Oxidation of Diorganopalladium(II) Complexes by Water and Halogens: Reactions Involving Methyl Group Transfer and Structural Studies of Hydrogen-Bonded Adducts Formed by Aryl Alcohols with the Pallada(IV)cyclopentane Complex

 $Pd(CH_2CH_2CH_2CH_2) (OH)$ {(pz)₃BH}</sub> ([(pz)₃BH]⁻ = **Tris(pyrazol-1-yl)borate)**

Allan J. Canty,*,† Hong Jin,† Andrew S. Roberts,† Brian W. Skelton,‡ and Allan H. White‡

Department of Chemistry, University of Tasmania, Hobart, Tasmania, Australia, and Department of Chemistry, University of Western Australia, Nedlands, WA 6907, Australia

Received July 15, 1996[®]

The first observations of oxidation of palladium(II) by water are reported. The pallada- (II)cyclic complex ion $[Pd(CH_2CH_2CH_2CH_2)(pz)_3BH]$ $[(pz)_3BH = tris (pyrazol-1-yl)borate)]$

is oxidized by water in acetone or tetrahydrofuran to form $Pd(CH_2CH_2CH_2CH_2(OH){D_3}$

BH} and hydrogen, and oxidation by hydrogen peroxide gives the same complex. Oxidation

by halogens results in the formation of $Pd(CH_2CH_2CH_2CH_2)(X){pz}$ ₃BH} (X = Cl, Br, I), and these complexes, together with the hydroxopalladium(IV) complex, represent the first examples of stable dihydrocarbylpalladium(IV) complexes. The octahedral complex

 $Pd(CH_2CH_2CH_2CH_2)$ (OH){(pz)₃BH} forms adducts with phenol, 3-methylphenol, and pen-

tafluorophenol with an overall composition of $\overline{Pd(CH_2CH_2CH_2CH_2)}$ (OH){(pz)₃BH}²ArOH

(**5** and **6**) and Pd(CH2CH2CH2CH2)(OH){(pz)3BH}'C6F5OH (**7**). Complex hydrogen-bonding interactions occur in the adducts, consistent with the assignment of the phenol and 3-methylphenol adducts as hydroxopalladium(IV) complexes and the pentafluorophenol adduct as an aquapalladium(IV) complex. Complexes **5** and **6** are considered to contain the hydrogen-bonding motifs H-O(Pd)···HO(Ph)···HOPh and Ar(H)O···H-O(Pd)···HOAr, respectively, and **7** to contain an aquapalladium(IV) cation in which both hydrogen atoms of the aqua ligand act as hydrogen-bond donors to pentafluorophenoxide ions in a centro-

symmetric dimer, $[Pd(CH_2CH_2CH_2CH_2) (OH_2){(pz)_3BH} \cdot C_6F_5O]_2$. The complex ions $[PdMeR{(pz)}_3BH]^-$ (R = Me, Ph) react with water or halogens to form the PdMe₂R{(pz)₃- BH } and $Pd^{II}R$ species, and in the case of water as the oxidant, hydrogen is also formed. These reactions occur via initial oxidation to form undetected palladium(IV) species, presumably PdMeR(X) $\{ (pz)_3BH\}$ (X = OH, Cl, Br, I), which undergo rapid methyl group exchange reactions with $[PdMeR{(pz)}_3BH]^-$ to form $Pd^{II}R$ species and $PdMe_2R{(pz)}_3BH$. The oxidation of palladium(II) by water and the structural analysis of hydroxo- and aquapalladium(IV) complexes represent the first examples of organopalladium(IV) chemistry in aqueous media.

Introduction

Oxidative addition reactions of late transition metal coordination complexes with the d^{10} configuration, such as palladium(0) and platinum(0), $1a,b$ and metal-carbon *σ*-bonded organometallic complexes with the d⁸ configuration, such as rhodium(I), iridium(I), platinum(II), 1a,b and more recently palladium (II) , ^{1c, d} have been studied extensively. For water as the oxidant, reported reactions appear to be limited to studies of d^8 and d^{10} coordination complexes^{$2-9$} that often exhibit reactivity that is relevant to catalytic processes and to reactions of electron rich diorganoplatinum(II) complexes.¹⁰⁻¹³

[†] University of Tasmania.

[‡] University of Western Australia. ^X Abstract published in *Advance ACS Abstracts,* December 1, 1996.

^{(1) (}a) Atwood, J. D. *Inorganic and Organometallic Reaction Mech-anisms*; Brooks/Cole Publishing Company: Monterey, CA, 1985. (b) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, 1987. (c) Canty, A. J. *Acc. Chem. Res.* **1992**, 25, 83. (d) Dücker-Benfer, C.; van Eldik, R.; Canty, A. J. *Organometallics* **1994**, *13*, 2412.

⁽²⁾ Gillard, R. D.; Heaton, B. T.; Vaughan, D. H. *J. Chem. Soc. A* **1970**, 3126.

⁽³⁾ Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.; Muetterties, E. L. *J. Am. Chem. Soc.* **1971**, *93*, 3543.

The coordination complexes usually 4 undergo reactions with water that are typical for oxidative addition (eq 1),^{2,3,5-9} e.g., reactions of $[Ir(PMe₃)₄]$ ⁺ and $Pt(PEt₃)₃$ to form the hydride complexes *cis*-[Ir(OH)(H)(PMe₃)₄]^{+ 9a} and $[PH(PEt₃)₃][OH]^{5b}$ respectively.
 $M \xrightarrow{H₂O} M(OH)H$ or $[MH]⁺$

$$
M \xrightarrow{H_2O} M(OH)H \text{ or } [MH]^+ [OH]^-
$$
 (1)

However, the d^8 diorganoplatinum(II) complexes studied to date react differently with water, such that diorgano(hydroxo)platinum(IV) complexes are formed which do not contain a hydride ligand.¹⁰⁻¹³ In addition, there is no evidence for the elimination of alkanes or arenes in these reactions, a potential pathway for the removal of hydride ligands if present in organometallic species, similar to what occurs, for example, in reactions of organoplatinum(II) complexes with acids (eq 2).¹³⁻¹⁷ Thus, PtMe₂(N∼N) [N∼N = 2,9-dimethyl-1,10-phenanthroline¹⁴ and 2,2'-bipyridine (bpy)¹⁵] reacts with aqueous HCl to form chloro(hydrido)dimethylplatinum- (IV) species that reductively eliminate methane, and $[PtMe₂{(pz)₃BH-N,N'}]$ ⁻ $[(pz)₃BH = tris(pyrazol-1-y])$ borate] is protonated by phenol to form $PtHMe₂$ {(pz)₃-BH-*N*,*N*′,*N*′′}, which eliminates methane.17 The different reactivity of diorganoplatinum(II) complexes with water, compared to coordination complexes with water (eq 1) and diorganoplatinum(II) complexes with acids (eq 2), has been attributed to hydrolysis of transient undetected hydridoplatinum(IV) intermediate(s) to give hydrogen, perhaps via eq 3 or 4. This proposal is supported by detection of hydrogen as a product in the closely related reaction of PtMe₂(bpy) with methanol in (almost dry) acetone to give $[PtMe₂(OMe)(bpy)(OH₂)]$ -[OH].10 Similar results have been reported for reactions of diorganoplatinum(II) complexes of nitrogen donor tripod ligands, e.g., the reaction of $PtPh_2\{(py)_3COH N, N$ [}] [(py)₃COH = tris(pyridin-2-yl)methanol] with water to give $[PtPh_2(OH){(py)_3COH-N,N,N'}][OH]$. 2H2O,12a,c and of anionic [PtMe2{(pz)3BH-*N*,*N*′}]- with

(5) (a) Yoshida, T.; Ueda, Y.; Otsuka, S. *J. Am. Chem. Soc.* **1971**, *93*, 3543. (b) Yoshida, T.; Matsuda, T.; Okano, T.; Kitani, T.; Otsuka, S. *J. Am. Chem. Soc.* **1979**, *101*, 2027.

- (6) Jensen, C. M.; Trogler, W. C. *J. Am. Chem. Soc.* **1986**, *108*, 723. (7) Ramprasad, D.; Yue, H. J.; Marsella, J. A. *Inorg. Chem.* **1988**, *27*, 3151.
- (8) Leoni, P.; Sommovigo, M.; Pasquali, M.; Midollini, S.; Braga, D.; Sabatino, P. *Organometallics* **1991**, *10*, 1038.

(9) (a) Milstein, D.; Calabrese, J. C.; Williams, I. D. *J. Am. Chem. Soc.* **1986**, *108*, 6387. (b) Stevens, R. C.; Bau, R.; Milstein, D.; Blum,

O.; Koetzle, T. F. *J. Chem. Soc., Dalton Trans.* **1990**, 1429. (10) (a) Monaghan, P. K.; Puddephatt, R. J. *Inorg. Chim. Acta* **1982**, *65*, L59. (b) Monaghan, P. K.; Puddephatt, R. J. *Organometallics* **1984**, *3*, 444.

(11) Appleton, T. G.; Hall, J. R.; Neale, D. W.; Williams, M. A. *J. Organomet. Chem.* **1984**, *276*, C73.

(12) (a) Canty, A. J.; Honeyman, R. T.; Roberts, A. S.; Traill, P. R.; Colton, R.; Skelton, B. W.; White, A. H. *J. Organomet. Chem.* **1994**, *471*, C8. (b) Canty, A. J.; Fritsche, S. D.; Jin, H.; Skelton, B. W.; White,

A. H. *J. Organomet. Chem.* **1995**, *490*, C18. (c) Canty, A. J.; Fritsche,

S. D.; Jin, H.; Honeyman, R. T.; Skelton, B. W.; White, A. H. *J. Organomet. Chem.* **1996**, *510*, 281.

(13) Canty, A. J.; van Koten, G. *Acc. Chem. Res.* **1995**, *28*, 406.

(14) De Felice, V.; De Renzi, A.; Panunzi, A.; Tesauro, D. *J. Organomet. Chem.* **1995**, *488*, C13.

(15) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. *Organometallics* **1995**, *14*, 4966.

(16) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **1995**, *117*, 9371.

(17) Canty, A. J.; Dedieu, A.; Jin, H.; Milet, A.; Richmond, M. K. *Organometallics* **1996**, *15*, 2845.

water to give $Pt(OH)Me₂{(pz)₃BH-N,N,N' }$ which has

water to give Pt(OH)Me₂{
$$
(pz)
$$
₃BH- N , N , N' } which has
been characterized by X-ray crystallography.^{12b}

$$
PtR_2 \xrightarrow{H^+} [Pt(H)R_2]^+ \xrightarrow{-RH} [PtR]^+ \qquad (2)
$$

$$
d^8 \qquad d^6 \qquad d^8
$$

$$
PtR_2 \xrightarrow{H_2O} Pt(OH)(H)R_2 \xrightarrow{H_2O} [Pt(OH)R_2]^+ \qquad (3)
$$

d⁶ d⁶ d⁶
\n
$$
PtR_2 \xrightarrow{H_2O} Pt(OH)(H)R_2 \xrightarrow{-H_2O} H_2O
$$
\n
$$
d^8 \t\t\t (undetected) \xrightarrow{-H_2-OH^-} [Pt(OH)R_2]^+ (3)
$$
\n
$$
PtR_2 \xrightarrow{H_2O} [Pt(H)R_2]^+ \xrightarrow{H_2O} [Pt(OH)R_2]^+ (4)
$$

$$
d^{6} \t u^{4} \t u^{3} \t (Pt(H)R_{2})^{+} \t u^{4} \t (QH)R_{2}^{+} \t (Pt(OH)R_{2})^{+} \t (Pt
$$

An oxidation state of IV for palladium is a relatively new one for hydrocarbylpalladium chemistry.^{1c} In view of the exceptional reactivity of the diorganopalladium(II) complex ions $[PdMeR{(pz)}_3BH]^-$ (R = Me, Ph) and the pallada(II)cyclopentane species $[Pd(CH_2CH_2CH_2CH_2)(pz)_3BH]$ ⁻ toward oxidative addition of organohalides to form organopalladium(IV) complexes of high stability,¹⁸ we have investigated their reactivity toward water. This has resulted in the first examples of the oxidation of palladium(II) by water, the characterization of reactions involving both oxidation and methyl group exchange processes, and the first examples of stable dihydrocarbylpalladium(IV) complexes and of hydroxo and aqua complexes in organopalladium(IV) chemistry. Preliminary reports of parts of this work have appeared.12ab,19

Experimental Section

The reagents $K[(pz)_3BH]$, 20 PhICl₂, 21 PdMe₂(tmeda), 22 PdMePh(tmeda),²³ and the pallada(II)cyclopentane complex $Pd(CH_2CH_2CH_2CH_2)$ (tmeda) (tmeda = N , N , N , N -tetrameth y lethylenediamine)²⁴ were prepared as described. Solvents were dried and distilled, and all syntheses were carried out under nitrogen. Microanalyses were by the Central Science Laboratory, University of Tasmania, and NMR spectra were recorded with a Bruker AM 300 spectrometer, with chemical shifts given in ppm relative to Me₄Si.

Syntheses of Pallada(IV)cyclopentane Complexes $Pd(CH_2CH_2CH_2CH_2CH_2)(X){pz}$ ₃BH} $[X = OH, Cl, Br, I],$ $Pd(CH_2CH_2CH_2CH_2) (OH){(pz)_3BH} (1).$ A solution of $Pd(CH_2CH_2CH_2CH_2)$ (tmeda) (0.064 g, 0.230 mmol) and K[(pz)₃-BH] (0.058 g, 0.230 mmol) in acetone (20 mL) was stirred at 0 °C for 3 h. Distilled water (0.020 mL, 1.10 mmol) was added, and the mixture was stirred at ambient temperature for 20 h. The solvent was evaporated in a vacuum, and the residue was extracted with diethyl ether $(4 \times 3 \text{ mL})$ and centrifuged to remove a yellow solid. The diethyl ether solution was evaporated in a vacuum to give a pale yellow solid, and on dissolution in acetone (3 mL), a white crystalline solid formed

(23) Markies, B. A.; Canty, A. J.; de Graaf, W.; Boersma, J.; Janssen, M. D.; Hogerheide, M. P.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. *J. Organomet. Chem.* **1994**, *482*, 191.

⁽⁴⁾ The (cyclohexyne)platinum(0) complex Pt(*η²-C₆H₈*)(dppe) reacts with water to form the cyclohexenylplatinum(II) complex Pt(OH)-(C₆H₉)(dppe) [dppe = bis(diphenylphosphino)ethane]: (a) Bennett, M.
A.; Robertson, G. B.; Whimp, P. O.; Yoshida, T. *J. Am. Chem. Soc.*
1973, *95*, 3028. (b) Bennett, M. A.; Yoshida, T. *J. Am. Chem. Soc.* **1978**, *100*, 1750.

⁽¹⁸⁾ Canty, A. J.; Jin, H.; Roberts, A. S.; Skelton, B. W.; Traill, P.

R.; White, A. H. *Organometallics* **1995**, *14*, 199. (19) Canty, A. J.; Jin, H.; Skelton, B. W.; White, A. H. *J. Organomet. Chem.* **1995**, *503*, C16.

⁽²⁰⁾ Trofimenko, S. *Inorg. Synth.* **1970**, *12*, 102. (21) Lucas, H. J.; Kennedy, E. R. *Organic Syntheses*; Wiley: New York, 1955; Collect. Vol. No. III, p 482.

⁽²²⁾ de Graaf, W.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. *Organometallics* **1989**, *8*, 2907.

^{(24) (}a) Diversi, P.; Ingrosso, G.; Lucherini, A.; Murtas, S. *J. Chem. Soc., Dalton Trans.* **1980**, 1633. (b) Diversi, P.; Ingrosso, G.; Lucherini, A. *Inorg. Synth.* **1993**, *22*, 167.

Oxidation of Diorganopalladium(II) Complexes Organometallics, Vol. 15, No. 26, 1996 5715

on cooling to −20 °C (0.053 g, 59%). ¹H NMR, *δ* (CDCl₃): 7.73 $(d, {}^{3}J = 2.0$ Hz, 1, H 3 or 5 trans to OH), 7.71 $(d, {}^{3}J = 2.0$ Hz, 2, H 3 or 5), 7.69 (d, $3J = 2.3$ Hz, 1, H 3 or 5 trans to OH), 7.67 $(d, 3J = 2.3 \text{ Hz}, 2, H 3 \text{ or } 5)$, 6.28 $(t, 1, H 4 \text{ trans to OH})$, 6.24 (t, 2, H 4), 4.12 (q, 2,, PdC*H*2CH2), 3.78 (q, 2, PdC*H*2CH2), 1.88 (m, 2, PdCH2C*H*2), 1.67 (m, 2, PdCH2C*H*2). 13C{1H} NMR, *δ* (CDCl3): 139.7, 139.5, 137.2, 135.4, 106.7 (C 4), 106.0 (C 4), 55.1 (Pd*C*H2CH2), 33.3 (PdCH2*C*H2). Anal. Calcd for C13H19BN6OPd: C, 39.8; H, 4.9; N, 21.4. Found: C, 39.9; H, 4.9; N, 21.0. The complex was obtained similarly using hydrogen peroxide (30% aqueous solution, equimolar quantity) as the oxidant, stirring at 0 °C for 1 h, followed by solvent evaporation and recrystallization from acetone/petroleum ether (bp $40-60$ °C) to give a white solid (50%).

Pd(CH2CH2CH2CH2)(Cl){**(pz)3BH**} **(2).** Phenyliodonium dichloride (0.06 g, 0.21 mmol) was added to a solution of [Pd(CH2CH2CH2CH2){(pz)3BH}]- (0.21 mmol) prepared as for the synthesis of **1**, and a white solid formed immediately. The suspension was stirred for 3 h and then evaporated in a vacuum, and the residue was extracted with diethyl ether (3 \times 5 mL) and centrifuged to remove a white solid. The pale yellow diethyl ether solution was evaporated, and the resulting white solid was collected and washed with a small amount of diethyl ether at -20 °C (0.072 g, 82%). ¹H NMR, δ (CDCl₃): 7.87 (d, $3J = 3.0$ Hz, 1, H 3 or 5 trans to Cl), 7.74 (d, $3J = 3.0$ Hz, 2, H 3 or 5), 7.72 (d, $3J = 3.0$ Hz, 1, H 3 or 5 trans to Cl), 7.65 (d, $3J = 3$ Hz, 2, H 3 or 5), 6.34 (t, 1, H 4 trans to Cl), 6.23 (t, 2, H 4), 4.64 (q, 2, PdC*H*2CH2), 3.87 (q, 2, PdC*H*2CH2), 2.05 (m, 2, PdCH2C*H*2), 1.69 (m, 2, PdCH2C*H*2). 13C{1H} NMR, *δ* (CDCl3): 140.5, 139.3, 137.4, 135.3, 107.0 (C 4), 106.2 (C 4), 54.8 (PdCH₂CH₂), 33.7 (PdCH₂CH₂). Anal. Calcd for C13H18BClN6Pd: C, 38.0; H, 4.4; N, 20.5. Found: C, 38.1; H, 4.6; N, 20.6.

Pd(CH2CH2CH2CH2)(Br){**(pz)3BH**} **(3).** Bromine (0.084 g, 0.54 mmol) was added to a solution of $[Pd(CH_2CH_2CH_2CH_2)(pz)_3BH]^-$ (0.54 mmol) prepared as for the synthesis of **1**, and the solution was cooled to -60 °C prior to the addition of bromine. The resulting solution was allowed to warm slowly to 0 °C and was stirred for 2 h at this temperature. The solvent was evaporated in a vacuum, and the residue was extracted with diethyl ether $(3 \times 5 \text{ mL})$ and centrifuged to remove a yellow solid. The diethyl ether solution was evaporated in a vacuum, and the resulting solid was dissolved in acetone (2 mL) followed by addition of water (10 mL) to precipitate a cream colored solid, which was collected and dried in a vacuum (0.08 g, 33%). 1H NMR, *δ* (CDCl₃): 7.88 (d, $3J = 3.0$ Hz, 1, H 3 or 5 trans to Br), 7.75 (d, $3J = 3.0$ Hz, 2, H 3 or 5), 7.73 (d, $3J = 3.0$ Hz, 1, H 3 or 5 trans to Br), 7.65 (d, $3J = 3.0$ Hz, 2, H 3 or 5), 6.34 (t, 1, H 4 trans to Br), 6.22 (t, 2, H 4), 4.79 (q, 2, PdC*H*₂CH₂), 3.77 (q, 2, PdC*H*₂-CH2), 2.10 (m, 2, PdCH2C*H*2), 1.83 (m, 2, PdCH2C*H*2). 13C- {1H} NMR, *δ* (CDCl3): 141.1, 139.1, 137.1, 135.4, 106.9 (C 4), 106.2 (C 4), 51.5 (PdCH₂CH₂), 34.4 (PdCH₂CH₂). Anal. Calcd for C13H18BBrN6Pd: C, 34.3; H, 4.0; N, 18.5. Found: C, 34.5; H, 3.9; N, 18.7.

Pd(CH2CH2CH2CH2)(I){**(pz)3BH**} **(4).** This complex was prepared following a procedure identical to that for **2**, using iodine as a reagent, to give 4 as a pale orange solid (54%). ¹H NMR, δ (CDCl₃): 7.90 (d, ³J = 3.0 Hz, 1, H 3 or 5 trans to I), 7.80 (d, $3J = 3.0$ Hz, 2, H 3 or 5), 7.65 (d, $3J = 3.0$ Hz, 1, H 3 or 5 trans to I), 7.59 (d, $3J = 3.0$ Hz, 2, H 3 or 5), 6.30 (t, 1, H 4 trans to I), 6.21 (t, 2, H 4), 5.02 (q, 2, PdC*H*2CH2), 3.62 (q, 2, PdC*H*₂CH₂), 2.26 (m, 2, PdCH₂C*H*₂), 1.83 (m, 2, PdCH₂C*H*₂). ¹³C{¹H} NMR, δ (CDCl₃): 142.2, 138.7, 136.4, 135.5, 106.4 (C 4), 106.1 (C 4), 44.7 (Pd*C*H₂CH₂), 35.8 (PdCH₂*C*H₂). Anal. Calcd for C13H18BIN6Pd: C, 31.1; H, 3.6; N, 16.7. Found: C, 31.3; H, 3.6; N, 16.3.

Synthesis of Hydrogen-Bonded Complexes 5-**7 Formed**

by Interaction of $Pd(CH_2CH_2CH_2CH_2) (OH)$ { $(pz)_3BH$ } **(1) with Aryl Alcohols.** The complexes were obtained by dissolution of **1** in acetone followed by addition of a $1-2$ molar ratio of the aryl alcohol and work up as documented below. The complexes exhibit ${}^{1}H$ and ${}^{13}C$ NMR resonances that are within 0.05 ppm of the parent complex 1, except for the PdCH₂ resonances of the pallada(IV)cyclopentane group and resonances of the PhOH and $3-MeC_6H_4OH$ group, and thus resonances of only these groups are recorded below.

Pd(CH2CH2CH2CH2)(OH){**(pz)3BH**}'**2PhOH (5).** Petroleum ether (bp 60-80 °C) was added until the solution became cloudy, followed by cooling to -20 °C, evaporation to a low volume, filtration, further slow evaporation of the filtrate, filtration, and crystallization from the filtrate (52%). ¹H NMR, *δ* (CDCl₃): 7.17 (dd, ³*J* = 7.2 Hz, 4, 3,5-Ph), 6.85 (dd, ³*J* = 7.2 Hz, 4, 2,6-Ph), 6.82 (t, ³J = 7.2 Hz, 2, 4-Ph), 4.25 (q, 2, PdCH₂-CH2), 3.85 (q, 2, PdC*H*2CH2), 1.90 (m, 2, PdCH2C*H*2), 1.68 (m, 2, PdCH₂CH₂). ¹³C{¹H} NMR, *δ* (CDCl₃): 158.0 (1-Ph), 141.0 (5-Ph), 140.0, 139.6, 137.4, 135.4, 129.9 (3,5-Ph), 119.8 (2,6- Ph), 116.3 (4-Ph), 106.6 (C 4), 106.1 (C 4), 55.9 (Pd*C*H₂CH₂), 33.2 (PdCH₂CH₂). Anal. Calcd for $C_{25}H_{31}BN_6O_3Pd$: C, 51.7; H, 5.4; N, 14.5. Found: C, 51.6; H, 5.4; N, 14.9.

 $Pd(CH_2CH_2CH_2CH_2) (OH) \{(pz)_3BH\} \cdot 2(3\text{-}MeC_6H_4OH) (6).$ Petroleum ether (bp 60-80 °C) was added until the solution became cloudy, followed by cooling to -20 °C, evaporation to a low volume, filtration, further slow evaporation of the filtrate, filtration, and crystallization from the filtrate (20- 40%). ¹H NMR, *δ* (CDCl₃): 6.65-7.07 (m, 8, C₆H₄), 4.26 (q, 2, PdC*H*₂CH₂), 3.85 (q, 2, PdC*H*₂CH₂), 2.26 (s, 6, Me), 1.89 (m, 2, PdCH2C*H*2), 1.68 (m, 2, PdCH2C*H*2). 13C{1H} NMR, *δ* (CDCl3): 158.0 (1-Ph), 141.0 (5-Ph), 129.6 (4-Ph), 120.3 and 117.1 (2,6-Ph), 113.4 (3-Ph), 55.8 (Pd*C*H2CH2), 33.3 (PdCH2*C*H2). Anal. Calcd for $C_{27}H_{35}BN_6O_3Pd$: C, 53.3; H, 5.8; N, 13.8. Found: C, 53.3; H, 5.8; N, 13.7.

 $Pd(CH_2CH_2CH_2CH_2(OH){D(Gz)_3BH} \cdot C_6F_5OH$ (7). Subsequent evaporation to dryness and recrystallization from acetone/petroleum ether was required (∼100%). 1H NMR, *δ* (CDCl3): 4.38 (q, 2, PdC*H*2CH2), 3.94 (q, 2, PdC*H*2CH2), 1.86 (m, 2, PdCH2C*H*2), 1.66 (m, 2, PdCH2C*H*2). 13C{1H} NMR, *δ* (CDCl3): 57.6 (Pd*C*H2CH20, 32.9 (PdCH2*C*H2). Anal. Calcd for $C_{19}H_{18}BF_5N_6OPd \cdot 0.5$ (acetone): C, 40.6; H, 3.8; N, 13.9. Found: C, 40.7; H, 4.2; N, 14.1.

Formation of [PdMe2{**(pz)3BH**}**]**- **and [PdMePh-** {**(pz)3BH**}**]**- **in Acetone, and Reactions of the Anions with Water. 1H NMR Studies for the Reaction of** $[PdMe_2{(pz)_3BH}]^-$ with Water. K[(pz)₃BH] (0.02 g, 0.08 mmol) was added to a solution of $PdMe₂(tmeda)$ (0.02 g, 0.08 mmol) and 1,4-dioxane (∼7 µL) in (CD₃)₂CO (0.5 mL). The solution was heated at 30-40 °C for 30 min, and the spectra recorded at 20 °C showed the presence of $[PdMe_{2}\{(pz)_{3}BH\}]^{-1}$ (*δ*(PdMe) +0.14 ppm) together with a minor amount of PdMe2- (tmeda) (*δ*(PdMe) -0.19 ppm). Water (3 *µ*L, 0.17 mmol) was added at ambient temperature, and after 12 h, the slightly cloudy solution gave an NMR spectrum showing the presence of PdMe3{(pz)3BH} together with a minor amount of unreacted PdMe₂(tmeda) and [PdMe₂{(pz)₃BH}]⁻. Addition of PPh₃ gave the same spectrum, together with resonances of $PdMe$ {(pz)₃-BH}(PPh₃). Analysis of the integrals for 1,4-dioxane and the various methylpalladium species showed that there had been no loss of methyl groups from the palladium species and that the palladium(IV) and palladium(II) products were formed in a 1:1 ratio from palladium(II).

Isolation of Organopalladium Products from the Reaction of [PdMe2{**(pz)3BH**}**]**- **with Water.** A solution of PdMe₂(tmeda) (0.05 g, 0.20 mmol) and K[(pz)₃BH] (0.05 g, 0.20 mmol) in acetone (10 mL) was stirred at 0 °C for 3 h. Distilled water (0.2 mL, 11 mmol) was added, and the mixture was stirred at ambient temperature for 20 h. The solvent was evaporated in a vacuum, and the residue was extracted with diethyl ether $(2 \times 3 \text{ mL})$ and filtered. The solvent was evaporated in a vacuum, and the resulting yellow solid was extracted with petroleum ether (bp 40–60 °C, 2 \times 5 mL), and on evaporation to low volume, a white crystalline solid was

Table 1. Specific Crystallographic Details

 $a \alpha = 98.51(7), \gamma = 108.51(4)$ °.

obtained and identified as $PdMe₃{(pz)₃BH}$ (45%). The petroleum ether insoluble material was dissolved in dichloromethane (5 mL), and triphenylphosphine was added (0.026 g, 0.10 mmol). After the solution was stirred for 30 min, the solvent was removed in a vacuum, and the resulting solid was recrystallized from diethyl ether/petroleum ether to give a pale yellow solid identified as $PdMe$ {(pz)₃BH}(PPh₃) (42%).

1H NMR Studies for the Reaction of [PdMePh- {**(pz)3BH**}**]**- **with Water.** K[(pz)3BH] was added to a solution of PdMePh(tmeda) and 1,4-dioxane in $(CD_3)_2CO$ as above. The solution was heated at 45 °C for 30 min, and the spectra recorded at 20 °C showed the presence of $[PdMePh{(pz)}_3BH]^-$ (*δ* (PdMe) -0.21 ppm) together with a minor amount of PdMePh(tmeda) (*δ* (PdMe) +0.30 ppm). The reaction with water was studied at ambient temperature as for [PdMe₂- ${(pz)_3BH}^-$ but over a longer period (2 days). The clear solution gave a spectrum showing PdMe₂Ph{(pz)₃BH} together with a minor amount of unreacted PdMePh(tmeda) and [PdMePh{(pz)₃BH}]⁻. Triphenylphosphine was added, but the presence of any other organopalladium product(s) could not be identified, presumably owing to extensive overlap of the phenyl and pyrazole resonances for the reagents and products. Analysis of the integrals for 1,4-dioxane, $PdMe₂Ph{pz)₃BH}$, and unreacted PdMePh(tmeda) and $[PdMePh{(pz)}_3BH\rbrace]$ showed that the Pd(IV) product is formed from 2 equiv of Pd- (II).

Isolation of Products from the Reaction of [PdMePh{**(pz)3BH]**- **with Water.** A solution of PdMePh- (tmeda) (0.062 g, 0.197 mmol) and $K[(pz)_3BH]$ (0.063 g, 0.250) mmol) in acetone (5 mL) was heated at 40 °C for 2 h. Water (2 mL) was added, and the solution was refluxed for 2 h and filtered through Celite to remove a brown solid. The solvent was removed from the filtrate, and $(CD_3)_2CO$ was added to give a spectrum showing $PdMe_2Ph{(pz)_3BH}$ together with broad resonances in the phenyl and tris(pyrazol-1-yl)borate region. Resonances of PdPh{(pz)₃BH}(PPh₃) appeared on addition of triphenylphosphine.

¹H NMR Studies of Reactions of [PdMe₂{(pz)₃BH]⁻ or $[PdMePh{(pz)}_3BH]$ ⁻ with Halogens in $(CD_3)_2CO$. With 1,4-dioxane as an internal standard, generation of solutions of the anions in $(CD_3)_2CO$ as above, addition of halogens (PhICl₂, Br₂, or I_2) in a 1:1 mol ratio at ambient temperature, and addition of $PPh₃$ at the end of the reaction (30 min), NMR spectra showed the formation of $PdMe₃{(pz)₃BH}$ and $PdMe {(pz)_3BH}(PPh_3)$ in a 1:1 ratio with a quantitative yield of methylpalladium groups. Similar experiments with $[PdMePh{(pz)}_3BH\rbrace^-$ gave $PdMe_2Ph{(pz)}_3BH\rbrace$, with all of the methyl groups of the reagent appearing in the palladium(IV) product. The complexity of the spectra in the aryl region did not allow identification of other product(s).

Detection of Hydrogen as a Product of the Reactions. Hydrogen was detected as a product in the reactions of

 $[Pd(CH_2CH_2CH_2CH_2)(pz)_{3}BH\}^-$ and $[PdMeR{(pz)_{3}BH}\}^ (R = Me, Ph)$ with water in acetone or tetrahydrofuran. In a

typical experiment, a solution of [Pd(CH₂CH₂CH₂){-(pz)₃BH}]⁻, prepared from $Pd(CH_2CH_2CH_2CH_2)$ (tmeda) (0.04 g, 0.14 mmol) and K[(pz)3BH] (0.036 g, 0.14 mmol) in tetrahydrofuran (0.7 mL), was added to a small vial (2 mL) containing $50 \mu L$ of water. The vial was then fitted with a septum secured with a Teflon tap. After the vial was allowed to stand for 12 h, the gas phase was sampled using a microsyringe and analyzed by GC-MS using a HP1 column (25 m \times 0.32 mm) on a Kratos ISQ mass spectrometer (10 eV ET with helium carrier gas), which showed the presence of hydrogen.

X-ray Structure Determinations. For each complex, a unique data set was measured at 295 K using an Enraf-Nonius CAD-4 diffractometer operating in conventional 2*θ*-*θ* scan mode with monochromatic Mo Kα radiation ($λ = 0.71073$ Å), yielding *N* independent reflections, *N*^o with *I* > 3*σ*(*I*) considered observed and used in the full matrix least-squares refinement after Gaussian absorption correction and solution of the structures by vector methods. Residuals R and R_w are quoted on |*F*| at convergence; statistical weights derived from $\sigma^2(I) = \sigma^2(I_{\text{diff}}) + 0.0004 \sigma^4(I_{\text{diff}})$ were employed. Neutral atom complex scattering factors were used;²⁵ computation used the XTAL 3.0 program system implemented by Hall.²⁶ The treatment of the hydrogen atoms is given below.

Crystal data and selected geometries of the complexes are given in Tables 1-3, and views of the complexes are shown in Figures 1-3 and Chart 1.

Results and Discussion

Reactions of Pallada(II)cyclopentane Reagents.

The anionic species $[Pd(CH_2CH_2CH_2CH_2)(pz)_3BH]$ ⁻

was generated from $Pd(CH_2CH_2CH_2CH_2)$ (tmeda) and $K[(pz)_3BH]$ as described.¹⁸ Solutions are stable in the absence of water when studied by ¹H NMR spectroscopy, but unlike $[PdMeR{(pz)}_3BH]^-$ (R = Me, Ph, see below),

assignments for $[Pd(CH_2CH_2CH_2CH_2)(pz)_3BH]$ ⁻ were not possible, owing to the overlap of the broad palladacyclopentane resonances with those of the reactant and of free and complexed tmeda. Addition of water, in the presence or rigorous exclusion of oxygen, results in a

⁽²⁵⁾ *International Tables for X-Ray Crystallography*; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. 4.

⁽²⁶⁾ Hall, S. R.; Stewart, J. M. *The XTAL User's Manual, Version 3.0*; Universities of Western Australia and Maryland, 1990.

Table 2. Selected Bond Distances (Å) and Angles (deg) for Pd(CH2CH2CH2CH2)(OH){**(pz)3BH**}'**2(PhOH) (5),** $\overrightarrow{P}d(CH_2CH_2CH_2CH_2) (OH){(pz)_3BH} \cdot 2(3\text{-}MeC_6H_4OH)$ **(6), and** $\dot{P}d$ ($CH_2CH_2CH_2CH_2$)**(OH)**{**(pz)**₃BH} \cdot C₆F₅**OH (7)**

reaction that extends over 20 h to form the hydroxo-

palladium(IV) complex $Pd(CH_2CH_2CH_2CH_2)$ (OH){(pz)₃-BH} (**1**) which may be isolated in 59% yield. Reactions in tetrahydrofuran also gave the hydroxopalladium(IV) complex. Hydrogen as a product was detected for reactions in both acetone and tetrahydrofuran, and thus the overall reaction is as formulated in eq 5. The oxidation chemistry has been extended to include

$$
[Pd(CH_2CH_2CH_2CH_2)({pz})_3BH}]^- + 2H_2O \rightarrow Pd(CH_2CH_2CH_2CH_2)({OH})({pz})_3BH} + H_2 + OH^-
$$
\n(5)

Table 3. Deviations (Å) of Atoms from Mean Planes, Angles (deg) Between Pyrazole Mean Planes, and Torsion Angles for the Pallada(IV)cyclic Group in

Pd(CH2CH2CH2CH2)(OH){**(pz)3BH**}'**2(PhOH) (5), Pd(CH2CH2CH2CH2)(OH)**{**(pz)3BH**}'**2(3-MeC6H4OH) (6), and** $\overrightarrow{P}d(CH_2CH_2CH_2CH_2)$ **(OH)**{**(pz)₃BH**}⁻ C_6F_5OH **(7)**

 $a \chi^2$ values for pyrazole rings a-c, respectively: (5) 0.4, 0.1, 0.1; (**6**) 0.6, 2.7, 0.6; (**7**) 1.2, 0.2, 1.6.

Figure 1. Molecular structure of $Pd(CH_2CH_2CH_2CH_2)$ - $(OH){ (pz)_3BH}·2(PhOH) (5)$. Thermal ellipsoids $(20%)$ are shown for the non-hydrogen atoms, and hydrogen atoms have been given an arbitrary radius of 0.1 Å.

a range of stronger oxidants (eq 6 and Scheme 1), providing the first examples of diorganopalladium(IV)

complexes $Pd(CH_2CH_2CH_2CH_2)$ (X){(pz)₃BH} (X = OH, Cl, Br, I), except for a series of pentafluorophenylpalladium(IV) complexes $PdCl_2(C_6F_5)_2(L_2)^{27}$ and some un-

Figure 2. Molecular structure of $Pd(CH_2CH_2CH_2CH_2)$ -(OH){(pz)3BH}'2(3-MeC6H3OH) (**6**).

stable complexes $PdI_2Me_2(L_2)$ ($L_2 =$ bidentate nitrogen donor ligand).28 Hydrogen peroxide and the halogens reacted instantly with the palladium(II) reagent, in contrast to the slow reaction with water over 20 h. 1H NMR spectra of the complexes are readily assigned on comparison with spectra of the triorganopalladium(IV) complex $Pd(CH_2CH_2CH_2CH_2)$ (Me) $\{(pz)_3BH\}$, ¹⁸ e.g., showing two pyrazole ring environments in 2:1 ratio. Assignments for the pallada(IV)cyclopentane group are given in Table 4, illustrating consistent chemical shift trends upfield or downfield as the group X is varied from

$$
[Pd(CH_2CH_2CH_2CH_2)(pz)_3BH\}]^{-} + X_2 \rightarrow
$$

\n
$$
Pd(CH_2CH_2CH_2CH_2)(X){pz)_3BH} +
$$

\n
$$
X^{-}[X_2 = Cl_2 \text{ (as PhICl}_2), Br_2, I_2] \text{ (6)}
$$

Reactions of Dimethylpalladium(II) and Methyl- (phenyl)palladium(II) Reagents. Reactions of $[PdMeR({pz}_3BH)]^-$ (R = Me, Ph) are more complex than those of $[Pd(CH_2CH_2CH_2CH_2)(pz)_3BH]$ ⁻ but are more amenable to 1H NMR monitoring of reactions owing to the presence of methylpalladium singlets. The anions are readily generated from the tmeda complexes and K[(pz)₃BH] in ∼30 min at ambient temperature for [PdMe2{(pz)3BH}]- and at [∼]45 °C for [PdMePh- ${[(pz)_3BH]}^{-18}$ although there is normally some residual unreacted PdMeR(tmeda). ${}^{1}H$ NMR studies using different ratios of reactants allow partial assignment of spectra for the anions, e.g., *δ* (PdMe) at 0.14 and 0.30

Figure 3. Molecular structure of $Pd(CH_2CH_2CH_2CH_2)$ - $(OH){pz}$ ₃BH} \cdot C₆F₅OH (7).

for the anions compared with -0.19 and -0.21 for PdMe2(tmeda) and PdMePh(tmeda), respectively.

For $[PdMeR{(pz)}_3BH]^-$, addition of water to solutions in $(CD_3)_2CO$ results in the detection of palladium(IV) complexes $PdMe_2R\{(pz)_3BH\}$ ($R = Me$, Ph) by ¹H NMR, and additional studies in acetone and tetrahydrofuran resulted in the detection of hydrogen by GC-MS. On completion of the reaction of $[PdMe_{2}({pz})_{3}BH]$ ⁻ in $(CD_3)_2CO$, addition of triphenylphosphine results in the detection of the palladium(II) derivative $PdMe$ {(pz)₃BH}- (PPh_3) , but the precursor of this derivative, presumably $PdMe$ {(pz)₃BH}(L) (L = OH and/or H₂O and/or (CD₃)₂-CO), could not be detected prior to the addition of PPh₃. Palladium(II) product(s) from the reaction of $[PdMePh(pz)_3BH]^-$ could not be detected in the NMR studies of the reaction, even on addition of PPh₃, perhaps owing to extensive overlap of PhPd(II), PhPd- (IV) , and PP h_3 resonances. However, preparative studies of this reaction resulted in the formation of a solid for which NMR spectra showed the presence of both $PdMe_2Ph{(pz)_3BH}$ and $PdPh{(pz)_3BH}(PPh_3)$. The complexes $PdR{(pz)_3BH}(PPh_3)$ (R = Me, Ph)²⁹ and $PdMe_2R\{(pz)_3BH\}$ (R = Me, Ph)¹⁸ were synthesized independently for comparison of the NMR spectra, and triphenylphosphine does not react with $PdMe_2R{(pz)_3}$ - BH } ($R = Me$, Ph). No other products could be detected from the reactions, in particular methane, ethane, benzene, or toluene. NMR experiments in the presence of 1,4-dioxane as an internal standard for integration showed that no loss of methylpalladium occurs during the reaction of $[PdMe₂{(pz)₃BH}]^-$ with water followed by PPh3 and permitted an estimation of the reaction (27) Uson, R.; Fornies, J.; Navarro, R. *J. Organomet. Chem.* **¹⁹⁷⁵**,

Cl to Br to I.

⁹⁶, 307.

⁽²⁸⁾ van Asselt, R.; Rijnberg, E.; Elsevier, C. J. *Organometallics* **1994**, *13*, 706.

⁽²⁹⁾ Canty, A. J.; Jin, H.; Roberts, A. S.; Traill, P. R.; Skelton, B. W.; White, A. H. *J. Organomet. Chem.* **1995**, *489*, 153.

Chart 1. Hydrogen-Bond Geometries for Complexes 5-**7**

yield as $∼100%$ with a 1:1 ratio of palladium(IV) and palladium(II) products. Thus, the reactions of $[PdMeR({pz})_3BH]$ ⁻ with water, involving addition of PPh₃ at the end of the reaction, are as shown in eqs 7 and 8.

$$
2[PdMe2{(pz)3BH}]- + 2H2O + PPh3 \rightarrow
$$

PdMe₃{(pz)₃BH} + PdMe{(pz)₃BH} (PPh₃) +
H₂ + 2OH⁻ (7)

 $2[PdMePh{ (pz)_{3}BH}^- + 2H_2O + PPh_3 \rightarrow$ $PdMe₂Ph{(pz)₃BH} + PdPh{(pz)₃BH}(PPh₃) +$ $H_2 + 2OH^-$ (8)

¹H NMR studies of the reactions of $[PdMeR{(pz)}_3BH]^$ with an equimolar amount of the halogens gave similar results, except that reactions were complete within 30 min, giving $PdMe_{3}$ {(pz)₃BH} and $PdMe$ {(pz)₃BH}(PPh₃) in 1:1 ratio and 100% yield (based on methyl groups) for $R = Me$ (eq 9) and PdMe₂Ph{(pz)₃BH} with a quantitative yield of methyl groups for $R = Ph$. The complexity of the spectra for the latter reactions did not allow identification of other product(s).

$$
\frac{118(4)}{118(4)} = 120(4)
$$
\n
$$
2.035(4)
$$
\n
$$
Pd
$$
\n
$$
0 - O(11) \cdot 2.607(7)
$$
\n
$$
O - O(11^{1}) \cdot 2.577(6)
$$
\n
$$
7
$$
\n
$$
dMe_{2}\{ (pz)_{3}BH \}^{-} + X_{2} + PPh_{3} \rightarrow
$$
\n
$$
PdMe_{2}\{ (pz)_{3}BH \}^{-} + X_{2} + PPh_{3} \rightarrow
$$

$$
2[PdMe_{2}\{(pz)_{3}BH\}]^{-} + X_{2} + PPh_{3} \rightarrow
$$

PAMe_{3}\{(pz)_{3}BH\} + PdMe\{(pz)_{3}BH\}(PPh_{3}) +
2X^{-}[X_{2} = Cl_{2} (as PhICl_{2}), Br_{2}, I_{2}] (9)

The reactions of eqs $7-9$ require the transfer of a methyl group between palladium centers, and overall, only half of the palladium(II) reagent appears as a palladium(IV) product. Alkyl group transfer from palladium(IV) to platinum(II) and palladium(II) is known to be a facile process, occurring at low temperature for a wide range of reagents, as illustrated in eq 10³⁰ and eq 11³¹ where phen is 1,10-phenanthroline. a wide range of reagents, as illustrated in eq 1
eq 11³¹ where phen is 1,10-phenanthroline.
PdBrMe₂(CH₂Ph)(phen) + PtMe₂(phen) $\frac{\text{fast}}{20^{\circ}\text{C}}$

$$
PdBrMe_2(CH_2Ph)(phen) + PtMe_2(phen) \frac{fast}{20 \cdot C}
$$

0.85[PdMe_2(phen) + PtBrMe_2(CH_2Ph)(phen)] +
0.15[PdMe(CH_2Ph)(phen) + PtBrMe_3(phen)] (10)
PdBrMePh(CH_2Ph)(bpy) + PdMe_2(phen) \frac{fast}{-20 \cdot C}

$$
PdBrMePh(CH2Ph)(bpy) + PdMe2(phen) \frac{fast}{-20 °C}
$$

[PdMePh(bpy) + PdBrMe₂(CH₂Ph)(phen)] (11)

These reactions proceed as shown when the potential platinum(IV) or palladium(IV) product is more stable than the palladium(IV) reactant. Kinetic studies of the reaction of eq 10 show a second-order behavior and activation parameters that are interpreted in terms of the preliminary bromide loss from the palladium(IV) reactant to give a cation, which is thus activated toward nucleophilic attack by the platinum(II) reagent at an alkyl group.30 This mechanism is consistent with the observed preference for alkyl halide transfer $PhCH₂Br$ > MeBr in the reactions of eqs 10 and 11 since nucleophilic attack on PhCH2X occurs faster than on MeX by factors as high as $500.^{32}$

Thus, the different behavior of $[{}Pd(CH_2CH_2CH_2CH_2)$ - ${pz}_3BH$ } $^{-}$ (eqs 5 and 6) and [PdMeR{(pz)₃BH}⁻ (eqs 7-9), discussed here for reactions of water as the oxidizing agent with considerations similar to those applying for the reactions of halogens, may be explained

⁽³⁰⁾ Aye, K.-T.; Canty, A. J.; Crespo, M.; Puddephatt, R. J.; Scott, J. D.; Watson, A. A. *Organometallics* **1989**, *8*, 1518. (31) Markies, B. A.; Canty, A. J.; Boersma, J.; van Koten, G.

Organometallics **1994**, *13*, 2053.

A. Solvolytic Displacement Reactions; McGraw-Hill: New York, 1962. (b) Schrauzer, G. N.; Deutsch, E. *J. Am. Chem. Soc.* **1969**, *91*, 3341.

Table 4. 1H and 13C NMR Data for the Pallada(IV)cyclopentane Group in Complexes 1-**7***^a*

	¹ H NMR		$13C$ NMR	
complex	$PdCH_2CH_2$	$PdCH_2CH_2$	$PdCH_2CH_2$	PdCH ₂ CH ₂
1: $Pd(CH_2CH_2CH_2CH_2) (OH){(pz)_3BH}$	4.12 m, ^b 3.78 m	1.87 m, 1.67 m	55.1	33.7
5: $Pd(CH_2CH_2CH_2CH_2) (OH){(pz)_3BH} \cdot 2PhOH$	4.25 m, b 3.85 m	1.90 m. 1.68 m	55.9	33.2
6: $Pd(CH_2CH_2CH_2CH_2) (OH){(pz)_3BH} \cdot 2(3-MeC_6H_4OH)$	4.26 m, b 3.85 m	1.89 m. 1.68 m	55.8	33.3
7: $Pd(CH_2CH_2CH_2CH_2) (OH){(pz)_3BH} \cdot C_6F_5OH$	4.38 m, b 3.94 m	1.86 m. 1.66 m	57.6	32.9
2 : $Pd(CH_2CH_2CH_2CH_2) (Cl){(pz)_3BH}$	4.64 m. b 3.87 m	2.05 m. 1.69 m	54.8	33.7
	4.79 m. b 3.77 m	2.10 m, 1.83 m	51.5	34.4
3: $Pd(CH_2CH_2CH_2CH_2) (Br){(pz)_3BH}$ 4: $Pd(CH_2CH_2CH_2CH_2) (I){pz}3BH$	5.02 m b 3.62 m	2.26 m. 2.07 m	44.7	35.8

a In CDCl₃, chemical shifts in ppm relative to Me₄Si. *b* Multiplets have the appearance of a quartet.

by (i) the inability of the constrained pallada(IV)cyclic

The anions $[MMe₂{(pz)₃BH}]^- (M = Pd, Pt)$ do not react

group of $Pd(CH_2CH_2CH_2CH_2)$ (OH){(pz)₃BH} to participate in transfer reactions and (ii) for $[{\rm PdMeR}\{({\rm pz})_3{\rm BH}\}]^-$

formation of a hydroxo species similar to $Pd(CH_2CH_2-$

 $CH_2CH_2(OH){pz}$ ₃BH, e.g., $[Pd(OH)MeR{(pz)}_3BH]$ or perhaps the cationic aqua species $[Pd(OH_2)MeR{pZ_3}]$ BH}]⁺, followed by methyl group transfer to nucleophilic $[PdMeR{pz}_3BH]^-$, as shown in eqs 12 and 13 for Pd- $(OH)MeR{pz}_3BH$. Since the oxidation by water is slow for all of the species studied and the transfer reactions of eqs 10 and 11 are rapid, the relative rates shown for reactions 12 and 13 would account for the inability to detect intermediates by 1H NMR spectroscopy (including at low temperature). The palladium- (II) product(s) of unknown formulation, represented as $[Pd(OH)R{pz}_3BH]$ ⁻ in eq 13, could not be detected, but on addition of PPh₃, the complexes $PdR{(pz)_{3}BH}$ -(PPh₃) were detected in NMR studies ($R = Me$) and

isolated for both R = Me and Ph (see eqs 7 and 8).
\n
$$
[PdMeR\{(pz)_3BH\}]^- + 2H_2O \xrightarrow{\text{slow}} Hd(OH)MeR\{(pz)_3BH\} + H_2 + OH^-
$$
 (12)

 $Pd(OH)MeR\{(pz)_3BH\} + H_2 + OH^-$ ()
Pd(OH)MeR{(pz)₃BH} + [PdMeR{(pz)₃BH}]⁻ $\xrightarrow{\rm fast}$ $[Pd(OH)R{(pz)_{3}BH}]^{-} + PdMe_{2}R{(pz)_{3}BH}$ (13)

The proposed mechanism was tested in a series of ${}^{1}H$ NMR experiments in $(CD_3)_2CO$. It is known that $[PtMe₂{(pz)₃BH}]^-$ reacts with water to form Pt(OH)- $Me_2({pz})_3BH$, 12b and the absence of methyl group transfer to form $PtMe₃{(pz)₃BH}$ in this reaction is in accord with the reports that alkyl transfer from platinum(IV) to platinum(II) does not occur readily.33 However, transfer from palladium(IV) to platinum(II) is rapid (eq 10), and in the NMR experiments it was found that when $[PtMe₂{(pz)₃BH}]^-$ is present with [PdMe₂{(pz)₃BH}]⁻ in the presence of water, PtMe₃{(pz)₃- BH } is formed as a product in addition to $Pt(OH)$ - $Me_2\{(pz)_3BH\}$ and the usual products of reaction of $[PdMe₂{(pz)₃BH}]$. This observation is consistent with participation of $[PtMe₂{(pz)₃BH}]^-$ as a nucleophile in competition with $[PdMe₂{(pz)₃BH]⁻$ in the reaction of eq 13 ($R = Me$). In addition, $[PtMe₂{(pz)₃BH}]^-$ does not react with $PdMe₃{(pz)₃BH}$, showing that the methyl transfer to platinum(II) occurs from a palladium(IV) species formed prior to formation of $PdMe₃{(pz)₃BH}.$

with $Pd(CH_2CH_2CH_2CH_2)$ (OH){(pz)₃BH}, consistent with the expected inability of the constrained pallada(IV) cyclic ring to participate in a transfer reaction.

Adducts of Pd(CH2CH2CH2CH2)(OH){**(pz)3BH**} **(1) with Aryl Alcohols.** The new pallada(IV)cyclic complexes could not be isolated in a highly crystalline form, although $Pd(CH_2CH_2CH_2CH_2)$ (OH){(pz)₃BH} was slightly crystalline. This complex was subsequently found to form white solids in the presence of phenol, 3-methylphenol, or pentafluorophenol in acetone, and procedures for the isolation and crystallization of these solids were developed. X-ray structural studies for these solids revealed the compositions $Pd(CH_2CH_2CH_2CH_2)$ - $(OH){pz}$ ₃BH \cdot 2PhOH (5), $Pd(CH_2CH_2CH_2CH_2)$ (OH)-

 ${p_2}_3BH$ ²(3-MeC₆H₄OH) (6), and Pd(CH₂CH₂CH₂CH₂) $(OH){pz}$ ₃BH \cdot C₆F₅OH (7). Bulk samples of the crystalline complexes gave microanalyses consistent with the structural results. 1H and 13C NMR spectra of **5**-**7** are very similar to that of the parent complex **1** (within 0.05 ppm), except for the $PdCH_2$ resonances of the pallada(IV)cyclic groups and resonances for aryl alcohols in **5** and **6** (Table 4). The PdCH₂ resonances are expected to be most affected by any interaction of the PdOH and/or Pd(OH2) groups with the alcohols and/or aryloxide ions, and thus interactions similar to those in the solid state (see below) appear to occur in solution, although their nature has not been determined.

The results of the single-crystal X-ray studies are shown in Figures $1-3$ and Chart 1, illustrating the distorted octahedral geometry for palladium, PdC_2ON_3 . The refined positions for the oxygen atoms and hydroxylic hydrogens (*x*, *y*, *z*, *U*iso) indicate the presence of hydrogen bonding. Due to the difficulty in locating precise hydrogen atom positions in the absence of neutron diffraction data, all hydrogen atom interactions are indicated O…H in Figures $1-3$ and Chart 1, although more precise C-O distances are consistent with the assignment of **5** and **6** as hydroxopalladium- (IV) complexes and **7** as an aquapalladium(IV) complex containing pentafluorophenoxide ions. Thus, complex **7** has $C-O = 1.300(7)$ Å, shorter than that for both coordinated $C_6F_5O^-$ [1.314(5) Å] and hydrogen-bonded C_6F_5OH [1.344(4) Å] in the palladium(II) complex *trans*-(33) Rashidi, M.; Fakhroeian, Z.; Puddephatt, R. J. *J. Organomet.* $\begin{array}{c} \text{C}_6\text{F}_5\text{OH} \text{ [1.344(4) Al]} \text{ in the paladulum(1) complex trans-} \\ \text{Perm. 1990, 406, 261.} \end{array}$

Chem. **1990**, *406*, 261.

tion)34 and shorter than that for hydrogen-bonded C_6F_5OH in $C_6F_5OH\cdots$ O(CH₂CH₂)₂O \cdots HOC₆F₅ [1.348(1) Å]³⁵ and C₆F₅OH···OPPh₃ [1.348(3) Å].³⁶ In contrast, the C-O distances in **5** [1.368(6), 1.366(5) Å] and **6** [1.35(2), 1.37(2) Å] are longer than that for **7** and are similar to those of hydrogen-bonded phenol in *trans*- $[PdH(OPh...HOPh)(PCy₃)₂]$ [1.344(4) Å],³⁴ PdMe(OPh... HOPh)(tmeda) $[1.349(3)$ Å],^{37a} PdMe(OPh···HOPh)-(P∼N) [P∼^N) *^o*-(diphenylphosphino)-*N*,*N*-dimethylbenzylamine] [1.354(6) Å],^{37b} and Pd{2,6(NMe₂CH₂)₂-C6H3-*N*,*C*,*N*}(OPh'''HOPh) [1.357(8) Å].37c Assignment as hydroxy- (**5** and **6**) and aquapalladium(IV) (**7**) complexes is also in keeping with the higher acidity of pentafluorophenol ($pK_a = 5.49$) compared with phenol (9.95) and 3-methylphenol (10.08),38 where interaction of $Pd^{IV}OH$ with C_6F_5OH results in protonation to form an aqua complex.

In **7**, all hydrogen atoms were refined in a stable manner in (*x*, *y*, *z*, *U*iso), modeling the entity coordinated to palladium to be a water molecule with $O-H = 1.00$ -(8) and 0.78(6) Å, Pd-O-H = 118(4) and 120(4), and $H-O-H = 97(6)^\circ$, Σ 336° (Chart 1). The two hydrogen atoms of the aqua ligand contact the two oxygen atoms of a pair of centrosymmetrically related phenol moieties at 1.60(8) and 1.81(6) Å, with $O \cdot \cdot \cdot O = 2.607(7)$ and 2.577(6) Å, and O-H \cdots O = 175(6) and 166(6)°.

In **6**, for which stable refinement of all tripod ligand and hydroxylic hydrogens (*x*, *y*, *z*, *U*iso) was achieved (the C_4 and aromatic hydrogens of 2-MeC₆H₄OH were not refined), the results are consistent with approach to the coordinated oxygen by a pair of phenolic oxygen atoms $[0...0] = 2.69(1)$ and 2.65(1) Å. Each phenolic oxygen has a closely affiliated hydrogen $[O-H = 0.8(1)$ and 0.9-(2) Å], the former of which approaches the coordinated oxygen at a distance of 1.9(1) Å with $O-H...O = 171$ -(10)°, C-O-H being 122(8)°. The other phenolic hydrogen $[C-O-H = 140(12)°]$ is not directed toward the coordinated oxygen, and the single hydrogen associated with the latter $[O-H = 0.88(8)$ Å] is oriented in the general direction of the phenolic oxygen $[H...O] = 2.1$ (1) A] but with $O-H \cdots O$ being $123(8)^\circ$.

The parent phenol, PhOH, formed a complex (**5**) for which all hydrogen atoms were refined in (*x*, *y*, *z*, *U*iso) to give O····H····O geometries intermediate between structures **6** and **7** (Chart 1), but as noted above, a consideration of C-O distances indicates that the complex is most likely a hydroxopalladium(IV) complex containing the motif $H-O^{\cdots}H(11)-O(11)\cdots H(21)$ O(21). The coordinated oxygen atom has one hydrogen atom closely associated with it [O-H = 0.72(4) Å, Pd- $O-H = 106(4)°$. It is approached by one of the phenol moiety oxygen atoms at $O^{...O} = 2.466(5)$ Å; that oxygen, in turn, is being approached by the other phenolic oxygen $[0...0] = 2.645(6)$ Å. The hydrogen-bond acceptor role of the hydroxopalladium(IV) group in **5** and

6, O…HOAr, is similar to that documented in structural studies of alkoxo- and aryloxopalladium(II) complexes, which often form adducts that exhibit PdOR...HOR interactions with $O^{...O} = 2.567(6) - 2.642(8)$ Å.^{37,39}

Following the usual practice in which, for approximately linear systems O····H····O,⁴⁰ hydrogen bond strengths are estimated as "very strong" $(0 \cdots 0 \le 2.50$ Å), "strong" $(0 \cdots 0 = 2.50 - 2.65$ Å), "medium" $(0 \cdots 0 = 10^{-4})$ 2.65-2.80 Å), or "weak" $(0 \cdots 0 > 2.80$ Å), then complexes **5** and **6** have one medium-strong interaction for the coordinated oxygen atom and complex **7** has two strong interactions for the $Pd(OH_2)$ group.

The Pd-N(2a, 2b) distances are \sim 0.14-0.19 Å longer than Pd-N(2c) in the structures, reflecting the difference in the trans influence of the carbon donors of the pallada(IV)cyclic ring compared with hydroxo and aqua donors (Table 2). Similar differences have been reported for Pt-N distances in related platinum(IV) complexes which contain PtC₂(OH)N₃ and PtC₂(OH₂)N₃ moieties, PtMe₂(OH){(pz)₃BH} (0.13 Å),^{12b} and the tris(pyridin-2-yl)methanol complex $[PtPh_2(OH_2)\{(pz)_3COH\}][NO_3]$ H₂O (\sim 0.16 Å).^{12c} The Pd−O distances are shorter than those reported for organopalladium(II) complexes containing an aqua ligand trans to groups that have a higher trans influence than nitrogen donors, 2.124(2) Å for an alkyl group⁴¹ and 2.132(3)⁴² and 2.20(1)⁴³ for aryl groups.

The pallada(IV)cyclic groups have PdC_2 chelate angles of 84.1(2)-85.2(3)°, essentially identical to those reported for square planar pallada(II)cyclic complexes $Pd(CH_2CH_2CH_2CH_2)(L_2)$ (L₂ = bpy⁴⁴ 82.2(3)°, L₂ = tmeda⁴⁵ 82.5(2)[°]). The palladium atoms lie within 0.269(7) Å of the pyrazole mean planes, and the puckering of the nonplanar pallada(IV)cyclic rings is such that the outer "deviant" carbon atoms $C(2)$ and $C(3)$ are 0.19- $(2)-0.30(1)$ Å from the PdC₄ mean plane (Table 3).

Concluding Remarks

The results reported here show that oxidation of palladium(II) to palladium(IV) by water is a facile process when the palladium(II) reagent is bonded to hydrocarbyl groups and a nitrogen donor ligand and indicate the feasibility of developing aqueous solution organopalladium(IV) chemistry. The complexes also provide structural models that are relevant to the proposals that pallada(IV)cyclic intermediates are involved in organic synthesis.^{1c,46}

The formation of hydroxopalladium(IV) complexes upon reaction of water with palladium(II) substrates is assumed to proceed via hydridopalladium(IV) species

⁽³⁴⁾ Di Bugno, C.; Pasquali, M.; Leoni, P.; Sabatino, P.; Braga, D. *Inorg. Chem.* **1989**, *28*, 1390.

⁽³⁵⁾ Gramstad, T.; Husebye, S.; Maartmann-Moe, K. *Acta Chem. Scand.* **1985**, *B39*, 767.

⁽³⁶⁾ Gramstad, T.; Husebye, S.; Maartmann-Moe, K. *Acta Chem. Scand.* **1986**, *B40*, 26.

^{(37) (}a) Kapteijn, G. M.; Dervisi, A.; Grove, D. M.; Kooijman, H.; Lakin, M. T.; Spek, A. L.; van Koten, G. *J. Am. Chem. Soc.* **1995**, *117*, 10939. (b) Kapteijn, G. M.; Spee, M. P. R.; Grove, D. M.; Kooijman, H.; Spek, A. L.; van Koten, G. *Organometallics* **1996**, *15*, 1405. (c) Alsters, P. L.; Baesjou, P. J.; Janssen, M. D.; Kooijman, H.; Sicherer-Roetman, A.; Spek, A. L.; van Koten, G. *Organometallics* **1992**, *11*, 4124.

⁽³⁸⁾ Chrystiuk, E.; Jusoh, A.; Santafianos, D.; Williams, A. *J. Chem. Soc., Perkin Trans.* **1986**, 163.

^{(39) (}a) Kim, Y.-J.; Osakada, K.; Takenaka, A.; Yamamoto, A. *J. Am. Chem. Soc.* **1990**, *112*, 1096. (b) Kapteijn, G. M.; Grove, D. M.; van Koten, G.; Smeets, W. J. J.; Spek, A. L. *Inorg. Chim. Acta* **1993**, *207*, 131.

⁽⁴⁰⁾ Speakman, J. C. *Struct. Bonding* **1972**, *12*, 141. (b) Novak, A. *Struct. Bonding* **1974**, *18*, 177. (c) Emsley, J. *Chem. Soc. Rev.* **1980**, *9*, 91. (d) Gilli, G. In *Fundamentals of Crystallography*; Giacovazzo, C., Ed.; Oxford University Press: Oxford, U.K., 1972; Chapter 7. (e) Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. *J. Am. Chem. Soc.* **1994**, *116*, 909.

⁽⁴¹⁾ Maassarani, F.; Pfeffer, M.; Le Borgne, G. *Organometallics* **1987**, *6*, 2043.

⁽⁴²⁾ Deeming, A. J.; Rothwell, I. P.; Hursthouse, M. B.; New, L. *J. Chem. Soc., Dalton Trans.* **1978**, 1490.

⁽⁴³⁾ Castan, P.; Jaud, J.; Wimmer, S.; Wimmer, F. L. *J. Chem. Soc., Dalton Trans.* **1991**, 1155.

⁽⁴⁴⁾ Diversi, P.; Ingrosso, G.; Lucherini, A.; Lumini, T.; Marchetti, F.; Adovasio, V.; Nardelli, M. *J. Chem. Soc., Dalton Trans.* **1988**, 133. (45) Canty, A. J.; Skelton, B. W.; Traill, P. R.; White, A. H. *Aust. J. Chem.* **1994**, *47*, 2119.

formed by oxidative addition of water. Following our initial report of part of this work,^{12a} a similar reaction has been suggested as one step in the decomposition of the acyl complex $[Pd{2,6(NMe2CH_2)_2C_5H_3N-*N*,*N*'}-N]$ $(COMe)$ ⁺ in the presence of water to give acetic anhydride.47

Reactions of halogens with organopalladium(II) complexes generally result in Pd-C bond cleavage, ^{24a, 44, 48, 49}

including $Pd(CH_2CH_2CH_2CH_2)(L_2)$ (L₂ = tmeda, bpy),^{24a} in contrast to the facile reactions studied here. Complex reactions of $[PdMeR{(pz)}_3BH]^ (R = Me, Ph)$ with water or halogens to give triorganopalladium(IV) and monoorganopalladium(II) products illustrate the importance of facile alkyl group transfer from palladium(IV) to palladium(II) as a general feature in organopalladium chemistry.

Acknowledgment. We thank the Australian Research Council for financial support and Johnson Matthey Ltd. for generous loans of palladium and platinum salts.

Supporting Information Available: Listings of atomic coordinates, thermal parameters, hydrogen atom parameters, and ligand geometry for the complexes (17 pages). Ordering information is given on any current masthead page.

OM960583E

(48) (a) Wong, P. K.; Stille, J. K. *J. Organomet. Chem.* **1974**, *70*, 121. (b) Ito, Y.; Aoyama, H.; Saegusa, T. *J. Am. Chem. Soc.* **1980**, *102*, 4519. (c) Horino, H.; Inoue, N. *J. Org. Chem.* **1981**, *46*, 4416. (d) McPherson, H. D.; Wardell, J. L. *Inorg. Chim. Acta* **1983**, *75*, 37. (e) Onishi, M.; Hiraki, K.; Iwamoto, A. *J. Organomet. Chem.* **1984**, *262*, C11. (f) Ryabov, A. D. *Synthesis* **1985**, 233. (g) Kurosawa, H.; Urabe, A.; Miki, K.; Nasai, N. *Organometallics* **1986**, *5*, 2002. (h) Isobe, K.; Nanjo, K.; Nakamura, Y.; Kawaguchi, S. *Bull. Chem. Soc. Jpn.* **1986**,
59, 2141. (i) Vicente, J.; Chicote, M. T.; Martín, J.; Artigao, M.; Solans, X.; Font-Altaba, M.; Aguiló, M. *J. Chem. Soc., Dalton Trans.* **1988**,
141. (j) Kubota, M.; Boegeman, S. C.; Keil, R. N.; Webb, C. G.
Organometallics **1989**, *8*, 1616. (k) Albert, J.; Granell, J.; Sales, J. *Polyhedron* **1989**, *8*, 2725. (l) Chattopadhyay, S.; Sinha, C.; Basu, P.; Chakravorty, A. *J. Organomet. Chem.* **1991**, *414*, 421. (m) Alsters, P. L.; Engel, P. F.; Hogerheide, M. P.; Copijn, M.; Spek, A. L.; van Koten, G. *Organometallics* **1993**, *12*, 1831.

(49) Exceptions include the stoichiometric reaction of iodine with *trans*-[PdCl(6-ClC₅H₃N- C^2)(PPh₃)₂] to replace the chloro ligand,^{48h} the oxidation of mono- and bispentafluorophenylpalladium(II) complexes
by chlorine to form palladium(IV) complexes,^{27,50} the reaction of iodine with PdMe₂(L₂) (L₂ = bis(*p*-tolylimino)acenaphthene or bis(*phenylimi*no)camphane) to form unstable palladium(IV) complexes $PdI_2Me_2(L_2)$,²⁸ and the reaction of chlorine with cyclopalladated complexes, such as PdCl{2-(NMe₂CH₂CH₂N(Me)CH₂)C₆H₄-*C*,*N*,*N'*}, to form unstable pal-

ladium(IV) complexes.48m (50) Uson, R.; Fornies, J.; Navarro, R. *Synth. React. Inorg. Met. -Org. Chem.* **1977**, *7*, 235.

⁽⁴⁶⁾ Recent articles and references therein: (a) Guibert, I.; Neibecker, D.; Tkatchenko, I. *J. Chem. Soc., Chem. Commun.* **1989**, 1850. (b) Kamigata, N.; Satoh, M.; Yoshida, M. *J. Organomet. Chem.* **1991**, *401*, C26. (c) Meegalla, S. K.; Taylor, N. J.; Rodrigo, R. *J. Org. Chem.* **1992**, *57*, 2422. (d) Larock, R. C.; Doty, M. J.; Cacchi, S. *J. Org. Chem.* **1993**, *58*, 4579. (e) Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; MacPherson, D. T. *J. Am. Chem. Soc.* **1994**, *116*, 4255. (f) Albrecht, K.; Reiser, O.; Weber, M.; Knieriem, B.; de Meijere, A. *Tetrahedron* **1994**, *50*, 383. (g) de Meijere, A.; Meyer, F. E. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 2379. (h) Catellani, M.; Chiusoli, G. P.; Costa, M. *J. Organomet. Chem.* **1995**, *500*, 69. (i) Catellani, M.; Marmiroli, B.; Fagnola, M. C.; Acquotti, D. *J. Organomet. Chem.* **1996**, *507*, 157. (j) Dyker, G. *Chem. Ber.* **1994**, *127*, 739. (k) Cárdenas, D. J.; Mateo, C.; Echavarren, A. M. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 2445. (l) Brown, D.; Grigg, R.; Sridharan, V.; Tambyrajah, V. *Tetrahedron Lett.* **1995**, *36*, 8137. (m) Castro, J.; Balme, G.; Gore´, J. *J. Chem. Res., Synop.* **1995**, 504.

⁽⁴⁷⁾ Markies, B. A.; Wijkens, P.; Dedieu, A.; Boersma, J.; Spek, A. L.; van Koten, G. *Organometallics* **1995**, *14*, 5628.