Carbon-**Carbon Bond Formation** *via* **the Transmetalation of an Alkenyl Group on Azazirconacyclopentene**

Takahiro Honda and Miwako Mori*

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Received May 14, 1996[®]

Summary: The transmetalation of azazirconacyclopentene 1, prepared by inserting alkyne 8 into azazirconacyclopropane 7, was realized, and the zirconium-*carbon bond of complex 1 was transformed to a carbon*-*carbon bond using a copper(I) salt. Thus, both allyl and formyl groups can be introduced into alkyne carbons in a highly stereoselective manner in a one-pot reaction.*

The transmetalation of an alkyl or alkenyl group from one metal to another metal is a useful tool in synthetic organic chemistry. Various carbon-carbon bond formations which involve transmetalation from an organozirconium complex to other metals have been reported.^{1,2} Since these new carbon-carbon bonds are formed with a retention of configuration, highly stereocontrolled products are obtained. Lipshutz^{2a} and Takahashi^{2b,c} independently reported that the allyl group can be introduced into alkyl- and alkenyl-zirconium bonds in the presence of a copper(I) salt (Scheme 1).

Azazirconacyclopentene **1**, prepared by inserting an alkyne into azazirconacyclopropane **7**, has been useful in synthetic organic chemistry.3,4 There are two types of transmetalations involving azazirconacyclopentene **1**. One is transmetalation of the zirconium-carbon bond into another metal-carbon bond (route a), and the other is transmetalation of the zirconium-nitrogen bond into another metal-nitrogen bond (route b). If the alkenyl group of azazirconacyclopentene **1** transmetalates from zirconium to copper, the alkenylcopper complex $2 \left(M X_{n-1} \right)$ $=$ Cu) is formed, which reacts with allyl halide to give the *γ*-allylated (α-silylallyl)amine **4** (R^3 = allyl) (Scheme 2). We previously reported a novel synthesis of azazirconacyclopentene **1** from η^2 -iminosilaacylcomplex **6** by a one-pot reaction:4a the insertion of an isonitrile into the zirconium-silyl bond of silylzirconium complex **5**,

which was prepared from Cp_2ZrCl_2 and silyllithium, gives *η*2-iminosilaacylcomplex **6**. Treatment of **6** with

 $LiEt₃BH$ in the presence of alkyne affords azazirconacyclepentene **1**. In this reaction, azazirconacyclopropane **7** is formed as an intermediate.

We report here a novel carbon-carbon bond formation using the transmetalation of azazirconacyclopentene **1**.

An ethereal solution of complex **1**, prepared *in situ* from *η*2-iminosilaacyl complex **6** and 4-octyne (**8a**; 2.0 equiv) in the presence of LiEt₃BH (2.0 equiv), was added to an ethereal solution of allyl chloride (2.0 equiv) in the presence of CuCl (2.0 equiv), and the solution was stirred at room temperature for 1 h. After an aqueous workup, the *γ*-allylated (α-silylallyl)amine **4a** was obtained in 75% yield (Scheme 3; Table 1, run 1).⁵ The stereochemistry of compound **4a** was determined by NMR measurement (NOESY), and the results indicated

[®] Abstract published in *Advance ACS Abstracts*, November 15, 1996. (1) (a) Schwartz, J.; Loots, M. J.; Kosugi, H. *J*. *Am*. *Chem*. *Soc*. **1980**, *102*, 1333–1340. (b) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N. *J. Am. Chem. Soc.* **1987**, *109*, 2393–2401. (c) Fagan, P. J.; Nugent, W. A.; Calabrese, J. C. *J. Am. Chem. Soc.* **1984**, *16*, *1*

^{(2) (}a) Venanzi, L. M.; Lehmann, R.; Keil, R.; Lipshutz, B. H. *Tetrahedron Lett*. **1992**, *33*, 5857-5860. (b) Takahashi, T.; Kotora, M.; Kasai, K.; Suzuki, N. *Tetrahedron Lett*. **1994**, *35*, 5685-5688. (c) Kasai, K.; Kotora, M.; Suzuki, N.; Takahashi, T. *J*. *Chem*. *Soc*.*, Chem*. *Commun*. **1995**, 109-110. (d) Takahashi, T.; Hara, R.; Nishihara, Y.; Kotora, M. *J*. *Am*. *Chem*. *Soc*. **1996**, *118*, 5154. (e) Lipschutz, B.; Segi,

M. *Tetrahedron* **1995**, 51, 4407.

(3) (a) Jensen, M.; Livinghouse, T. *J. Am. Chem. Soc.* **1989**, 111,
 4495 – 4496. (b) Ito, H.; Taguchi, T.; Hanzawa, Y. *Tetrahedron Lett.*
 1992, 33, 4469–4472. (c) Buchwald, S. L.

^{(4) (}a) Honda, T.; Satoh, S.; Mori, M. *Organometallics* **1995**, *14*, 1548-1550. (b) Honda, T.; Mori, M. *J*. *Org*. *Chem*. **1996**, *61*, 1196- 1197.

Table 1. Allylation of 1a in the Presence of CuCl

that the reaction proceeded in a highly regio- and stereoselective manner. When the same reaction was carried out in the presence of a catalytic amount of CuCl (0.3 equiv), allylation product **4a** was obtained in high yield (run 2, 86% yield). On the other hand, in the absence of CuCl, compound **4a** was not obtained (run 3) and $(\alpha$ -silylallyl)amine **10**, which is a hydrolyzed

product of **1a**, was obtained in 85% yield. The use of allyl phosphate **9b** instead of allyl chloride **9a** gave the same product, **4a**, in 88% yield (run 4). However, allyl acetate **9c** did not give the desired product **4a** (run 5). These results indicate that the reaction proceeds *via* the alkenyl copper complex **2a** generated by transmetalation of the alkenyl group of complex **1a** from zirconium to copper.

Complex **1a** was reacted with various allyl halides **11** in the presence of a catalytic amount of CuCl (0.3 equiv), and the results are shown in Table 2. Various *γ*-allylated $(\alpha$ -silylallyl)amines **12** were obtained in high yields. When 1-chloro-3-methyl-2-butene (**11c**) was used as the allyl halide, two regioisomers, **12c** and **12c**′, were obtained in a ratio of 1:2 (Table 2, run 3). The allylation of various azazirconacyclopentenes **1**, prepared *in situ* from alkynes **8** and *η*2-iminosilaacyl complex **6**, was carried out in the presence of CuCl

Table 2. Reaction of 1a with Various Allyl Halides in the Presence of CuCl (0.3 Equiv)

Table 3. Allylation of Various Azazirconacyclopentenes 1b-**g Prepared from 6** and Alkyne 8 in the Presence of LiEt₃BH

^a Allene **13** was obtained in 12% yield (Scheme 4).

Figure 2.

(Table 3). The (*γ*-allyl-R-silylallyl)amines **4** were obtained stereoselectively in good to moderate yields. The reaction of complex **1e**, prepared from complex **6** and alkyne **8e** in the presence of LiEt₃BH, with allyl chloride **9a** gave (*γ*-allyl-R-silyl)allylamine **4e** in good yield. The new carbon-carbon bond would be formed on the alkenyl carbon of 4e by Suzuki-Miyaura coupling⁶ of **4e** and an aryl or alkenyl halide in the presence of Pd- $(0).7$

The reaction of **1f** with allyl chloride **9a** in the presence of CuCl (2.0 equiv) gave *γ*-allylated allylamine

⁽⁵⁾ Spectral data for **4a:** IR (neat) *ν* 3416, 1600, 1500 cm-1; 1H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta\ 0.55 \text{ (t, } J = 7.3 \text{ Hz}, 3 \text{ H}), 0.85 \text{ (t, } J = 7.3 \text{ Hz}, 3 \text{ H}), 0.90-1.00 \text{ (m, } 2 \text{ H}), 1.10 \text{ (s, } 9 \text{ H}), 1.20-1.40 \text{ (m, } 2 \text{ H}), 1.63 \text{ (m, } 1 \text{ H}), 1.85-1.95 \text{ (m, } 2 \text{ H}), 1.98-2.07 \text{ (m, } 1 \text{ H}), 2.89 \$ H), 3.39 (dd, *J* = 15.2, 5.1 Hz, 1 H), 3.81 (d, *J* = 8.8 Hz, 1 H), 4.77 (d, *J* = 8.8 Hz, 1 H), 5.10-5.20 (m, 2 H), 5.79-5.90 (m, 1 H), 6.50 (d, *J* = 7.8 Hz, 2 H), 6.61 (t, *J* = 7.1 Hz, 1 H), 7.08 (t, *J* = 7.8 Hz, 2 H), 7.30–7.50 (m, 6 H), 7.62–7.66 (m, 2 H), 7.70–7.74 (m, 2 H); ¹³C NMR (67.8) MHz, CDCl3) *δ* 14.8, 18.9, 20.9, 23.3, 28.4, 33.7, 34.1, 35.6, 43.1, 113.1, 116.4, 116.7, 127.3, 127.6, 128.9, 129.3, 129.6, 131.9, 133.4, 133.7, 134.4, 136.6, 137.1, 137.1, 148.4; MS *m*/*z* 495 (M⁺), 454, 345, 256 (bp); HRMS (EI) calcd for C34H45NSi 495.3332, found 495.3307.

⁽⁶⁾ Miyaura, N.; Suzuki, A. *Chem*. *Rev*. **1995**, *95*, 2457-2483. (7) Brown, S. D.; Armstrong, R. W. *J*. *Am*. *Chem*. *Soc*. **1996**, *118*, 6331.

4f in 41% yield along with allene **13** in 12% yield (Table 3, run 5). The use of a catalytic amount of CuCl decreased the yield of **4f** and increased the yield of the allene **13** (Table 4, run 2). In the absence of allyl chloride, but in the presence of CuCl (1.5 eq.), allene **13** was obtained in 50% yield (Scheme 4). Allene **13** may be formed from alkenylzirconium complex **14** coordinated by the oxygen of the benzyloxy group. In this case, the amino group of **1f** $(R^1 = R^2 = CH_2OBn)$ would transmetalate from zirconium to copper (Scheme 1, path b) to produce **14**. It means that azazirconacyclopentene **1** is in a state of equilibrium with alkylzir-

conium complex **3** and alkenylcopper complex **2** in the presence of CuCl.

These results indicate that two functional groups, a formyl group and an allyl group, can be introduced onto alkyne carbons in high yield with high regio- and stereoselectivity, using a one-pot reaction.

Figure 3.

Further studies are in progress.

Supporting Information Available: Text giving synthetic details and spectroscopic data for the compounds prepared in this paper (7 pages). Ordering information is given on any current masthead page.

OM960364T