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Summary: Thermolysis of Ruz(CO)s(u-PPh)(C.BUY) (1)
in toluene afforded Rus(CO)g(u-PPhy)2(C.BuUY), (2) in
which the acetylide ligands are coordinated to a novel
64-electron butterfly platform. Upon thermolysis, this
complex underwent C—C bond coupling to give the diyne
complexes Ru4(CO)s(u-PPhy)2(C4But) (3) and Rus(CO)7(u-
PPh,),(C4BuUt) (4) through sequential CO elimination
and fragmentation, respectively.

The coupling of terminal or functionalized metal
acetylides via methodologies such as oxidative! or
Cadiot—Chodkiewicz? coupling has been extensively
exploited recently to generate polycarbon ligand com-
plexes and new molecular materials possessing ex-
tended carbon unsaturation.® In principle, it should be
possible to effect head-to-head or tail-to-tail linkage of
acetylides or polyacetylides coordinated in a multisite
fashion on a binuclear or cluster framework to synthe-
size new multimetallic polycarbon complexes in which
the full potential of o- and z-electrons of the alkynyl
fragments are used in bonding. This strategy has as
yet been little exploited in organometallic chemistry.*
In this communication, we describe the stereospecific
high-yield head-to-head intermolecular coupling of u-5*:
n?-alkynyl groups in Ruy(CO)s(u-PPh2)(C=CBuUY)> (1)
molecules to produce an eight-electron-donor butadiyne
ligand on an Ru, framework. Although the cleavage of
diynes by transition-metal clusters has been reported,®
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the formation of diynes from intermolecular coupling
of acetylides is, to our knowledge, rare.”

Thermolysis of 1 in toluene solution at reflux for 4 h
afforded a 1:1 mixture of diacetylide complex Ru4(CO)q(u-
PPh,),(C,BuY), (2) and diyne metal complex Ru4(CO)g(u-
PPhy),(C4BuUt) (3) as a mixture of red crystalline
materials in 57% yield after recrystallization from CHo-
Cl,; and methanol at room temperature. Attempts to
separate these cluster complexes by chromatography
proved fruitless because of the similar R¢ values and the
rapid decomposition of 3 on contact with silica gel.
However, thermolysis of the mixture in toluene for 1 h
led to the isolation of 3 with =95% purity and in nearly
guantitative yield. This suggested that complex 2 is an
intermediate prior to the formation of 3. Accordingly,
pure 2 was obtained by treatment of the mixture with
carbon monoxide in toluene (1 atm, 80 °C) for 5 min.
Under such conditions, complex 3 present in the mixture
was found to convert into triruthenium cluster
RUg(CO)7(/,L-PPh2)2(C4BUt2) (4) in 90% yield, leaving 2
intact. The clusters 2 and 4 can then be separated using
chromatographic workup followed by recrystallization.
These stepwise transformations can be summarized:

2Ru,(CO)4(u-PPh,)(C,Bu") —
1
Ru,(CO)g(u-PPh,),(C,BUY), —
2

Ru4(CO)8(M'PPh2)2(C4BUt2) -
3

Ru,(CO)g(u-PPh,),(C,BU’,) + Ru,(CO)y,
4

The reaction sequences 2 — 3 — 4 were further verified
by conversion of a pure sample of 2 in toluene and by
treatment of a pure sample of 3 with CO under identical
conditions.

Compounds 2—4 were initially characterized by spec-
tral methods.® Single-crystal X-ray diffraction studies
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Figure 1. Molecular structure of 2 and the atomic
numbering scheme. The phenyl groups of the phosphido
ligands are omitted for clarity. Selected bond lengths (A):
Ru(1)—Ru(2) = 3.0207(4), Ru(1)—Ru(3) = 2.7815(4), Ru-
(1)—Ru(4) = 3.0437(4), Ru(2)—Ru(4) = 3.0974(4), Ru(3)—
Ru(4) = 2.8575(4), Ru(1)—P(1) = 2.366(1), Ru(2)—P(1) =
2.344(1), Ru(2)—P(2) = 2.358(1), Ru(4)—P(2) = 2.302(1), Ru-
(1)—C(10) = 2.052(4), Ru(2)—C(10) = 2.293(4), C(10)—C(11)
= 1.209(6), Ru(1)—C(16) = 2.222(4), Ru(3)—C(16) = 2.205-
(4), Ru(4)—C(16) = 1.968(4), Ru(1)—C(17) = 2.324(4), Ru-
(3)—C(17) = 2.214(4), C(16)—C(17) = 1.296(6).

on 2 and 3 were carried out to confirm their molecular
structures. As indicated in Figure 1,° the cluster
framework of 2 shows a flattened-butterfly geometry
with the Ru—Ru distances adopting a pattern of two
normal Ru—Ru bonds (2.7815(4)—2.8575(4) A) and three
elongated Ru—Ru bonds (3.0207(4)—3.0974(4) A). This
skeletal arrangement is similar to that of the 64e,
electron-rich cluster compounds Rus4(CO)13(u-PR2)2 (R =
Ph, Et, Cy, Pri).1° In addition, the cluster contains two
multisite-bound acetylide ligands. The acetylide C(16)-
C(17), which possesses a us-?-bonding mode,!! lies on
the Ru(1)—Ru(3)—Ru(4) triangle with its a-carbon con-
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=152 Hz, 1P), 188.3 (Jp—p = 152 Hz, 1P). Anal. Calcd for C43Hzs07P2-
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Figure 2. Molecular structure of 3 and the atomic
numbering scheme. Selected bond lengths (A): Ru(1)—Ru-
(2) = 2.814(1), Ru(1)—Ru(3) = 2.875(1), Ru(2)—Ru(3) =
2.924(1), Ru(2)—Ru(4) = 2.844(1), Ru(3)—Ru(4) = 2.821-
(1), Ru(1)—P(1) = 2.319(1), Ru(3)—P(1) = 2.352(2), Ru(2)—
P(2) = 2.331(1), Ru(4)—P(2) = 2.313(2), Ru(1)—C(10) =
2.053(5), Ru(2)—C(10) = 2.430(5), Ru(1)—C(11) = 2.361-
(5), Ru(2)—C(11) = 2.183(5), Ru(3)—C(11) = 2.363(5), Ru-
(2)---C(12) = 2.700(5), Ru(3)—C(12) = 2.186(5), Ru(4)—C(12)
= 2.247(5), Ru(3)—C(13) = 2.371(5), Ru(4)—C(13) = 2.106-
(5), C(10)—C(11) = 1.332(7), C(11)—C(12) = 1.366(7),
C(12)—C(13) = 1.321(7).

nected to the Ru(4) atom via a o-bond and with the C—C
vector perpendicular to the Ru(1)—Ru(3) bond. The
other, C(10)—C(11), which adopts the less common ;-
n2-mode,*? resides on the Ru(1)—Ru(2) bond and pushes
the phosphido bridge away from the triangular plane
defined by Ru(1), Ru(2), and Ru(4) atoms. The lengths
of the —C=C- bonds in the acetylide ligands reflect the
coordination mode®1112 with the more highly coordi-
nated uz-y%-bond (C(16)—C(17) = 1.296(6) A) being
longer than the uz-n2-bond (C(10)—C(11) = 1.209(6) A).
Interestingly, the acetylide ligands also align in a
configuration with the sterically bulky tert-butyl sub-
stituents pointing away from each other.

The molecular structure of the diyne complex 3 is
shown in Figure 2.13 The cluster, with 62 valence
electrons, adopts a butterfly geometry similar to that
of 2. The four peripheral Ru—Ru bonds span the narrow
range 2.814(1)—2.875(1) A and are shorter than the
hinge Ru(2)—Ru(3) bond (2.924(1) A). Although the
basic cluster framework is retained, one phosphido
ligand has migrated to the Ru—Ru edge parallel to the
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14.33 cm~L. The intensities were measured on a crystal with dimen-
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second phosphido ligand, and the phosphido-bridged
Ru—Ru bonds (2.875(1) and 2.844(1) A) are noticeably
shorter than those of 2, consistent with an increase of
bond order through alleviation of excess electrons from
the metal—metal antibonding orbital.1* The butadiyne
ligand, generated from the end-to-end coupling of acetyl-
ide ligands, now acts as a us-bridge across the Ruy
surface. The diyne C4 backbone is slightly nonlinear
with angles C(10)—C(11)—C(12) = 158.9(5)° and C(11)—
C(12)—C(13) = 156.2(5)°. The C—C bond lengths within
this C4 unit are consistent with the parameters observed
for other coordinated diynes,'®> where the net effect of
coordination is to elongate the outer formal triple bonds
(C(10)—C(11) = 1.332(7) A and C(12)—C(13) = 1.321(7)
A in 3) and shorten the inner Cs—Csp single bond
(C(11)—C(12) = 1.366(7) A). In fact, C(10)—C(11) and
C(12)—C(13) in 3 are both longer than the acetylenic
triple bonds in 2 from which they are derived. It is of
interest to note that the Ru(2)—C(12) bond (2.700(5) A)
is significantly longer than the rest of the Ru—C
distances (2.053(5)—2.430(5) A), indicating the absence
of direct bonding. However, if we ignore this nonbond-
ing interaction, the cluster core skeleton can be consid-
ered to possess a C, axis passing through the center of
the diyne ligand and the middle of the hinge Ru(2)—
Ru(3) bond. In fact, the observation of only one 'H NMR
signal at ¢ 1.63 due to the But groups and one 3P NMR
signal at 6 194.8 even at 190 K indicates the formation
of such dynamic C, symmetry in solution.

The isolation and characterization of complexes 2 and
3 provide an opportunity to explore the reactions taking
place at the Ru, metal centers. We propose that
dimerization with CO loss leads to the formation of an
intermediate (A) via a side-by-side and head-to-head
alignment of 1 and the formation of two Ru-Ru interac-
tions (Scheme 1). Upon further removal of a CO ligand
the intermediate A would strengthen the bonding
between each Rua(u-PPhy)(CCBuUY) unit through the
simultaneous generation of a third Ru—Ru bond at the
hinge position. Phosphido ligand migration, and forma-
tion of one uz-n?-acetylide ligand, eventually leads to the
formation of 2. With loss of CO from 2 the acetylide
ligands then undergo head-to-head coupling to afford
the diyne ligand on cluster 3. This diyne ligand is
considered as an eight-electron donor and is bonded to
all four ruthenium atoms, but in an almost linear
fashion, quite different from that observed in other
diyne clusters such as Ru4(CO)10(u4-PR)(C4R’2) (R = C»p-
But, Ph; R' = BUt, Ph, SiMej3),'® which contains a square-
planar metal framework with a highly distorted C4
skeleton.

The degradation of 3 and formation of 4 is somewhat
unexpected but may involve the conversion of the
butterfly metal framework to a 64-electron spiked-
triangular geometry via addition of CO, followed by
removal of the pendant “Ru(CO),” unit as Ruz(CO)1».
The assignment of 4 follows directly from the similarity
of spectroscopic data with those of the related, structur-
ally characterized derivatives Ru3(CO)7(u«-PPh3)2(RC4R")
(R=R =PhandR =H, R =Ph, But, and Pri).16 The
dynamic process of the diyne ligand of 4, which is
similar to the windshield wiper motion of the us-n?
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alkynes,” was revealed by the observation of only two
doublets at 6 275.8 and 188.3 with a coupling constant
2Jp_p of 152 Hz at the limiting temperature of 203 K
and one broad 3P NMR resonance at 6 230 at room
temperature.

The high-yield head-to-head intermolecular coupling
of u-n-alkynyl groups in converting dinuclear 1 to
tetranuclear diyne cluster 3 may be applicable to the
generation of other polyyne ligands on a polymetallic
framework from wu-n?-butadiynyl or higher polyynyl
complexes.’® We are currently exploring the synthesis
of clusters bearing polyunsaturated R(C=C),R hydro-
carbyls via such reactions.
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