## α-Iminoacyl Ligands in Carbonylmetalates

Jean-Jacques Brunet,\* Antonella Capperucci, and Remi Chauvin

Laboratoire de Chimie de Coordination du CNRS, Unité No. 8241, liée par conventions à l'Université Paul Sabatier et à l'Institut National Polytechnique, 205 route de Narbonne, 31077 Toulouse Cedex, France

Received May 9, 1996<sup>®</sup>

Summary: Nucleophilic addition of lithium aldimine t-BuN=C(t-Bu)Li to  $Fe(CO)_5$ ,  $Mn_2(CO)_{10}$ , and  $Cr(CO)_6$ affords the corresponding a-iminoacyl carbonylmetalates characterized by NMR and IR spectroscopy. Reaction of these carbonylmetalates with Me<sub>3</sub>OBF<sub>4</sub> results in methylation of the acyl oxygen atom.

## Introduction

Since the discovery of the first Fischer carbene complexes,<sup>1</sup> considerable attention has been devoted to the reactivity of the metal-carbene bond and, more recently, to that of adjacent substituents.<sup>2</sup> Reactivity studies have particularly shown  $\alpha,\beta$ -unsaturated carbene complexes to have potential in a number of reactions.<sup>2,3</sup>

Alkylation of lithium (acyl)carbonylmetalates  $[R(COLi)M(CO)_n]$  (1) is the most general route for the synthesis of neutral Fischer carbene complexes.<sup>4</sup> The synthesis of complexes 1 in which the R group contains an  $\alpha$ , $\beta$ -unsaturated function is thus a possible route to  $\alpha,\beta$ -unsaturated carbene complexes. We became interested in the synthesis of carbonylmetalates 2 containing the unprecedented  $\alpha$ -iminoacyl ligand, akin to the  $\alpha$ -ketoacyl ligand, for metals of the first transition row.

Although some  $\alpha,\beta$ -unsaturated acylferrates are known,<sup>3,5</sup> only two examples of the sequence [(CO)<sub>4</sub>-FeCOCOZ]<sup>-</sup> have been reported. One is the (ethoxyoxalyl)tetracarbonylferrate (Z = OEt, stable as the sodium salt).<sup>6</sup> The second is the (pivaloylacyl)tetracarbonylferrate (Z = t-Bu) [1a]M (stable for M = PPN) obtained after a tedious procedure.<sup>7</sup> To the best of our knowledge, the  $\alpha$ -ketoacyl ligand has not been described for metalates of the manganese and chromium carbonyls series.8



We report the generation of [2a]Li, an imino-protected equivalent of [1a]Li, by reaction of a lithium aldimine

on Fe(CO)<sub>5</sub> and extension of this strategy to carbonylmetalates [2b]Li and [2c]Li derived from manganese and chromium carbonyls, respectively (Scheme 1).

## **Results and Discussion**

The lithium aldimine 3, generated from *t*-BuLi and t-BuNC,<sup>9</sup> reacts with Fe(CO)<sub>5</sub> to give the tetracarbonylferrate [2a]Li stereoselectively (yellow powder, 83% yield). Contrary to [1a]Li, [2a]Li is stable at least overnight at 55 °C in THF. It was characterized on the basis of NMR and IR analysis (see Experimental Section). In the <sup>13</sup>C NMR spectrum of [2a]Li (see Table 1), the carbonyl ligands are equivalent<sup>10</sup> while the *t*-Bu groups are not.

As depicted in Scheme 1, the analogous carbonylmetalates [2]Li have been obtained for manganese ([2b]Li, 51% yield, mixture of two isomers<sup>11</sup>) and chromium ([2c]Li, 74% yield), as well. The characteristic <sup>13</sup>C NMR data for [2a-c]Li are reported in Table 1. Their IR spectra display the characteristic  $v_{CO}$ absorptions expected for such lithium (acyl)carbonylmetalates.4

The reactivity of the new complexes [2]Li with electrophiles is currently being investigated. As a preliminary result, in situ alkylation of [2a]Li with Me<sub>3</sub>OBF<sub>4</sub> gives the stable methoxycarbene [2a]Me (mixture of two isomers)<sup>12</sup> in 45% isolated yield. By comparison, [1a]NMe<sub>4</sub> has been reported to react with electrophiles (e.g. FSO<sub>3</sub>Et) to give thermolabile products resulting from alkylation at the acyl oxygen atom.<sup>7</sup> On the contrary, [(CO)<sub>4</sub>FeCOCOOEt]<sup>-</sup>Na<sup>+</sup> is alkylated at the metal by reaction with CF<sub>3</sub>SO<sub>3</sub>Me.<sup>6</sup> For the chromium derivative [2c]Li, alkylation with Me<sub>3</sub>OBF<sub>4</sub> leads to the stable methoxycarbene [2c]Me (56% isolated yield) as a 70/30 mixture of two isomers.<sup>12</sup>

## **Experimental Section**

General Data. All reactions were performed under argon by standard Schlenk tube techniques, using solvents freshly distilled under argon. Infrared spectra were recorded with a

S0276-7333(96)00343-3 CCC: \$12.00 © 1996 American Chemical Society

<sup>&</sup>lt;sup>®</sup> Abstract published in Advance ACS Abstracts, November 1, 1996. (1) Fischer, E. O.; Maasböl, A. Angew. Chem., Int. Ed. Engl. 1964, 3. 580.

<sup>(2)</sup> Comprehensive Organometallic Chemistry II; Abel, E. W., Stone,

<sup>(3)</sup> Completensive Organometality Chemistry II, Abet, E. W., Stone, F. G. A, Wilkinson, G., Eds.; Pergamon: New York, 1995; Vol 12.
(3) See for example: Park, J.; Kang, S.; Whang, D.; Kim, K. Organometallics 1991, 10, 3413–3415 and references therein.
(4) Fischer, H. In Transition Metal Carbene Complexes; Verlag

Chemie: Weinheim, Germany, 1983; p 1 and references therein. (5) Mitsudo, T.; Watanabe, H.; Sasaki, T.; Yoshinobu, Y.; Takegami, Y.; Watanabe, Y. *Organometallics* **1989**, *8*, 368–378 and references

therein.

<sup>(6)</sup> Sabo-Etienne, S.; Larsonneur, A.-M.; des Abbayes, H. J. Chem. Soc., Chem. Commun. 1989, 1671-1673.

<sup>(7)</sup> Dötz, K. H.; Wenicker, U.; Müller, G.; Alt, H. G.; Seyferth, D. Organometallics 1986, 5, 2570-2572.

<sup>(8)</sup> Some neutral complexes with  $\alpha$ -ketoacyl ligands have been reported; see for example: Sheridan, J. B.; Johnson, J. R.; Beth, J.; Handwerker, B. M.; Geoffroy, G. L. Organometallics 1988, 7, 2404-2411 and references therein.

<sup>(9)</sup> Niznik, G. E.; Morison, W. H.; Walborsky, H. M. J. Org. Chem. **1974**, 39, 600-604.

<sup>(10)</sup> The carbonyl ligands of  $[(CO)_4 FeCOCOZ]^-$  (Z = OEt, *t*-Bu) have also been reported to be equivalent by <sup>13</sup>C NMR analysis; see refs 6 and 7, respectively.

<sup>(11)</sup> This isomerism is suggested to be due to the cis and trans positions of the Mn(CO)<sub>5</sub> group and the acyl ligand on the Mn(CO)<sub>4</sub> center.4

<sup>(12)</sup> It is not clear whether this isomerism is due to a syn/anti isomerism at the imino group or to different orientations of the methyl (from MeO) in the plane of the carbene ligand.<sup>4</sup>



| Table 1 | <b>1</b> . <sup>13</sup> | Ċ | NMR | Data | for | Comp | lexes | [2a- | c]E |
|---------|--------------------------|---|-----|------|-----|------|-------|------|-----|
|---------|--------------------------|---|-----|------|-----|------|-------|------|-----|

|                                                                                                                                                                  | <sup>13</sup> C NMR, <sup><i>a</i></sup> $\delta$ (ppm) |                             |                             |                    |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|-----------------------------|--------------------|--|--|
| complex                                                                                                                                                          | acyl or carbenic C                                      | imino C                     | terminal CO                 |                    |  |  |
| <i>t</i> -BuN=C( <i>t</i> -Bu)(COLi)Fe(CO) <sub>4</sub> [ <b>2</b> a]Li<br><i>t</i> -BuN=C( <i>t</i> -Bu)(COLi)Mn <sub>2</sub> (CO) <sub>9</sub> [ <b>2</b> b]Li | 298.4<br>$324.4^{b}$                                    | 177.2<br>177.1 <sup>b</sup> | $221.2 \\ 227.5^b$          | 239.3 <sup>b</sup> |  |  |
| t-BuN=C( $t$ -Bu)(COLi)Cr(CO) <sub>5</sub> [2c]Li<br>t-BuN=C( $t$ -Bu)(COMe)Fe(CO) <sub>4</sub> [2a]Me                                                           | 332.9<br>335.2 <sup>c</sup>                             | 180.2<br>174.5 <sup>c</sup> | 221.8<br>213.9 <sup>c</sup> | 225.3              |  |  |
| t-BuN=C( $t$ -Bu)(COMe)Cr(CO) <sub>5</sub> [ <b>2c</b> ]Me                                                                                                       | 367.0 <sup>a</sup>                                      | 172.64                      | 217.8 <sup>a</sup>          | $223.9^{a}$        |  |  |

<sup>*a*</sup> Brucker AMX 400 at 100.6 MHz. <sup>*b*</sup> Major isomer.<sup>11</sup> The minor isomer exhibits signals at 324.4, 170.5, 227.4, and 239.4 ppm. <sup>*c*</sup> Major isomer.<sup>12</sup> The minor isomer exhibits signals at 333.2, 174.5, and 214.1 ppm. <sup>*d*</sup> Major isomer. The minor isomer exhibits signals at 371.5, 175.2, 216.7, and 223.2 ppm.

Perkin-Elmer 1725 IRFT spectrometer using a  $CaF_2$  cell (0.05 mm). NMR spectra were recorded on an AC 200, AM 250, or AMX 400 Bruker instrument.

**Synthesis of Complexes. Complexes [2]Li.** In a typical experiment, a THF solution of the lithium aldimine **3** is prepared from *t*-BuLi (1.2 mmol) and *t*-BuNC (1.2 mmol) according to the procedure of Walborsky et al.<sup>9</sup> The solution is cooled to -78 °C, and iron pentacarbonyl (1.2 mmol) is added. The solution is then warmed slowly to -15 °C and diluted with cold pentane. After removal of the solvents, the yellow slurry is washed with cold pentane (4 × 3 mL) to yield [**2a**]Li as a pale yellow powder (340 mg, 83%). Attempts to obtain crystals of [**2a**]Li suitable for X-ray diffraction study were unsuccessful. Similarly attempts to exchange Li<sup>+</sup> with either *n*-Bu<sub>4</sub>N<sup>+</sup> or PPN<sup>+</sup> failed. Complexes [**2b**]Li and [**2c**]Li were prepared by a similar procedure but in diethyl ether for [**2b**]Li.<sup>13</sup>

[2a]Li. <sup>1</sup>H NMR (THF- $d_8$ , 400 MHz,  $\delta$  (ppm)): 1.14 (bs, 9H), 1.23 (bs, 9H). <sup>13</sup>C NMR (THF- $d_8$ , 100.6 MHz,  $\delta$  (ppm)): 31.4; 32.7; 38.9; 56.2; 177.2; 221.2; 298.4. <sup>7</sup>Li NMR (THF- $d_8$ , 155.5 MHz,  $\delta$  (ppm)): 3.61 (bs). IR (THF,  $\nu_{CO}$  (cm<sup>-1</sup>)): 1902 (s), 1912 (s), 1934 (m), 2021 (m).

[2b]Li (Mixture of Two Isomers). <sup>1</sup>H NMR ( $C_6D_6$ , 400 MHz,  $\delta$  (ppm)): 1.56 (bs, 9H); 1.59 (bs, 9H). Signals of Et<sub>2</sub>O complexed at lithium appear at 1.10 (t, 6H) and 3.38 (bs, 4H). <sup>13</sup>C NMR ( $C_6D_6$ , 100.6 MHz,  $\delta$  (ppm)): Major isomer, 14.9, 31.4, 32.8, 38.9, 55.9, 65.9, 177.1, 227.5, 239.3, 324.4; minor isomer, 14.9, 26.5, 30.6, 36.9, 57.1, 65.9, 170.5, 227.4, and 239.4, 324.4. IR (THF,  $\nu_{CO}$  (cm<sup>-1</sup>)): 1916 (w), 1952 (sh), 1976 (vs), 1994 (m), 2013 (m), 2047 (w), 2077 (w).

[**2c**]**Li**. <sup>1</sup>H NMR (THF- $d_8$ , 400 MHz,  $\delta$  (ppm)): 1.11 (bs, 9H); 1.19 (bs, 9H). <sup>13</sup>C NMR (THF- $d_8$ , 100.6 MHz,  $\delta$  (ppm)): 31.1;

33.0; 37.9; 55.4; 180.2; 221.8; 225.3; 332.9. IR (THF,  $\nu_{CO}$  (cm<sup>-1</sup>)): 1890 (sh), 1906 (vs), 1917 (m); 1979 (m); 2040 (w).

**Complexes** [2]**Me.** In a typical experiment, a solution of  $Me_3OBF_4$  (1.3 mmol) in  $CH_2Cl_2$  (15 mL) is added at -78 °C to a solution of [2a]Li (1.2 mmol) in THF (6 mL). The reaction mixture is warmed slowly to 0 °C, and the solvents are evaporated. Extraction with cold pentane and evaporation of the latter yield [2a]Me as an orange oil.

[2a]Me (Mixture of Two Isomers). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 200 MHz, 288 K,  $\delta$  (ppm)): Major isomer, 1.31 (bs, 9H), 1.35 (bs, 9H), 4.00 (bs, 3H); minor isomer 1.31 (bs, 9H), 1.35 (bs, 9H), 3.16 (bs, 3H). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz, 288 K,  $\delta$  (ppm)): Major isomer, 30.7, 31.8, 57.0, 72.0, 81.6, 174.5, 213.9, 335.2; minor isomer, 30.9, 32.0, 58.7, 70.2, 77.5, 174.5, 214.1, 333.2. IR (pentane,  $\nu_{CO}$  (cm<sup>-1</sup>)): 1955 (s), 1969 (s), 1995 (m), 2061 (m).

[2c]Me (Mixture of Two Isomers). <sup>1</sup>H NMR ( $C_7D_8$ , 400 MHz, 258 K,  $\delta$  (ppm)): Major isomer, 1.36 (bs, 9H), 1.38 (bs, 9H), 3.47 (bs, 3H); minor isomer, 1.43 (bs, 9H), 1.46 (bs, 9H), 4.12 (bs, 3H). <sup>13</sup>C NMR (THF- $d_8$ , 100.6 MHz, 258 K,  $\delta$  (ppm)): Major isomer, 29.5, 31.0, 40.3, 57.0, 69.8, 172.6, 217.8, 223.9, 367.0; minor isomer, 30.4, 32.4, 40.4, 57.1, 67.1, 175.2, 216.7, 223.2, 371.5. IR (pentane,  $\nu_{CO}$  (cm<sup>-1</sup>)): 1931 (sh), 1956 (vs), 1987 (vs), 2066 (s).

**Acknowledgment.** The authors thank Drs. N. Lugan, R. Mathieu, and D. Neibecker for helpful discussions. A.C. thanks the Commision of the European Communities for a Research Fellowship.

**Supporting Information Available:** NMR spectra (28 pages). Ordering information is given on any current masthead page.

OM960343Z

<sup>(13)</sup> Fischer, E. O.; Offhaus, E. Chem. Ber. 1969, 102, 2449-2455.