Synthesis of Dimeric Iminoalanes by Oxidative Addition of Azides to (Cp*Al)₄: Structural Characterization of $(Cp*AlNSi^{t}Bu_{3})_{2}$ $(Cp* = C_{5}Me_{5})$

Stephan Schulz, Andreas Voigt, Herbert W. Roesky,* Ludger Häming, and Regine Herbst-Irmer

Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany

Received February 27, 1996[®]

Summary: The reaction of (Cp*Al)₄ with organic azides offers an alternative synthetic route for the formation of iminoalanes with a low degree of oligomerization. This method was used to prepare the dimeric iminoalanes $(Cp*AlNSi^{i}Pr_{3})_{2}$ (1), $(Cp*AlNSiPh_{3})_{2}$ (2), and (Cp*AlN- $Si^{t}Bu_{3})_{2}$ (3). The crystal structure of 3 was determined by X-ray diffraction study.

Introduction

Compounds containing aluminum and nitrogen have attracted a great deal of interest due to their potential as single-source precursors for AlN. We are especially interested in the synthesis and structural characterization of iminoalanes $(RAINR')_x$, which were generally synthesized by alkane elimination from (RHAlNHR')_x compounds.^{1–3} This method often leads to the formation of heterocubanes $(x = 4)^{4-8}$ or compounds of higher degree of oligomerization (x = 5-16).^{1,9} However, Power et al. obtained an iminoalane of lower degree of oligomerization with the composition of (MeAlN-2,6-ⁱPr₂C₆-H₃)₃.¹⁰ Recently, we reported a new synthetic route for the formation of iminoalanes. (Cp*Al)₄,¹¹ synthesized by reduction of Cp*AlCl₂¹² with potassium, reacts with Me₃SiN₃ by an oxidative addition to give a dimeric iminoalane.¹³ This is the first compound having a degree of oligomerization of two. More recently, Shapiro and co-workers reported the synthesis of another dimeric iminoalane by alkane elimination.¹⁴ Considering the

- (8) Choquette, D. M.; Timm, M. J.; Hobbs, J. L.; Nicholson, T. M.;
 Olmstead, M. M.; Planalp, R. P. *Inorg. Chem.* **1993**, *32*, 2600.
 (9) Veith, M. *Chem. Rev.* **1990**, *90*, 3.
 (10) Waggoner, K. M.; Hope, H.; Power, P. P. Angew. Chem. **1988**, 100 (2010)

six-membered Al₃N₃ ring synthesized by Power et al., which can formally be described as being "quasiaromatic" due to its six π -electrons, dimeric iminoalanes, which have four π -electrons, could formally be described as "antiaromatic".

We were interested in examining the possibility of controlling the degree of oligomerization by the steric bulk of the azide reactant. Herein, we report the reactions of (Cp*Al)₄ using ⁱPr₃SiN₃, Ph₃SiN₃, and ^tBu₃-SiN₃.

Results and Discussion

The oxidative addition of ⁱPr₃SiN₃, Ph₃SiN₃, and ^tBu₃-SiN₃ to (Cp*Al)₄ with elimination of nitrogen at temperatures between 50 and 75 °C affords the dimeric iminoalanes (Cp*AlNSi i Pr₃)₂ (**1**), (Cp*AlNSiPh₃)₂ (**2**), and (Cp*AlNSi^tBu₃)₂ (3), respectively, in nearly quantitative yield.

$$(Cp*Al)_4 + 4R_3SiN_3 \xrightarrow[-4N_2]{} 2(Cp*AlNSiR_3)_2$$
$$R = {}^{i}Pr (1), Ph (2), {}^{t}Bu (3)$$

The compounds are soluble in common organic solvents. All compounds have been characterized by melting point, elemental analysis (C, H, N), IR, ¹H and ¹³C NMR, and mass spectroscopy. The mass spectra in all cases show the molecular ions (m/z 666 (1), 871 (2), and 750(3)). The ¹H NMR spectrum of compound **1** indicates that the Cp* ligand is η^5 -bonded to the aluminum since only one signal for the protons of the methyl groups is found. In contrast to these findings, there are three different signals in the ¹H NMR spectra of compounds **2** and **3**, indicating that the Cp* ligand is σ -bonded to the aluminum in these compounds. The solid-state structure of **3** is in accordance with this assumption.

Solid-State Structure of 3. Crystals of compound 3 suitable for an X-ray diffraction study were obtained by slow evaporation of a solution of **3** in toluene. Compound **3** is dimeric, with 1.5 molecules in the asymmetric unit. Both dimers have nearly identical geometries. Figure 1 shows the structure of one independent dimer. Bond lengths and angles are listed in Table 1. The Cp* rings are σ -bonded to the aluminum atoms, and the Al-C bond lengths (2.025-2.033 Å) are in the range of known Al-C distances.¹⁵ The Al-N

[®] Abstract published in Advance ACS Abstracts, November 1, 1996. (1) Cesari, M.; Cucinella, S. In The Chemistry of Inorganic Homo-

and Heterocycles; Haiduc, I., Sowerby, D. B., Eds.; Academic Press: New York, 1982; Vol. 1, Chapter 6.

⁽²⁾ Power, P. P. J. Organomet. Chem. 1990, 400, 49.

⁽³⁾ Al-Wassil, A.-A.; Hitchcock, P. B.; Sarisaban, S.; Smith, J. D.; Wilson, C. L. J. Chem. Soc., Dalton Trans. 1985, 1929.

⁽⁴⁾ Del Piero, G.; Cesari, M.; Dozzi, G.; Mazzei, A. J. Organomet. Chem. 1977, 129, 281.

⁽⁵⁾ Belgardt, T.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. Angew. Chem. 1993, 105, 1101; Angew. Chem., Int. Ed. Engl. 1993, 32. 1056

⁽⁶⁾ McDonald, T. R. R.; McDonald, W. S. Acta Crystallogr., Sect. B **1972**, *28*, 1619.

⁽⁷⁾ Waggoner, K. M.; Power, P. P. J. Am. Chem. Soc. 1991, 113, 3385

⁽¹⁰⁾ Waggonet, K. M.; Hope, H.; Power, P. P. Angew. Chem. 1988, 100, 1765; Angew. Chem., Int. Ed. Engl. 1988, 27, 1699.
(11) Schulz, S.; Roesky, H. W.; Koch, H. J.; Sheldrick, G. M.; Stalke, D.; Kuhn, A. Angew. Chem. 1993, 105, 1828; Angew. Chem., Int. Ed. Engl. 1993, 32, 1729.

⁽¹²⁾ Koch, H.-J.; Schulz, S.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.; Heine, A.; Herbst-Irmer, R.; Stalke, D.; Sheldrick, G. M. Chem. Ber. 1992, 125, 1107.

⁽¹³⁾ Schulz, S.; Häming, L.; Herbst-Irmer, R.; Roesky, H. W.; Sheldrick, G. M. Angew. Chem. 1994, 106, 1052; Angew. Chem., Int. Ed. Engl. 1994, 33, 969.

⁽¹⁴⁾ Fisher, J. D.; Shapiro, P. J.; Yap, G. P. A.; Rheingold, A. L. (14) Fisher, 5. D., Shapho, 7. S., Tar, G. T. Li, S. T. Li, S. Marker, S. Z. S., Shapho, J. F., Johnson, O.; Kennard, (15) Allen, F. H.; Davies, J. E.; Galloy, J. F.; Johnson, O.; Kennard,

O.; Macrae, C. F.; Mitchell, E. M.; Mitchell, G. F.; Smith, J. U.; Watson, D. G. J. Chem. Inf. Comput. Sci. 1991, 31, 187.

Figure 1. Molecular structure of **3** giving the numbering scheme used in Table 1. (Anisotropic displacement ellipsoids are drawn at the 50% probability level.)

Table 1. Selected Bond Lengths (Å) and Angles (deg) for 3

(409) 101 0			
N(1)-Si(1)	1.730(2)	N(1)-Al(2)	1.836(2)
N(1)-Al(1)	1.840(2)	Al(1)-N(2)	1.842(2)
Al(1) - C(70)	2.034(3)	N(2)-Si(2)	1.731(2)
N(2)-Al(2)	1.835(2)	Al(2)-C(80)	2.025(3)
Si(1)-N(1)-Al(2)	138.56(13)	Si(1)-N(1)-Al(1)	129.88(12)
Al(2) - N(1) - Al(1)	85.18(10)	N(1) - Al(1) - N(2)	92.86(10)
N(1) - Al(1) - C(70)	131.41(11)	N(2) - Al(1) - C(70)	125.89(11)
Si(2) - N(2) - Al(2)	129.29(12)	Si(2) - N(2) - Al(1)	138.93(13)
Al(2) - N(2) - Al(1)	85.17(10)	N(2) - Al(2) - N(1)	93.20(10)
N(2) - Al(2) - C(80)	130.74(11)	N(1) - Al(2) - C(80)	125.28(11)

bond lengths range from 1.835(2) to 1.842(2) Å and are longer than those in the other known dimeric iminoalanes.^{13,14} The iminoalane prepared with Me₃SiN₃ shows an almost planar four-membered ring.¹³ Also, the nitrogen atoms are nearly planar (sum of angles $359.2-358.1^{\circ}$). In compound **3** the two AlNAl triangles of the four-membered ring deviate from planarity by 19.5 and 19.1°, respectively. Here the nitrogen atoms deviate significantly from planarity (sum of angles 353.4 and 353.7°). This deviation from planarity is due to the steric demand of the bulky Si^tBu₃ groups. The N–Si distances (1.729–1.731 Å) are in the usual range of N–Si bond lengths.¹⁶

Experimental Section

General Comments. All manipulations were performed using general high-vacuum, glovebox, and Schlenk techniques. All solvents (including C_6D_6) were dried, distilled under nitrogen, and degassed prior to use. IR spectra were recorded on a Bio-Rad Digilab FTS-7, mass spectra on a Varian MAT CH5, and NMR spectra on a Bruker AM 250, respectively. Chemical shifts are reported in ppm and referenced to TMS. Melting points (uncorrected) were obtained in sealed capillaries on a HWS-SG 3000. Elemental analyses were determined by the analytical laboratory of the University of Göttingen. ¹Pr₃SiCl and Ph₃SiCl were available form Aldrich; ^tBu₃SiCl¹⁷ and (Cp*Al)₄¹¹ were prepared by literature methods. The azides have been described in the literature¹⁸ and were prepared by the following, alternative general method.

The silyl chloride (20 mmol) and NaN₃ (200 mmol) were heated in refluxing dimethoxyethane (DME) (60 mL) for 12 h. The mixture was filtered and the solvent evaporated *in vacuo* (50 mbar). In the case of ${}^{i}Pr_{3}SiN_{3}$ and ${}^{t}Bu_{3}SiN_{3}$ the

residues were distilled at 15 mbar to give the azides in 70–75% yield. Ph_3SiN_3 was crystallized from pentane at 25 °C to give a 65% yield of the corresponding azide.

Synthesis of (Cp*AlNSiR₃)₂ (1–3). To a suspension of (Cp*Al)₄ (1.00 mmol, 0.64 g) in toluene (50 mL) was added the trialkylsilyl (or triaryl) azide (4.00 mmol; 0.80 g of ⁱPr₃-SiN₃, 1.21 g of Ph₃SiN₃, and 0.97 g of ⁱBu₃SiN₃) using a syringe (in the case of the triphenylsilyl azide a solution of the azide in toluene (10 mL) was used). The suspension was heated slowly to 70 °C. Starting at 50 °C, the formation of gas was observed. After 30 min, the reaction was finished. The solvent was distilled *in vacuo* and the residue was dried for 12 h in high *vacuo*. All the compounds are obtained in nearly quantitative yield (>90%). Crystals of (Cp*AlNSiⁱBu₃)₂ are obtained by evaporating the solvent from the solution of the reaction slowly within 3 days.

(**Cp*AlNSiⁱPr₃**)₂ (1). IR (Nujol): 1466, 1304, 1261, 1094, 1043, 1016, 969, 918, 883, 805, 741, 706, 634, 593, 504 cm⁻¹. ¹H NMR (250 MHz, C₆D₆): 0.95 (m, 3H, ⁱPr), 1.24 (d, 18H, ⁱPr), 1.95 (s, 15H, Cp*). ¹³C NMR (63 MHz, C₆D₆): 12.7 (Cp*), 17.2 (ⁱPr), 20.6 (ⁱPr), 120 (Cp*). Mass spectrum (EI, 70 eV): m/z 666 (M⁺). Anal. Calcd for C₃₈H₇₂Al₂N₂Si₂: C, 68.5; H, 10.8; N, 4.2. Found: C, 67.5; H, 10.6; N, 3.9. Mp: 173 °C.

 $(\mathbf{Cp^*AINSiPh_3}_2$ (2). IR (Nujol): 1429, 1306, 1261, 1188, 1106, 1055, 1026, 948, 778, 737, 728, 704, 679, 626, 516 cm^{-1}. ^1H NMR (250 MHz, C_6D_6): 1.61 (s, 12H, Cp^*), 1.76 (s, 12H, Cp^*), 2.15 (s, 6H, Cp^*), 7.21 (m, 30H, aromatic). ^{13}C NMR (100 MHz, C_6D_6): 10.6 (Cp^*), 118.2 (Cp^*), 128-140 (m, Cp^*, Ph). Mass spectrum (EI, 70 eV): m/z 871 (M – H). Anal. Calcd for $C_{56}H_{60}Al_2N_2Si_2$: C, 77.2; H, 6.9; N, 3.2. Found: C, 76.0; H, 6.7; N, 3.2. Mp: 151 °C.

(**Cp*AlNSi'Bu**₃)₂ (3). IR (Nujol): 1467, 1379, 1366, 1214, 1123, 1001, 919, 914, 818, 788, 728, 694, 669, 613, 489, 464 cm⁻¹. ¹H NMR (250 MHz, C₆D₆): 1.07 (s, 12H, Cp*), 1.16 (s, 54H, 'Bu), 1.91 (s, 12H, Cp*), 2.10 (s, 6H, Cp*). ¹³C NMR (63 MHz, C₆D₆): 15.1 (Cp*), 22.7 ('Bu), 32.1 ('Bu), 122.4 (Cp*). Mass spectrum (EI, 70 eV): m/z 750 (M⁺). Anal. Calcd for C₄₄H₈₄Al₂N₂Si₂: C, 70.5; H, 11.2; N, 3.7. Found: C, 69.4; H, 10.9; N, 3.5. Mp: 246 °C.

X-ray Structure Determination of 3. Data were collected at -120 °C on a Stoe-Siemens-AED diffractometer with monochromated Mo K α radiation ($\lambda = 0.710$ 73 Å). The structure was solved by direct methods.¹⁹ All non-hydrogen atoms were refined anisotropically.²⁰ For the hydrogen atoms the riding model was used. The structure was refined against F^2 with a weighting scheme of $w^{-1} = \sigma^2(F_o^2) + (0.0574P)^2 + 3.7765P$ with $P = (F_o^2 + 2F_o^2)/3$. The *R* values are defined as $R1 = \sum ||F_o| - |F_c||/\sum |F_o|$ and $wR2 = [\sum w(F_o^2 - F_c^2)^2/\sum wF_o^4]^{0.5}$.

There are 1.5 toluene molecules in the asymmetric unit. The half one is disordered over the inversion center. They are refined with distance restraints. Crystal data for **3**: C₄₄H₈₄-Al₂N₂Si₂·C₇H₈, *M*_r = 843.41, *monoclinic*, space group *P*2/c, *a* = 23.432(11) Å, *b* = 17.364(9) Å, *c* = 21.004(10) Å, *β* = 113.76-(3)°, *V* = 7822(7) Å³, *Z* = 6, *ρ*(calcd) = 1.074 Mg m⁻³, *μ* = 0.135 mm⁻¹, *F*(000) = 2796, crystal size (mm) 0.3 × 0.5 × 0.5, 16 164 reflections collected, 10 223 unique reflections (*R*_{int} = 0.0524), 10 221 reflections and 35 restraints used for the refinement of 846 parameters, *S* = 1.021, *R*1 = 0.046 for *I* > 2*σ*(*I*), w*R*2 = 0.120 for all data, maximum/minimum residual density 0.324/ -0.239 e Å⁻³.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft, the Volkswagen Stiftung, and the BMBF for the financial support of this research.

Supporting Information Available: For **3**, tables of crystal data and structure refinement details, atomic coordinates, displacement parameters, and bond distances and angles (8 pages). Ordering information is given on any current masthead page.

OM960138J

⁽¹⁶⁾ Rademacher, R. Strukturen organischer Moleküle; VCH: Weinheim, Germany, 1987.

⁽¹⁷⁾ Weidenbruch, M.; Pesel, H.; Peter, W.; Steichen, R. J. Organomet. Chem. **1977**, 141, 9.

^{(18) (}a) Weidenbruch, M.; Pesel, H. Z. Naturforsch. **1978**, 33b, 1465. (b) Wiberg, N.; Kim, C.-K. Chem. Ber. **1986**, 119, 2983.

⁽¹⁹⁾ Sheldrick, G. M. SHELXS-90. Acta Crystallogr., Sect. A 1990, 46, 467.

⁽²⁰⁾ Sheldrick, G. M. SHELXL-93, University of Göttingen, 1993.