Arthur J. Ashe, III,* Jeff W. Kampf, and Jack R. Waas

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055

Received August 26, 1996[®]

The reaction of 1-chloro-1-boracyclohexa-2,5-diene with (3-(dimethylamino)propyl)magnesium chloride followed by reaction with *tert*-butyllithium in ether affords lithium 1-(3-(dimethylamino)propyl)boratabenzene (8). The reaction of 8 with $Mn(CO)_3(CH_3CN)_3PF_6$ affords tricarbonyl[1-(3-(dimethylamino)propyl)boratabenzene]manganese(I) (15B). The crystal structure of **15B** shows that it exists in the intramolecularly B–N-coordinated form with a B–N bond distance of 1.716(5) Å. However in toluene- d_8 solution **15B** is in mobile equilibrium with its ring-opened isomer 15A. Using ¹¹B NMR spectroscopy the equilibrium constants for $15B \rightarrow 15A$ have been measured over the temperature range -35 to 48 °C, allowing evaluation of ΔH° (6.0 kcal/mol) and ΔS° (23 cal/mol K).

Introduction

Although boratabenzenes (1) (Chart 1) have been known since 1970,^{1,2} these aromatic anions have recently attracted renewed attention.^{3-6a} A major interest is that these 6- π -electron ligands are good replacements for cyclopentadienyl (2) in important organometallic compounds.⁶ However, unlike cyclopentadienyl, 1-substituted boratabenzenes can interact strongly with exocyclic substituents which can change the character of the ligand.⁵

In a recent study of aminoboratabenzenes we found that exocyclic B-N π -bonding is quite weak in the lithium complex 3.⁵ However $B-N \pi$ -bonding increases in strength when the aminoboratabenzene is coordinated to an electron-withdrawing metal group. The strong acceptor Mn(CO)₃ removes electron density from the boratabenzene ring of 4, allowing boron to accept π -electron density from the nitrogen lone pair. This results in a slip distortion of the metal away from boron. The extreme is reached in 5 where the highly electron withdrawing Zr(IV) is only η^5 -coordinated to the five carbon atoms of each ring while there is very strong exocyclic B–N π -bonding.^{6a}

By analogy electron withdrawal by a coordinating metal should increase the Lewis acidity of boron. Indeed Herberich has demonstrated an enhanced Lewis

acidity for the cationic boratabenzene complex 6, which forms addition compound 7 by reaction with pyridine⁷ (Scheme 1). In order to explore an intramolecular variant of this effect we have prepared metal derivatives of 1-(3-(dimethylamino)propyl)boratabenzene (8). B-N

[®] Abstract published in Advance ACS Abstracts, December 15, 1996. (1) (a) Herberich, G. E.; Greiss, G.; Heil, H. F. Angew. Chem., Int. Ed. Engl. 1970, 9, 805. (b) Herberich, G. E.; Ohst, H. Adv. Organomet. Chem. 1986, 25, 199.

^{(2) (}a) Ashe, A. J., III; Shu, P. J. Am. Chem. Soc. 1971, 93, 1804. (b) Ashe, A. J., III; Meyers, E.; Shu, P.; Von Lehmann, T.; Bastide, J.

J. Am. Chem. Soc. **1975**, *97*, 6865. (3) (a) Herberich, G. E.; Schmidt, B.; Englert, U.; Wagner, T.

^{(3) (}a) Herberich, G. E.; Schmidt, B.; Englert, U.; Wagner, T. Organometallics 1993, 12, 2891. (b) Herberich, G. E.; Schmidt, S. Englert, U. Organometallics 1995, 14, 471. (c) Herberich, G. E.; Englert, U.; Schmidt, M. U.; Standt, R. Organometallics 1996, 15, 2707. (4) (a) Hoic, D. A.; Davis, W. M.; Fu, G. C. J. Am. Chem. Soc. 1995, 117, 8480. (b) Hoic, D. A.; Wolf, J. R.; Davis, W. M.; Fu, G. C. J. Am. Chem. Soc. 1996, 15, 1315. (c) Qiao, S.; Hoic, D. A.; Fu, G. C. J. Am. Chem. Soc. 1996, 118, 6329. (d) Hoic, D. A.; Davis, W. M.; Fu, G. C. J. Am. Chem. Soc. 1996, 118, 8176.
(5) Ashe, A. J. III: Kampf, J. W.; Müller, C.; Schneider, M.

⁽⁵⁾ Ashe, A. J., III; Kampf, J. W.; Müller, C.; Schneider, M. Organometallics **1996**, *15*, 387.

^{(6) (}a) Bazan, G. C.; Rodriguez, G.; Ashe, A. J., III; Al-Ahmad, S.;
Müller, C. J. Am. Chem. Soc. **1996**, 118, 2291. (b) Bönnemann, H.;
Brijoux, W.; Brinkmann, R.; Meurers, W. Helv. Chim. Acta **1984**, 67, 1616; Bönnemann, H. Angew. Chem., Int. Ed. Eng. 1985, 24, 248.

⁽⁷⁾ Herberich, G. E.; Engelke, C.; Pahlmann, W. Chem. Ber. 1979, 112 607

BF₄

Mn(CO)3

 σ -bond formation was detected by $^{11}{\rm B}$ NMR spectroscopy and by an X-ray structural determination.

Results and Discussion

Alkylation of 1-chloro-1-boracyclohexa-2,5-diene (9)⁸ with (3-(dimethylamino)propyl)magnesium chloride affords 10 in 68% yield (Scheme 2). On standing for several hours at room temperature, 10 isomerizes to a 2:1 mixture of 10 and its conjugated isomer 11. Although these compounds could not be separated, they are easily characterized by using their unambiguous ¹H and ¹³C NMR spectra. The ¹¹B NMR chemical shifts for 10 and 11 are at δ –1.6 and –3.2, respectively. These values are far upfield from the chemical shift values of trivalent boranes, e.g. δ 52 for 1-methyl-1-boracyclohexa-2,5-diene (12),^{2b} and are typical of those observed for four-coordinate boron.¹⁰ They provide strong evidence that 10 and 11 have the assigned spiro structure.

Treating a mixture of **10** and **11** with *tert*-butyllithium in ether gave the lithium boratabenzene **8**, which was isolated as a white solid after removal of solvent. The ¹H, ¹¹B, and ¹³C NMR chemical shift values for the ring atoms of **8** are compared with those of lithium 1-methylboratabenzene (**13**)^{3b} and lithium 6,6-dimethylcyclohexadienide (**14**)¹¹ in Figure 1. The chemical shift values of **8** and **13** are virtually identical and are typical of lithium boratabenzenes.^{3b,5} The ¹¹B NMR shift of **8** at δ 36.6 is far downfield from those of its conjugate acids **10** and **11** indicating that the pendant dimethylamino group is not coordinated to boron as in structure **8B**. It is reasonable to expect that the heterocyclohexa-

Figure 1. Comparison of the ¹³C NMR, ¹H NMR (in parentheses), and ¹¹B NMR (circled) chemical shift values of **8** with **13** and **14**.

Figure 2. ORTEP drawing of the molecular structure of **15B**, with thermal ellipsoids at the 50% probability level.

dienide structure **8B** would show ¹H and ¹³C NMR spectra similar to those of cyclohexadienide **14**. The marked divergence of the spectra of **8** and **13** from those of **14** conclusively demonstrates that the NMe₂ group is not coordinated to the boron of **8**.

The B–N σ -coordination in **10** and **11** should affect their acidity relative to 1-methylboracyclohexadiene (**12**) (p $K_a < 12.5$ in DMSO).⁵ In DMSO the acidities of **10** and **11** have been bracketed between cyclopentadiene (p $K_a = 18.0$)¹² and 1,2,3-triphenylindene (p $K_a = 15.2$)¹² with an estimated value of 17.1 ± 0.7. Thus **10** and **11** are less acidic than **12** by at least 4.5 p K_a units. This diminished acidity must be due to the energetic cost of breaking the B–N σ -bond to form **8**.

The reaction of **8** with $Mn(CO)_3(CH_3CN)_3PF_6$ gave **15B** as yellow crystals in 49% yield. We have obtained an X-ray structure which indicates that the compound has the B–N ring closed form. The molecular structure of **15B** is illustrated in Figure 2.

The structure involves a Mn(CO)₃ unit which is η^{5-1} coordinated to the five ring carbon atoms of the boratacyclohexadienyl unit. In this respect there is a very close resemblance to the structure of cyclohexadienyltricarbonylmanganese (**16**) (Chart 2).¹³ In both **15B** and **16** the five coordinated carbon atoms lie in a common plane while the uncoordinated tetrahedral ring atoms lie above this plane (0.49 Å for **15B** and 0.64 Å for **16**) away from Mn(CO)₃. The intra-ring B–C bonds of **15B** (1.585, 1.595 Å) are much longer than 1.52 Å found in η^{6} -(1-phenylboratabenzene)Mn(CO)₃ (**17**).¹⁴ The longer B–C distances are inconsistent with B–C π -bonding in **15B**.

⁽⁸⁾ Maier, G.; Henkelmann, J.; Reisenauer, H. P. Angew. Chem., Int. Ed. Eng. **1985**, 24, 1065. (9) Thiele, K.-H.; Langguth, T. E.; Müller, G. E. Z. Anorg. Allg.

⁽⁹⁾ Thiele, K.-H.; Langguth, T. E.; Müller, G. E. Z. Anorg. Allg. Chem. **1980**, 462, 152.

 ⁽¹⁰⁾ Wrackmeyer, B. Annu. Rep. NMR Spectrosc. 1988, 20, 61.
 (11) Olah, G. A.; Asensio, G.; Mayr, H.; Schleyer, P v. R. J. Am. Chem. Soc. 1978, 100, 4347.

⁽¹²⁾ Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456.

 ⁽¹³⁾ Churchill, M. R.; Scholer, F. R. Inorg. Chem. 1969, 8, 1950.
 (14) Huttner, G.; Gartzke, W. Chem. Ber. 1974, 107, 3786.

The length of the B–N bond **15B** is 1.716(5) Å. There are very few structural data on trialkylborane-trialkylamine adducts available for comparison. The B-N bond length of 1.698(10) Å for the adduct of trimethylamine with trimethylborane (18)¹⁵ was determined in the gas phase by microwave spectroscopy. The B-N bond lengths of 1.746(3) and 1.764(2) Å were found from the X-ray structures of **20B** and **21B**, respectively.¹⁶ Although these compounds have nearly the same (CCCBN)ring, the longer B-N bonds may be a consequence of the greater steric bulk of the 9-BBN group. Indeed the increase in B–N bond lengths in the series 18 < 15B < **20B** < **21B** parallels the increase in steric hindrance.

Although compound **15B** has the ring-closed structure in the solid state, the ¹¹B NMR spectra in toluene-d₈ indicate that **15B** is in mobile equilibrium with the ringopened form 15A. The ¹¹B NMR spectrum shows a single broad peak which is highly temperature dependent (range: δ -5.0 at -72 °C to δ 25.3 at 97 °C). The ¹H and ¹³C NMR spectra are also temperature dependent, but the shifts are small. Since ¹¹B NMR chemical shifts values are very sensitive to the coordination number of boron,¹⁰ it seems likely that isomer **15B** is the predominant form at low temperature, while isomer 15A is preferentially populated at high temperature. The observed chemical shift represents a concentrationweighted average¹⁷ of 15A and 15B, which are interconverting rapidly on the NMR time scale.

Treating a DMSO- d_6 solution of **15** with 1 equiv of fluoroboric acid converted it to its ammonium salt 22, which re-forms 15 on addition of base. The ¹¹B NMR spectrum of **22** shows a signal for the ring boron at δ 26.6, which is a typical value for η^6 -boratabenzene transition metal complexes.^{1b} For example, 6 shows a signal at δ 23.4, while **17** shows a signal at δ 24.6.^{1b} Since these chemical shift values are close to the signal observed for 15 at 97 °C, they provide additional evidence that 15A is the high-temperature species. Similarly the ¹¹B NMR signal for **7** (δ –6.8) is close to the low-temperature signal for 15,⁶ assigned to 15B. Assuming pure **15B** has δ –6.0 and pure **15A** has δ 27.0, the equilibrium constants for 15B ≠ 15A can be calculated (Table 1). The temperature dependence of K allows determination of $\Delta H^{\circ} = 6.0$ kcal/mol and ΔS° = 22 cal/mol K (r = 0.998).

It is useful to compare these thermodynamic functions with available data for dissociations of trialkylaminetrialkylborane adducts. For **18** in the gas phase ΔH° = 17.6 kcal/mol and ΔS° = 46 cal/mol K.¹⁸ In this case the large positive entropy term is due to the increase in molecularity of the products. More comparable are data on the averaging of ¹H and ¹³C NMR signals due

20A

21A

Table 1. Equilibrium Constants (K) for 15B ≠ 15A in Toluene-d₈ in the Temperature Range 48 to -35 °Ĉ

			-				
obsd ¹¹ B			obsd ¹¹ B				
T (°C)	NMR δ	K	T (°C)	NMR δ	K		
48	21.7	0.19	2.2	10.3	1.02		
37.4	19.7	0.28	-6.2	7.3	1.48		
29	18.7	0.33	-15	4.6	2.11		
17.2	15.1	0.56	-24	1.9	3.18		
9.1	12.2	0.81	-34.7	-0.1	4.48		
Scheme 3 $Me_3B \longrightarrow Me_3 \longrightarrow Me_3B + NMe_3$							
		18	19				
$() \overset{\oplus}{\overset{N}}}}}}}}}$							

to the exchange of diasterotopic groups of **20B** and **21B**¹⁹ (Scheme 3). Oki and Toyota have argued that this process involves a rate-determining B-N bond dissociation followed by faster rotation about the N-C bond and recombination to re-form the B-N bond. In toluene- d_8 $\Delta H^{\ddagger} = 23.7(5), 18.9(5)$ kcal/mol and $\Delta S^{\ddagger} = 16.6(14),$ 14.9(16) cal/mol K for **20B** and **21B**, respectively.¹⁹ These ΔS^{\dagger} values and those of other similar ringopening reactions²⁰ indicate that our ΔS° value is appropriate for the reaction $15B \rightarrow 15A$.

20B, R=Me

21B, R=Et

The average value of the enthalpy of dissociation of trialkylamine-trialkylborane adducts (18, 20B, 21B) is 20 kcal/mol. This exceeds the ΔH° of **15B** \rightarrow **15A** by 14 kcal/mol, indicating that the B-N bond of 15B is unusually weak. The major factor weakening the B-N bond of 15B must be the formation of the delocalized boratabenzene of 15A. Therefore it seems reasonable to estimate that the delocalization energy of the Mn(CO)₃coordinated boratabenzene of 15A is approximately 14 kcal/mol. Since we were unable to detect the ring-closed isomer 8B of 8A, the delocalization energy of 8A must be even greater than 15A. These arguments confirm that boratabenzene has a large π -delocalization energy as had previously been determined from acidity data on 12.21

Experimental Section

General Remarks. All reactions were carried out under an atmosphere of nitrogen. Solvents were dried by using standard procedures. The IR spectra were recorded using a Nicolet 5 DXB FT-IR spectrometer. The mass spectra were determined by using a VG-70-S spectrometer, while the NMR spectra were obtained by using a Bruker WH-360, AM-300, or AM-200 spectrometer. The ¹H NMR and ¹³C NMR spectra were calibrated by using signals from the solvents referenced to Me₄Si. The ⁷Li NMR spectra were referenced to an external 1 M aqueous solution of LiCl, while the ¹¹B NMR spectra were referenced to external BF₃·OEt₂. The combustion analyses were determined by the Analytical Services Department of the

 ⁽¹⁵⁾ Kuznesof, P. M.; Kuczkowski, R. L. Inorg. Chem. 1978, 17, 2308.
 (16) Toyota, S.; Oki, M. Bull. Chem. Soc. Jpn. 1992, 65, 1832.

⁽¹⁷⁾ For a similar case based on concentration differences see:
Brown, H. C.; Soderquist, J. A. J. Org. Chem. 1980, 45, 846.
(18) Brown, H. C.; Taylor, M. D. J. Am. Chem. Soc. 1947, 69, 1332.

⁽¹⁹⁾ Toyota, S.; Oki, M. Bull. Chem. Soc. Jpn. 1991, 64, 1554.
(20) Toyota, S.; Oki, M. Bull. Chem. Soc. Jpn. 1991, 64, 1564 and the other papers in this series.

⁽²¹⁾ Sullivan, S. A.; Sandford, H.; Beauchamp, J. L.; Ashe, A. J., III. J. Am. Chem. Soc. 1978, 100, 3737.

Department of Chemistry, University of Michigan. 1-Chloro-1-boracyclohexa-2,5-diene,⁸ (3-(dimethylamino)propyl)magnesium chloride,⁹ and Mn(CO)₃(CH₃CN)₃PF₆²² were prepared by literature procedures. All other compounds are commercially available.

1-(3-(Dimethylamino)propyl)-1-boracyclohexa-2,5-diene (10) and 1-(3-(Dimethylamino)propyl)-1-boracyclohexa-2,4-diene (11). A solution of (3-(dimethylamino)propyl)magnesium chloride (10.0 mmol) in 20 mL of THF was added dropwise with stirring to a solution of 1-chloro-1-boracyclohexa-2,5-diene (1.10 g, 10.0 mmol) in 40 mL of pentane at -78°C. The reaction mixture was allowed to warm to 25 °C and was stirred for 7 h, during which a white precipitate formed. The volatile materials were then removed in vacuum leaving a residue which was extracted with pentane (3 × 30 mL). After filtration through glass wool, solvent was removed in vacuum leaving **10** as a colorless oil (1.05 g, 64% yield).

¹H NMR (CDCl₃, 200 MHz): δ 6.31 (br d, J = 12.8 Hz, H(3,5)), 5.83 (d, J = 12.7 Hz, H(2,6)), 2.79 (t, J = 7.4 Hz, CH₂N), 2.72 (m, H(4)), 2.32 (s, NMe₂), 1.84 (m, CH₂CH₂N), 0.65 (br m, BCH₂). ¹³C NMR (CDCl₃, 90.6 MHz): δ 138 (br, C(2,6)), 134.8 (C(3,5)), 62.2 (CH₂N), 45.7 (NMe₂), 32.7 (C(4)), 21.0 (CH₂), 19 (br, CH₂B). ¹¹B NMR (CDCl₃, 115.5 MHz): δ -1.6. MS (EI) exact mass (m/z): calcd for C₁₀H₁₈¹¹BN, 163.1532; found, 163.1528.

On standing **10** equilibrates with **11** reaching an equilibrium ratio of 2.2/1 (**10/11**). NMR spectra for **11** may be assigned from spectra the mixture of **10** and **11**: ¹H NMR (CDCl₃, 360 MHz): δ 6.31 (dd, J = 13.5, 5.4 Hz, H(3)), 5.83 (m, H(4)), 2.34 (s, NMe₂), 1.68(m, CH₂) 1.27 (br m, *CH*₂B), other peaks obscured by signals of **10**. ¹³C NMR (CDCl₃, 90.6 MHz): δ 137 (br, C(2)), 132.9, 131.3, 125.2 (C(3,4,5)), 61.5 (*C*H₂N), 45.2 (NMe₂), 20.6 (*CH*₂), 17 (br, B*C*H₂, *C*(6)?). ¹¹B NMR (CDCl₃, 115.5 MHz): δ -3.2.

(1-(3-(Dimethylamino)propyl)boratabenzene)lithium (8). A solution of *tert*-butyllithium (4.72 mmol) in 2.8 mL pentane was added dropwise with stirring to a solution of 10 and 11 (0.77 g, 4.722 mmol) in 12 mL of ether at -78 °C. On warming to 25 °C the initially colorless solution changed to orange. The solvent was removed under high vacuum leaving a whitish solid which was washed with pentane (2 × 10 mL) affording 8 as a white solid (0.56 g, 70%).

¹H NMR (THF- d_8 , 300 MHz): δ 7.11 (dd, J = 10.2, 7.0 Hz, H(3,5)), 6.31 (d, J = 10.2 Hz, H(2,6)), 5.99 (t, J = 6.9 Hz, H(4)); 2.25 (t, J = 9.2 Hz, CH₂N), 2.13 (s, NMe₂), 1.65 (m, CH₂), 1.06 (t, J = 7.0 Hz, BCH₂). ¹³C NMR (THF- d_8 , 75.5 MHz): δ 133.2 (C(3,5)), 126 (br, C(2,6)), 108.6 (C(4)), 65.2, 46.3, 28.8, 20 br. ¹¹B NMR (C₆D₆, 115.5 MHz): δ 36.6. ⁷Li NMR (C₆D₆, 140 MHz): δ -9.16.

Tricarbonyl(1-(3-(dimethylamino)propyl)boratabenzene)manganese(I) (15B). A solution of *tert*-butyllithium (1.93 mmol) in 1 mL of pentane was added to a solution of **10** and **11** (315 mg, 1.93 mmol) in 30 mL of ether at -78 °C. The mixture was allowed to warm to 25 °C with stirring over 1 h. The resulting solution was added to a suspension of Mn(CO)₃-(CH₃CN)₃PF₆ (786 mg, 1.93 mmol) in 20 mL of ether at -78°C. The mixture was allowed to warm to 25 °C and was stirred for 4 h. Removal of solvents in vacuum left a residue which was extracted with pentane (5 × 10 mL) affording a bright yellow solution. The solution was concentrated by partial removal of solvent in vacuum. On cooling to -78 °C 282 mg (49%) of **15B** was obtained as a bright yellow solid, mp 64–65 °C.

¹H NMR (C₆D₆, 300 MHz): δ 5.03 (dd, J = 9.3, 7.3 Hz, H(3,5)), 4.46 (t, J = 7.3 Hz, H(4)), 3.36 (d, J = 9.3, H(2,6)), 2.11 (m, CH_2 N), 1.73 (s, NMe₂), 1.61 (m, CH_2), 1.27 (m, B CH_2). ¹³C NMR (C₆D₆, 75.4 MHz): δ 222.0 (CO), 107.9 (C(3,5)), 84 (br, C(2,6)), 80.7 (C(4)), 62.3 (CH_2 N), 45.0 (NMe₂), 24.5 (CH_2), 17 (br, B CH_2). ¹¹B NMR (toluene- d_8 , 115 MHz): 25.3 (T = 97

(22) Reimann, R. H.; Singleton, E. J. Chem. Soc., Dalton Trans. 1974, 808.

Table 2. Structure Determination Summary

	Seter minación Summary						
Crystal Data							
compd	15B						
empirical formula	C ₁₃ H ₁₇ BNO ₃ Mn						
fw	301.03						
cryst color and habit	orange rectangular blocks						
cryst dimens	$0.28 \times 0.22 \times 0.20 \text{ mm}$						
cryst system	monoclinic						
space group	C2/c (No. 15)						
Z	8						
unit cell dimens from 25 reflcns	$(2\theta > 20.2^{\circ})$						
а	25.847(5) Å						
b	7.318(1) Å						
С	18.252(3) Å						
b	126.44(1)°						
V	2777.3(9) Å ³						
D(calc)	1.440 g cm ⁻³						
F(000)	1248 e						
linear abs coeff (μ)	9.52 cm^{-1}						
Data	Data Collection						
diffractometer	Siemens P4u, equipped with LT-2						
radiation type	Mo K $\bar{\alpha}$ $\lambda = 0.710$ 73 Å. Lp corrected.						
51	graphite monochromator						
temp	178(2) K						
scan type	ω scan						
2θ scan range	5–52°						
octants used	$+h+k+l(h \overline{31}/25; k \overline{1}/9; l \overline{1}/22)$						
scan rate	$2-20^{\circ}$ per min variable						
scan width	0.7° below Ka ₁ to 0.7° above Ka ₂						
bckgd/scan ratio							
std reflcns	3 measd every 97 reflcns.						
	random variations <4%						
no. of data collcd	3626						
no. of unique reflcns	2721, $R_{\rm int} = 0.0688$						
abs corr	empirical, XABS2 ^a						
rel max/min transm	1.214/0.864						
Solution and Refinement							
system used	Siemens SHELXTL PLUS,						
5	SHELXL-93, VAXStation 3500						
solution	direct methods						
refinement method:	full-matrix least squares on F^2						
function minimized	$\sum W(F_0^2 - F_c^2)^2$						
H atoms	riding model, common U(H) refined						
data/restraints/params	2719/0/203						
final <i>R</i> indices $(I \ge 2\sigma I)^b$	$R1 = 0.0532$, w $R^2 = 0.1516$						
R indices (all data) ^b	$R1 = 0.0650, wR^2 = 0.1578$						
GOF	1.099						
mean shift/error	<0.001						
max shift/error	0.001						
secondary extinction	no corr applied						
resid electron density	+1.29/-0.62 e/Å ³						

^{*a*} XABS2, An empirical absorption correction program. Parkin, S.; Moezzi, B.; Hope, H. *J. Appl. Crystallogr.* **1995**, *28*, 53–56.^{*b*} *R*1 = $\Sigma ||F_0| - |F_c||/\Sigma|F_0|$; w $R^2 = [\Sigma w(F_0^2 - F_c^2)/\Sigma w(F_0^2)^2]^{1/2}$; $w^{-1} = [\sigma^2(F_0)^2 + (0.0928P)^2 + 4.20P]$, $P = [\max(F_0^2, 0) + 2F_c^2]/3$.

°C), 18.7 (T = 27 °C), -5.0 (T = -72 °C). IR (KBr) (ν (CO)): 2002, 1913, 1897 cm⁻¹. IR (hexane) ν (CO): 2037, 1961, 1942 cm⁻¹. MS (EI) exact mass (m/z): calcd for C₁₃H₁₇¹¹BMnNO₃, 301.0682; found, 301.0681. Anal. Calcd for C₁₃H₁₇BMnNO₃: C, 51.87, H, 5.69, N, 4.65. Found: C, 52.03, 51.80; H, 5.72, 5.49; N, 4.58, 4.64.

Tricarbonyl(1-(3-(dimethylammonio)propyl)boratabenzene)manganese(I) Tetrafluoroborate (22). To a solution of **15B** (30 mg, 100 μmol) in 400 μL of DMSO-*d*₆ in an NMR tube was added 1 equiv of fluoroboric acid (14 μL, 100 μmol, 54% in Et₂O) at 25 °C. The NMR spectra showed quantitative formation of the salt. ¹H NMR (DMSO-*d*₆, 360 MHz): δ 9.17 (br, NH), 6.22 (dd, J = 8.6, 6.0 Hz, H(3,5)), 5.74 (t, J = 5.6 Hz, H(4)), 4.30 (d, J = 9.1 Hz, H(2,6), 3.07 (m, *CH*₂N), 2.77 (d, J = 4.7 Hz, HN*M*e₂), 1.77 (m, *CH*₂), 1.10 (t, J= 9.0 Hz, *CH*₂B). ¹³C NMR (DMSO-*d*₆, 90 MHz): δ 221.2 (CO), 110.1 (*C*(3,5)), 90 (br, *C*(2,6)), 83.9 (*C*(4)), 59.1 (*C*H₂N), 42.0 (*NME*₂), 21.2 (*CH*₂), 14 (br, *CH*₂). ¹¹B NMR (3:1 C₆D₆/DMSO*d*₆, 115.5 MHz): δ 26.6, 0.

A solution of (dimsyl- d_5)-lithium in DMSO- d_6 was prepared by adding 0.6 mL of *n*-butyllithium (2.5 M in hexane) to DMSO- d_6 (1.5 mL) at 25 °C followed by removal of hexane in

Boratabenzene Complexes

vacuo. This solution was added in portions to the ammonium salt above. The ¹H-NMR spectrum was observed after each addition. Initially the solution showed broad peaks at frequencies intermediate between those of **15B** and **22**. Addition of 1 equiv of dimsyllithium afforded a solution of **15B**.

Measurement of the Equilibrium Constant (K) for 15B \Rightarrow **15A.** The ¹¹B NMR spectrum of **15** in toluene-*d*₈ was recorded at approximately 10 °C intervals over the range *T* = 97 to -72 °C. A plot of the chemical shift δ_{obs} vs 1/*T*K showed that at high and low temperature δ_{obs} approached asymptotic values of δ 27 and -6, respectively. The equilibrium constants were set equal to $(27 - \delta_{obs})/(6 + \delta_{obs})$. Only values 0.05 < K< 5 were used to find ΔH° and ΔS° .

Relative Acidities in DMSO-*d*₆**. (a) 10, 11, and CpLi.** In each of the three NMR tubes a mixture of **10** and **11** (10 mg, .06 mmol) was dissolved in 0.5 mL of dry DMSO-*d*₆. Small variable amounts of CpLi (10–15 mg, 0.14–0.21 mmol) were added to each tube. The ¹H NMR spectra were recorded initially and after 18 h showing equilibration between CpLi, CpH, **10, 11,** and **8**. The relative concentrations were determined by integration of appropriate signals.

(b) 10, 11, and (1,2,3-triphenylindenyl)lithium. In the same manner as above the concentrations were determined by ¹H NMR.

X-ray Structure Determination. Crystals of **15B** suitable for X-ray diffraction were obtained by recrystallization from pentane. Crystallographic data are collected in Table 2. An ORTEP plot of the molecular structure of **15B** showing the numbering scheme used in refinement is illustrated in Figure 2. Table 3 gives the more important distances and bond angles for non-hydrogen atoms. A list of observed and calculated structural factors is available from A.J.A. on request.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for 15B

	(
Mn(1)-C(2)	1.791(4)	N(1)-C(12)	1.479(6)
Mn(1)-C(1)	1.792(4)	N(1)-C(13)	1.508(6)
Mn(1)-C(3)	1.797(4)	N(1) - B(1)	1.716(5)
Mn(1) - C(6)	2.125(4)	B(1)-C(8)	1.585(5)
Mn(1) - C(5)	2.153(3)	B(1) - C(4)	1.595(5)
Mn(1) - C(7)	2.160(3)	B(1) - C(9)	1.635(5)
Mn(1) - C(8)	2.254(4)	C(4) - C(5)	1.399(5)
Mn(1) - C(4)	2.267(3)	C(5) - C(6)	1.423(5)
O(1) - C(1)	1.154(5)	C(6) - C(7)	1.420(5)
O(2) - C(2)	1.163(5)	C(7) - C(8)	1.400(5)
O(3) - C(3)	1.160(4)	C(9) - C(10)	1.545(6)
N(1)-C(11)	1.444(6)	C(10) - C(11)	1.624(9)
C(11)-N(1)-C(12)	114.9(4)	C(4)-B(1)-N(1)	110.2(3)
C(11)-N(1)-C(13)	109.3(4)	C(9)-B(1)-N(1)	98.1(3)
C(12) - N(1) - C(13)	104.1(4)	C(5)-C(4)-B(1)	121.7(3)
C(11) - N(1) - B(1)	104.0(3)	C(4) - C(5) - C(6)	121.3(3)
C(12) - N(1) - B(1)	109.9(3)	C(7) - C(6) - C(5)	119.2(3)
C(13) - N(1) - B(1)	115.0(3)	C(8) - C(7) - C(6)	121.2(3)
C(8) - B(1) - C(4)	103.5(3)	C(7) - C(8) - B(1)	121.7(3)
C(8) - B(1) - C(9)	118.1(3)	C(10) - C(9) - B(1)	107.1(3)
C(4)-B(1)-C(9)	116.2(3)	C(9) - C(10) - C(11)	105.4(4)
C(8) - B(1) - N(1)	110.7(3)	N(1) - C(11) - C(10)	100.5(4)
., ., .,			. ,

Acknowledgment. We thank the National Science Foundation for generous financial support.

Supporting Information Available: Tables of complete positional and *U* values and anisotropic thermal parameters of the non-hydrogen atoms for **15B** (3 pages). Ordering information is given on any current masthead page.

OM960738I