)	C6-O6	1.15(2)	
C3-C17	1.43(2)			
Bond Angles				
C1-Re1-C2	86.1(6)	C3-O3-C17	121.7(9)	
C1-Re1-C3	95.9(5)	C3-C12-C13	129.0(11)	
C2-Re1-C3	87.7(5)	C3-C12-C16	124.9(11)	
Cp _{cent 1} -Re1-C3	126.3	C3-C12-Cp _{cent 2}	183.7	
Re1-C3-O3	133.1(9)	C4-Re2-C5	87.8(6)	
Re1-C3-C12	121.8(9)	C4-Re2-C6	90.6(6)	
C12-C3-O3	105.1(9)	C5-Re2-C6	89.7(7)	

Characterization of the Dinuclear Carbene Complex (η^5 -C₅H₅)(CO)₂**Re**=C(OCH₃)[(η^5 -C₅H₄)**Re**(CO)₃] (11). A single-crystal X-ray crystallographic study of the orange solid established the structure of the dinuclear carbene complex 11 (Figure 1, Table 1). Unlike the strained tethered methoxycarbene complex 5, dirhenium complex 11 is unstrained. The Cp_{cent 1}-Re1-C3 angle of 126.3° is that expected for a normal threelegged piano-stool complex. The carbene carbon atom is nearly coplanar with the cyclopentadienyl ligand (Cp_{cent 2}-C12-C3 = 183.7°), as expected for cyclopentadienyl substituents in an unstrained complex.⁶ The Re1-C3 distance of 2.025 Å is slightly longer than other rhenium-carbon double bonds.⁷

Key spectral features of 11 include four metal carbonyl bands in the IR spectrum. Two bands of similar intensity at 1957 and 1881 cm⁻¹ are assigned to the carbonyl ligands of the Re(CO)₂ unit of the molecule, on the basis of similarities to $(\eta^5-C_5H_5)(CO)_2Re=C-C_5H_5)(CO)_2Re$ $(OCH_3)C_6H_5$ and $(\eta^5-C_5H_5)(CO)_2Re=C(OCH_3)CH_2CH_2$ -CH₂CH₃.² Bands at 2024 and 1929 cm⁻¹ are assigned to the carbonyl ligands of the $Re(CO)_3$ unit of **11** on the basis of similarities to CpRe(CO)₃. The ¹H NMR spectrum of **11** in acetone-*d*₆ shows a cyclopentadienyl singlet at δ 5.59 and an AA'BB' pattern for cyclopentadienyl resonances of the substituted ring, with virtual triplets at δ 5.82 and 5.53. The ¹³C NMR spectrum of 11 in CD_2Cl_2 shows the carbon carbon resonance characteristically downfield at δ 271.2.⁸ Separate carbonyl resonances are observed at δ 202.7 for the dicarbonyl portion and at δ 194.2 for the tricarbonyl portion of the molecule. Cyclopentadienyl resonances were observed at δ 94.9 (C₅H₄, ipso), 88.4 (C₅H₅), 85.4 (C_5H_4) , and 83.4 (C_5H_4) .

^{(5) (}a) Mark, V.; Pines, H. J. Am. Chem. Soc. **1956**, 78, 5946. (b) Pines, H.; Wunderlich, D. J. Am. Chem. Soc. **1958**, 80, 6001. (c) Watanabe, S.; Suga, K.; Fujita, T. Synthesis **1971**, 375. (d) Pines, H. Synthesis **1974**, 309. (e) Schlosser, M.; Schneider, P. Helv. Chim. Acta **1980**, 63, 2404.

⁽⁶⁾ For example, in $(\eta^5-C_5H_4COCH_3)Re(CO)_3$, the analogous angle is 178.3°. Khotsyanova, T. L.; Kuznetsov, S. I.; Bryukhova, E. V.; Makarov, Yu. V. *J. Organomet. Chem.* **1975**, *88*, 351.

^{(7) (}a) Dötz, K. H.; Fischer, H.; Hoffman, P.; Kreissl, F. R.; Schubert, U.; Weiss, K. *Transition Metal Carbene Complexes*, Verlag Chemie: Weinheim, Germany, 1983. (b) Mercando, L. A.; Handwerker, B. M.; MacMillan, H. J.; Geoffroy, G. L.; Rheingold, A. L.; Owens-Waltermire, B. E. *Organometallics* **1993**, *12*, 1559. (c) Kiel, W. A.; Lin, G.-Y.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein, O.; Gladysz, J. J. Am. Chem. Soc. **1982**, *104*, 4865. (d) Fischer, E. O.; Rustemeyer, P.; Neugebauer, D. Z. Naturforsch. **1980**, *35B*, 1083.

<sup>B. E. Organometallics 1993, 12, 1559. (c) Kiel, W. A.; Lin, G.-Y.;
Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein, O.;
Gladysz, J. J. Am. Chem. Soc. 1982, 104, 4865. (d) Fischer, E. O.;
Rustemeyer, P.; Neugebauer, D. Z. Naturforsch. 1980, 35B, 1083.
(8) (a) Kreiter, C. G.; Formacek, V. Angew. Chem., Int. Ed. Engl.
1972, 11, 141. (b) Casey, C. P.; Sakaba, H.; Underiner, T. L. J. Am.
Chem. Soc. 1989, 111, 2352. (d) Buhro, W. E.; Wong, A.; Merrifield, J.
H.; Lin, G.-Y.; Constable, A. G.; Gladysz, J. A. Organometallics 1983, 2, 1852. (e) Darst, K. P.; Lenhert, P. G.; Lukehart, C. M.; Warfield, L.
T. J. Organomet. Chem. 1980, 195, 317.</sup>

When excess CpRe(CO)₃ (**2**) was added to a preformed light yellow solution of ring-metalated **6** at -78 °C, no color change occurred until the solution was warmed to about -20 °C. Then the solution became red-orange, the color of the isolated acyl anion [(η^5 -C₅H₅)(CO)₂Re=C-(O)[(η^5 -C₅H₄)Re(CO)₃]⁻Li⁺ (**12**) (see below). Addition of (CH₃)₃O⁺BF₄⁻ led to the isolation of dinuclear carbene complex **11** in 43% yield.

The formation of **11** is readily explained by initially relatively rapid ring metalation of **2** to give **6**, which then reacts more slowly with **2** to give the binuclear acyl anion **12** (Scheme 2). This is consistent with the higher yield of **11** obtained from reaction of preformed **6** with excess **2**. When **6** was generated in the presence of ethylene and then warmed to room temperature, apparently adventitious partial hydrolysis of **6** regenerated some **2**, which then reacted with **6** to eventually give a low yield of **11**.

The proposed acyl anion **12** was isolated by addition of **2** to **6** in THF at -78 °C followed by evaporation of solvent at room temperature. The anion was characterized spectroscopically. The IR spectrum of **12** in THF showed two bands at 1917 and 1828 cm⁻¹ assigned to carbonyl ligands of the anionic Re(CO)₂ center and two bands at 1998 and 1895 cm⁻¹ assigned to the Re(CO)₃ unit. The ¹H NMR spectrum in THF-*d*₈ showed a cyclopentadienyl singlet at δ 5.49 for the unsubstituted ring and virtual triplets at δ 5.73 and 5.27 for the four cyclopentadienyl protons of the substituted ring. The ¹³C NMR spectrum in THF-*d*₈ showed an acyl carbon resonance at δ 255.6 and separate resonances for carbonyl ligands of the dicarbonyl and tricarbonyl units of the molecule at δ 209.0 and 196.2, respectively.

The Dinuclear Hydroxycarbene Complex (η^{5} - C_5H_5)(CO)₂Re=C(OH)[(η^5 -C₅H₄)Re(CO)₃] (13). Addition of aqueous HCl to a CH₂Cl₂ suspension of the anion **12** followed by extraction of the organic phase led to the isolation of dirhenium hydroxycarbene complex $(\eta^{5}-C_{5}H_{5})(CO)_{2}Re=C(OH)[(\eta^{5}-C_{5}H_{4})Re(CO)_{3}]$ (13) (Scheme 2). Treatment of 13 with *n*-BuLi regenerated 12. The IR spectrum of 13 consisted of two equal-intensity bands at 1960 and 1889 cm^{-1} assigned to the $Re(CO)_2$ unit and a strong band at 2026 cm⁻¹ and a very strong band at 1933 cm⁻¹ assigned to the Re(CO)₃ unit of **13**. The OH stretch was observed as a broad weak band centered at 3164 cm⁻¹. The ¹H NMR spectrum in acetone- d_6 showed a broad hydroxyl resonance centered at δ 11.76. None of the isomeric acyl hydride $(\eta^5-C_5H_5)(CO)_2(H)$ - $\operatorname{Re}(C=O)[(\eta^5-C_5H_4)\operatorname{Re}(CO)_3]$ (**A**) was detected. Even in CD_2Cl_2 , a solvent which favored acyl hydride 4 in the equilibrium mixture of 3 and 4, no resonances appeared in the hydride region (δ 0 to -10) of the expanded spectrum, and 13 was the only compound observed. The only time we have observed an acyl hydride in equilibrium with a hydroxycarbene complex was in the case of **3** and **4**, where the hydroxycarbene tautomer was destabilized by the strain of the two-carbon tether.

Reaction of *n***-BuLi with the Dinuclear Carbene Complex** (η^5 -C₅H₅)(CO)₂Re=C(OCH₃)[(η^5 -C₅H₄)Re-(CO)₃] (11). The reaction of 11 with *n*-BuLi was studied in the hope that ring metalation might occur on the unsubstituted Cp ring and that the resulting lithium reagent generated might attack a carbonyl ligand on the neighboring center (Scheme 3). After methylation this might have produced the cyclic sym-

metric bis(carbene) complex (η^5 -C₅H₄)(CO)₂Re=C(OCH₃)-[(η^5 -C₅H₄)Re=C(OCH₃)(CO)₂] (**C**). However, *n*-BuLi simply added to the carbene carbon of **11**. After workup with acid, the butylcarbene complex (η^5 -C₅H₅)(CO)₂-Re=C(CH₂CH₂CH₂CH₃)[(η^5 -C₅H₄)Re(CO)₃] (**14**) was obtained in 15% isolated yield. The ¹H NMR spectrum of **14** shows a cyclopentadienyl singlet at δ 5.88 and virtual triplets for the protons of the substituted ring at δ 6.10 and 5.72. The butyl chain gives rise to an AA'BB' pattern at δ 3.05, multiplets at δ 1.70 and 1.50, and a triplet at δ 0.94. The addition of nucleophiles to carbene complexes in this manner is well-known.⁹

Experimental Section

General Methods. All manipulations were performed under a nitrogen atmosphere in an inert-atmosphere glovebox or by standard high-vacuum-line techniques. ¹H NMR spectra were obtained on a Bruker WP200 or AM300 spectrometer, and ¹³C NMR spectra were obtained on a Bruker AM500 (125 MHz) spectrometer. Infrared spectra were recorded on a Mattson Genesis FT-IR spectrometer. Mass spectra were determined on a Kratos MS-80 spectrometer. Elemental analyses were performed by Desert Analytics (Tucson, AZ). Diethyl ether, THF, and hexane were distilled from sodium and benzophenone; methylene chloride was distilled from CaH₂. THF- d_8 and C₆D₆ were distilled from B₂O₃; CD₂Cl₂ was distilled from P₂O₅. *n*-BuLi and (CH₃)₃OBF₄ were used as received from Aldrich.

(η⁵-C₅H₅)(CO)₂Re=C(OCH₃)CH₂CH₂CH₂CH₃ (9). The synthesis of **9** was repeated according to the method reported by Fischer,² except that anion **8** was methylated with (CH₃)₃O⁺BF₄⁻ instead of acid and diazomethane. *n*-BuLi (0.4 mL, 1.5 M solution in hexane) was added to a solution of (η⁵-C₅H₅)Re(CO)₃ (200 mg, 0.60 mmol) in Et₂O (10 mL) at -78 °C, and the solution was warmed to 25 °C. After 3 h, solvent was evaporated and the orange residue was treated with (CH₃)₃O⁺BF₄⁻ (90 mg, 0.600 mmol) in acetone (10 mL) overnight. Thin-layer chromatography (SiO₂, 1:1 Et₂O-hexane) gave a yellow band ($R_f = 0.9$) from which **9** was isolated as a yellow oil (40 mg, 17%). ¹H NMR (acetone-*d*₆, 300 MHz): δ 5.24 (s, C₅H₅), 4.15 (s, OCH₃), 2.70 (AA'BB', 17 Hz separation of outer lines, Re=CCH₂), 1.77 (multiplet, Re=CCH₂CH₂), 1.67

^{(9) (}a) Klabunde, U.; Fischer, E. O. J. Am. Chem. Soc. 1967, 89, 7141. (b) Kreissl, F. R.; Kreiter, C. G.; Fischer, E. O. Angew. Chem. Int. Ed. Engl. 1972, 11, 643. (c) Kreissl, F. R.; Fischer, E. O.; Kreiter, C. G.; Weiss, K. Angew. Chem., Int. Ed. Engl. 1973, 12, 563. (d) Casey, C. P.; Burkhardt, T. J. J. Am. Chem. Soc. 1973, 95, 5833. (e) Fischer, E. O.; Held, W. J. Organomet. Chem. 1976, 112, C59. (f) Fischer, E. O.; Held, W.; Kreissl, F. R.; Frank, A.; Huttner, G. Chem. Ber. 1977, 110, 656. (g) Fischer, E. O.; Held, W.; Kreissl, F. R. Chem. Ber. 1977, 110, 3842. (h) Fischer, E. O.; Schubert, U.; Kleine, W.; Fischer, H. Inorg. Synth. 1979, 19, 164. (i) Kim, H. P.; Angelici, R. J. Organometallics 1986, 5, 2489.

(multiplet, CH_2CH_3), 0.89 (t, J = 7.3 Hz, CH_2CH_3). IR (THF): 1954 (s), 1879 (s) cm⁻¹.

(η⁵-C₅H₅)(CO)₂Re(C=O)[(η⁵-C₅H₄)Re(CO)₃]⁻Li⁺ (12). *n*-BuLi (0.4 mL, 1.5 M solution in hexane) was added to a solution of (η⁵-C₅H₅)Re(CO)₃ (200 mg, 0.60 mmol) in THF (20 mL) at -78 °C. After 2 h, a solution of (η⁵-C₅H₅)Re(CO)₃ (200 mg, 0.60 mmol) in THF (10 mL) was added. The solution was stirred overnight at room temperature, and THF was evaporated to give **12** as a red-orange powder (258 mg, 68%) which was shown to contain ~0.3 mol of Et₂O/mol of **12**. ¹H NMR (THF-*d*₈, 300 MHz) δ 5.73 (AA'BB' three-line pattern, 4.7 Hz separation of outer lines, C₅H₄), 5.49 (s, C₅H₅), 5.27 (AA'BB' three-line pattern, 4.7 Hz separation of outer lines, C₅H₄). ¹³C NMR (THF-*d*₈, 126 MHz): δ 255.6 (Re=C), 209.0 (2 CO), 196.2 (3 CO), 86.6 (C₅H₅), 84.8 (C₅H₄, ipso), 85.8 (C₅H₄), 83.6 (C₅H₄). IR (THF): 1998 (m) (ν_{sym}(Re(CO)₃)), 1917 (s) (ν_{sym}(Re(CO)₂)), 1895 (s) (ν_{asym}(Re(CO)₃)), 1828 (m) (ν_{asym}(Re(CO)₂)) cm⁻¹.

 $(\eta^{5}-C_{5}H_{5})(CO)_{2}Re=C(OCH_{3})[(\eta^{5}-C_{5}H_{4})Re(CO)_{3}]$ (11). An orange solution of 12 (260 mg, 0.38 mmol) and (CH₃)₃O⁺BF₄ (56 mg, 0.38 mmol) in acetone was stirred overnight. Solvent was evaporated, and the orange residue was dissolved in CH2-Cl₂ and filtered through celite. Preparative thin-layer chromatography (silica gel, 1:1 hexane– Et_2O) gave **11** ($R_f = 0.6$) as an orange solid (113 mg, 43%). Single crystals suitable for X-ray diffraction analysis were obtained by diffusion of hexane into a saturated Et₂O solution. ¹H NMR (acetone-d₆, 300 MHz): δ 5.82 (AA'BB' three-line pattern, 4.7 Hz separation of outer lines, C₅H₄), 5.59 (s, C₅H₅), 5.53 (AA'BB' three-line pattern, 4.7 Hz separation of outer lines, C₅H₄), 4.18 (s, OCH₃). ¹³C NMR (CD₂Cl₂, 126 MHz): δ 271.2 (Re=C), 202.7 (2 CO), 194.2 (3 CO), 94.9 (C₅H₄, ipso), 88.4 (C₅H₅), 85.4 (C₅H₄), 83.4 (C₅H₄). IR (THF): 2024 (m) ($\nu_{sym}(Re(CO)_3)$), 1957 (m) (ν_{sym} - $(\text{Re}(\text{CO})_2))$, 1929 (s) $(\nu_{\text{asym}}(\text{Re}(\text{CO})_3))$, 1881 (m) $(\nu_{\text{asym}}(\text{Re}(\text{CO})_2))$ cm⁻¹. HRMS: calcd for C₁₇H₁₂Re₂O₆, 685.976; found, 685.980. Anal. Calcd (found) for C₁₇H₁₂Re₂O₆: C, 29.82 (29.93); H, 1.77 (1.84).

X-ray Crystallographic Determination and Refinement. Slow diffusion of hexane into a saturated solution of 11 in Et₂O in an inert-atmosphere glovebox gave orange crystals of 11 suitable for X-ray analysis. Intensity data were obtained with graphite-monochromated Mo K α radiation on a Siemens P4 diffractometer at -125 °C. Crystallographic computations were carried out with SHELXTL and SHELXL-93.10 A semiempirical absorption correction was applied. The initial positions of the Re atoms were obtained by automatic Patterson interpretation. Other non-hydrogen atoms were obtained from successive Fourier difference maps coupled with isotropic least-squares refinement. All non-hydrogen atoms were refined anisotropically. Idealized positions were used for the hydrogen atoms. Crystallographic data are presented in Table 2. Atomic coordinates and equivalent isotropic displacement parameters and a complete list of bond lengths and angles are presented in the Supporting Information.

 $(\eta^5$ -C₅H₅)(CO)₂Re=C(OH)[(η^5 -C₅H₄)Re(CO)₃] (13). Aqueous HCl (1 mL, 10 M, 10 mmol) was added to 11 (200 mg, 0.30 mmol) in a biphasic mixture of 10 mL of CH₂Cl₂ and 10

Table 2. Crystal Structure Data for $(\eta^5-C_5H_5)(CO)_2Re=C(OCH_3)[(\eta^5-C_5H_4)Re(CO)_3]$ (11)

empirical formula	C17H12O6Re2	
color, habit	orange needle	
cryst size	$0.5 \times 0.2 \times 0.05 \text{ mm}$	
cryst syst	orthorhombic	
space group	$P2_{1}2_{1}2_{1}$	
unit cell dimens	a = 7.1945(12) Å	
	b = 11.663(2) Å	
	c = 19.701(3) Å	
V	1653.1 Å ³	
2θ range of data collectn	3.0, 45	
Z	4	
fw	684.67	
density (calcd)	2.751 g cm^{-3}	
abs coeff	14.663 mm^{-1}	
<i>F</i> (000)	1248	
R(F)	3.19%	
$R_w(F)^2$	8.03%	

mL of H₂O. After rapid stirring for 10 min the CH₂Cl₂ layer was separated, washed with water, dried (MgSO₄), filtered, and concentrated to give a red residue. Thin-layer chromatography (Et₂O, silica gel) gave **13** ($R_f = 0.2$) as an orange liquid (85 mg, 42%). ¹H NMR (acetone- d_6 , 300 MHz): δ 11.76 (s, OH), 6.10 (AA'BB' three-line pattern, 4.7 Hz separation of outer lines, C₅H₄), 5.68 (s, C₅H₅), 5.63 (AA'BB' three-line pattern, 4.7 Hz separation of outer lines, C₅H₄). ¹³C NMR (C₆D₆, 126 MHz): δ 261.2 (Re=C), 203.7 (2 CO), 194.1 (3 CO), 113.1 (C₅H₄, ipso), 90.0 (C₅H₅), 88.5 (C₅H₄), 84.4 (C₅H₄). IR (THF): 3164 (br, w, ν_{OH}), 2026 (m) (ν_{sym} (Re(CO)₃)), 1960 (m) (ν_{sym} (Re(CO)₂)), 1933 (s) (ν_{asym} (Re(CO)₃)), 1889 (m) (ν_{asym} (Re-(CO)₂)) cm⁻¹. HRMS: calcd for C₁₆H₁₀Re₂O₆, 669.957; found, 669.948.

 $(\eta^{5}-C_{5}H_{5})(CO)_{2}Re=C(CH_{2}CH_{2}CH_{2}CH_{3})[(\eta^{5}-C_{5}H_{4})Re-$ (CO)₃] (14). n-BuLi (0.10 mL, 1.5 M, 0.15 mmol) was added to 11 (90 mg, 0.13 mmol) in THF (10 mL) at -78 °C. After 2 h, anhydrous HCl (0.15 mmol) was condensed into the solution at -78 °C. The solution was stirred for 2 h at 25 °C. Thinlayer chromatography gave **13** ($R_f = 0.8$) as an orange solid (28 mg, 31%). ¹H NMR (acetone- d_6 , 300 MHz): δ 6.10 (AA'BB' three-line pattern, 4.7 Hz separation of outer lines, C₅H₄), 5.88 (s, C₅H₅), 5.72 (AA'BB' three-line pattern, 4.7 Hz separation of outer lines, C₅H₄), 3.05 (AA'BB' pattern, Re=CCH₂), 1.70 (multiplet, Re=CCH₂CH₂), 1.50 (sextet, J = 7.4 Hz, CH₂CH₃), 0.94 (t, J = 7.4 Hz, CH₃). ¹³C NMR (CD₂Cl₂, 126 MHz): δ 288.6 (Re=C), 205.2 (2 CO), 193.6 (3 CO), 124.9 (C₅H₄, ipso), 92.3 (C5H5), 85.0 (C5H4), 84.8 (C5H4), 63.0 (Re=CCH2), 36.2 (Re=CCH₂CH₂), 23.1 (CH₂CH₃), 13.6 (CH₃). IR (THF): 2023 (m) ($\nu_{sym}(Re(CO)_3)$), 1957 (m) ($\nu_{sym}(Re(CO)_2)$), 1930 (s) (ν_{asym} - $(Re(CO)_3))$, 1884 (m) $(\nu_{asym}(Re(CO)_2))$ cm⁻¹. HRMS: calcd for C₂₀H₁₈Re₂O₅, 710.025; found, 710.024.

Acknowledgment. Financial support from the National Science Foundation is gratefully acknowledged.

Supporting Information Available: Tables giving X-ray crystallographic data for **11** (8 pages). Ordering information is given on any current masthead page.

OM9604482

⁽¹⁰⁾ Sheldrick, G. M. SHELXTL Version 5 Reference Manual, Siemens Analytical X-ray Instruments: Madison, WI, 1994.