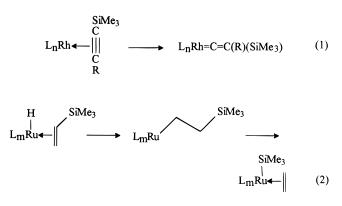
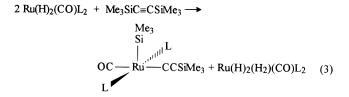
Oxidative Addition of a Si-C(sp) Bond to Ruthenium: Synthesis and Reactivity of $Ru(SiMe_3)(C \equiv CSiMe_3)(CO)(P^tBu_2Me)_2$


Dejian Huang, Richard H. Heyn, John C. Bollinger, and Kenneth G. Caulton*

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405-4001

Received November 14, 1996[®]

Summary: $Me_3SiC \equiv CSiMe_3$ reacts with $Ru(H)_2(CO)L_2$ $(L = P^t Bu_2 Me)$ to give $Ru(SiMe_3)(CCSiMe_3)(CO)L_2$, characterized by solution spectroscopic and single-crystal X-ray diffraction methods. The molecule is squarepyramidal with an apical SiMe₃ group and CO and *CCSiMe*³ *in mutually trans basal sites.*


Examples of scission of Si-C bonds by transition metals at 25 °C are rare but not unknown. Several examples of an η^2 -Me₃SiC₂R complex of Rh have been reported to show 1,2-silyl migration to form vinylidene complexes,¹ either thermally or photochemically (eq 1). However, there are no experimental observations on the mechanism of this migration. Vinylsilanes react with certain metal hydrides to interchange hydride and silyl groups (eq 2), by a mechanism proposed to involve migration of a β -silyl substituent onto the transition metal.²

We report here several reactions involving unsaturated ruthenium species in which a Me₃Si-C(sp) bond is cleaved, with addition of both Si and C to the ruthenium center. Such an addition is unprecedented on reaction with coordinatively unsaturated transitionmetal species.

Reaction of $Ru(H)_2(CO)L_2^{3a}$ (L = ^tBu₂MeP) with excess Me₃SiC=CSiMe₃ proceeds in toluene or cyclohexane to give 90% Ru(SiMe₃)(CCSiMe₃)(CO)L₂ (based on ³¹P NMR).⁴ This molecule was characterized by two SiMe₃ ¹H and ¹³C NMR signals, diastereotopic ^tBu ¹H and ¹³C

NMR signals, and a PMe ¹H NMR virtual triplet (indicating transoid phosphines). Particularly diagnostic are two ¹³C NMR signals due to sp carbons, one of which (C_{α}) is a triplet (16.4 Hz) due to coupling to two equivalent phosphorus nuclei. The fate of the two hydride ligands is established to be H₂, which is scavenged by unreacted $Ru(H)_2(CO)L_2$ to give (eq 3) the

broad hydride ¹H NMR signals of fluxional Ru(H)₂(H₂)- $(CO)L_2$.^{3b} Ru $(H)_2(H_2)(CO)L_2$ loses H₂ to re-form Ru $(H)_2$ -(CO)L₂. The fate of the H_2 is 50% H_2 gas. The other 50% H₂ hydrogenates (see below) excess Me₃SiC≡CSiMe₃ to form cis- and trans-(Me₃Si)CH=CH(SiMe₃), which were identified by characteristic vinyl and trimethylsilyl proton NMR signals. No intermediate is detected when the reaction of eq 3 is monitored by ³¹P NMR spectroscopy.

The crystal structure of this product (Figure 1), crystallized from SiMe₄, shows the molecule to have a square-pyramidal structure with *trans* phosphines.⁵ The silyl group occupies an apical position, showing that this is a stronger σ donor ligand than the acetylide ligand, which is in a basal site and trans to CO because this facilitates a push-pull π -donation⁶ from the acetylide filled $\pi(CC)$ orbital. While the trimethylsilyl (cf. tertiary alkyl) group occupies the more crowded apical site, its Ru–Si distance (2.382(2)Å) is only modestly longer than that (2.331(2) Å) in RuH(SiHPh₂)(CO)(P^tBu₂Me)₂⁷ and

[®] Abstract published in Advance ACS Abstracts, January 15, 1997.
(1) (a) Bantel, H.; Powell, A. K.; Vahrenkamp, H. Chem. Ber. 1990, 123, 661. (b) Rappert, T.; Nürnberg, O.; Werner, H. Organometallics 1993, 12, 1359. (c) Baum, M.; Windmüller, B.; Werner, H. Z. Naturforsch. 1994, 49B, 859. (d) Werner, H.; Baum, M.; Schneider, D.; Windmüller, B. Organometallics 1994, 13, 1089.
(2) (a) Marciniec, B.; Pietraszuk, C. J. Chem. Soc., Chem. Commun. 1995, 2002. (b) Welnetwill V. Vamaraleli, L. Corganamet, Cham.

^{1995, 2003. (}b) Wakatsuki, Y.; Yamazaki, H. J. Organomet. Chem. 1995, 500, 349.

^{(3) (}a) Heyn, R. H.; Macgregor, S. A.; Nadasdi, T. T.; Ogasawara, M.; Eisenstein, O.; Caulton, K. G. *Inorg. Chim. Acta*, in press. (b) Gusev, D. G.; Vymenits, A. B.; Bakhmutov, V. I. *Inorg. Chem.* **1992**, 31. 1.

⁽⁴⁾ Ru(SiMe₃)(CCSiMe₃)(CO)L₂ (L = P^tBu₂Me). A cold solution of 0.22 mmol of $Ru(H)_2(CO)L_2$ was prepared and diluted with toluene (5 mL). A cold toluene (5 mL) solution of Me₃SiCCSiMe₃ (0.05 mL, 0.22 mmol) was added to the red solution. After the mixture was stirred at -75 °C for 3 h, the cold bath was removed and the solution evaporated to dryness. Extraction of the red-orange residue with pentane (2 \times 10 mL) and subsequent removal of the volatiles provided a sticky dark mL) and subsequent removal of the volatiles provided a sticky dark red-orange solid. Purification by recrystallization from tetramethyl-silane (-40 °C) provides dark red-orange crystals (40%). ¹H NMR (C₆D₆, 23 °C): δ 0.34 (s, 9H, SiCH₃), 0.73 (s, 9H, SiCH₃), 1.24 (overlapping t, $J_N = 13$ Hz, 36H, PCCH₃), 1.59 (vt, N = 5.1 Hz, 6H, PCH₃). ¹³C{¹H} NMR (C₆D₆, 20 °C): δ 1.11 (s, SiC), 7.93 (t, $J_{PC} = 9.1$ Hz, PCH₃), 13.6 (s, SiC), 30.2 (s, PCCH₃), 31.6 (s, PCCH₃), 35.33 (vt, $N_{PC} = 16.6$ Hz, PCCH₃), 35.7 (vt, $N_{PC} = 16.5$ Hz, PCCH₃), 124.8 (s, RuC*C*), 167.2 (t, $J_{PC} = 16.4$ Hz, Ru*C*C), 203.5 (t, $J_{PC} = 11.0$ Hz, Ru*C*O). ³¹P{¹H} NMR (C₆D₆, 20 °C): δ 50.1. IR (C₆D₆, cm⁻¹): ν_{CC} 2010, ν_{CO} 1902. Anal. Calcd for C₂₇H₆₀OP₂RuSi₂: C, 52.31; H, 9.75. Found: C, 52.70; H, 9.28. 52.70; H, 9.28

⁽⁵⁾ Crystallographic data (-165 °C): a = 11.168(2) Å, b = 18.043-(4) Å, c = 17.746(4) Å, $\beta = 108.03(1)^{\circ}$ with Z = 4 in $P2_1/n$. R(F) = 0.0462 for 2823 observed $(F > 4\sigma(F))$ data. (6) Caulton, K. G. New J. Chem. 1994, 18, 25.

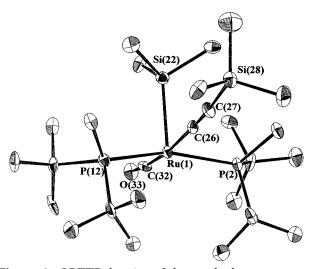
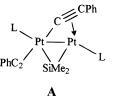


Figure 1. ORTEP drawing of the non-hydrogen atoms of Ru(SiMe₃)(CCSiMe₃)(CO)(P^tBu₂Me)₂. Selected bond distances (Å) and angles (deg): Ru-C(26) = 2.048(6), Ru-C(32) = 1.852(7), C(26) - C(27) = 1.216(8); C(26) - Ru - C(32)= 171.3(3), C(32)-Ru-Si = 91.2(2), Ru-C(26)-C(27) =176.0(6), Ru-C(32)-O(33) = 174.0(6).

it shows no unusual Ru–Si–C angles (range 115.2(3)– 116.8(3)°). The most unusual feature of the structure is the acute Si-Ru-C(CSiMe₃) angle, 80.2(2)°. Although the Si–C(CSiMe₃) distance, 2.87 Å, is certainly nonbonding (the C_3 axis of the SiMe₃ group also points directly towards Ru), no comparably acute angle has been observed in square-pyramidal d⁶ species.⁸ There are no agostic interactions with ruthenium; the closest hydrogen (from a ^tBu methyl) is 2.77 Å from the metal. One ^tBu group from each phosphine projects below the base of the square pyramid, and one methyl of the SiMe₃ group eclipses the Ru-C-O bond. Consistent with the presence of the bulky SiMe₃ ligand, $\angle P$ -Ru-P is uncharacteristically small (160.73(6)°).


There is supporting evidence that the Si-C bond cleavage is a redox process, requiring zerovalent Ru. Some Ru(SiMe₃)(CCSiMe₃)(CO)L₂ is formed by Mg reduction of RuCl₂(CO)L₂ in THF in the presence of Me₃-SiCCSiMe₃.⁹ Electron density at Ru is also implicated as an important component of this reaction because Ru(CO)₂L₂, with one more electron-withdrawing carbonyl ligand than "Ru(CO) L_2 ", fails¹⁰ to react at all (not even adduct formation) with Me₃SiCCSiMe₃ (although it does oxidatively add the H-C bond of H-CCPh). ^tBuC=CSiMe₃ also reacts similarly, giving $Ru(SiMe_3)(C \equiv C^tBu)(CO)L_2$.¹¹

(duces numerous other phosphorus-containing products, perhaps be-cause the reduction in fact proceeds through a Ru(I) species. (10) Ogasawara, M.; Macgregor, S. A.; Streib, W. E.; Folting, K.; Eisenstein, O.; Caulton, K. G. *J. Am. Chem. Soc.* **1996**, *118*, 10189.

Eisenstein, O.; Caulton, K. G. *J. Am. Chem. Soc.* **1996**, *118*, 10189. (11) Spectroscopic data of Ru(SiMe₃)(CC⁴Bu)(CO)L₂. Anal. Calcd for $C_{28}H_{60}OP_2RuSi: C, 55.57; H, 10.01. Found: C, 55.12; H, 9.74. ¹H NMR (C₆D₆, 20 °C): 1.61 (vt, <math>N = 6$ Hz, 6H, PCH₃), 1.38 (s, 9H, CC(CH₃)₃), 1.26 (vt, N = 12.6 Hz, 18H, PC(CH₃)₃), 1.20 (vt, N = 12.6 Hz, 18H, PC(CH₃)₃), 13.0 (s, CBu), 126.0 (t, $J_{PC} = 17$ Hz, Ru-CC'Bu), 35.7 (vt, N = 16.2 Hz, P-C(CH₃)₃), 35.4 (vt, N = 16.2 Hz, PC(CH₃)₃), 32.2 (s, CC(CH₃)₃), 31.9 (s, PC(CH₃)₃), 30.4 (s, PC(CH₃)₃), 13.9 (s, Si(CH₃)₃), 7.7 (vt, N = 9.5 Hz, PCH₃) ppm. IR (C₆D₆): ν (CO) 1896, ν (CC) 2150 cm⁻¹.

The reactivity of Ru(SiMe₃)(CCSiMe₃)(CO)L₂ observed to date shows ready reductive elimination with reformation of the Si-C bond. Slow reaction with CO over 12 h produces $Ru(CO)_{3}L_{2}$ and liberates alkyne, while the complex reacts (70 °C, 12 h) in benzene under argon to liberate alkyne and produce $(\eta^6-C_6H_6)Ru(CO)L$ and equimolar L.¹⁰ If excess fluorobenzene is heated (70 °C, 12 h) with Ru(SiMe₃)(CCSiMe₃)(CO)L₂ in benzene, oxidative addition occurs exclusively to the ortho C-H bond of C₆H₅F. Reaction of Ru(SiMe₃)(CCSiMe₃)(CO)-L₂ with 1 atm of H₂ (excess) in benzene at 25 °C gives $Ru(H)_2(H_2)(CO)L_2$, which hydrogenates the liberated Me₃SiCCSiMe₃ to *cis*- and *trans-(*Me₃Si)HC=CH(SiMe₃). Reaction with equimolar Me₃SiC≡CH (70 °C, 20 min) gives only partial consumption of Ru(SiMe₃)(CCSiMe₃)- $(CO)L_2$, with production of a trace of RuH(CCSiMe₃)-(CO)L₂ along with the major products Ru(*trans*-CH=CH-SiMe₃)(CCSiMe₃)(CO)L₂ and Ru(CCSiMe₃)₂(CO)L₂. The last two are known reaction products of the former with Me₃SiCCH.¹²

The majority of literature reports on transition-metal/ silicon chemistry involve migration of silicon from the metal to carbon.¹³ Cleavage of Si-C bonds with coordination of SiR₃ has been mainly limited to reports which fail to account for the carbon fragment.¹⁴ However, an especially important exception is the oxidative addition¹⁵ of both acetylide substituents of Me₂Si(C₂Ph)₂ to $L_2Pt(C_2H_4)_2$ to give **A**. Two examples are known of

Si-C(sp³) cleavage under mild conditions.^{16,17} The reactions reported here should allow for a more detailed determination of whether Si-C(sp) oxidative addition always involves an intermediate η^2 -alkyne complex and whether it responds to varying electron donation and withdrawal in RC₆H₄CC-SiMe₂(aryl) substrates, as would be expected for an "oxidative" process.

Acknowledgment. This work was supported by the National Science Foundation. We also thank Johnson Matthey/Aesar for material support.

Supporting Information Available: Text giving experimental details for the reactions of Ru(SiMe₃)(CCSiMe₃)(CO)-L₂ and tables giving full crystallographic data, positional parameters, and bond lengths and bond angles for Ru(SiMe₃)-(CCSiMe₃)(CO)L₂ (7 pages). Ordering information is given on any current masthead page.

OM9609776

⁽⁷⁾ Heyn, R. H.; Huffman, J. C.; Caulton, K. G. New J. Chem. 1993, 17, 797-803

⁽⁸⁾ The H–Ir–C(ipso) angle is 78° in IrH(C_6H_5)Cl(PCy₃)₂: Werner, H.; Hohn, A.; Dziallas, M. *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 1090. (9) This reaction, which might proceed through "Ru(CO)L₂", pro-

⁽¹²⁾ Pedersen, A.; Tilset, M.; Folting, K.; Caulton, K. G. Organometallics 1995, 14, 875.

^{(13) (}a) Maddock, S. M.; Rickard, C. E. F.; Roper, W. R.; Wright, L. J. Organometallics **1996**, 15, 1793. (b) Braunstein, P.; Knorr, M. J. Organomet. Chem. **1995**, 500, 21. (c) Hikida, T.; Onitsuka, K.; Sonogashira, K.; Hayashi, T.; Ozawa, F. Chem. Lett. **1995**, 985.

⁽¹⁴⁾ Takao, T.; Yoshida, S.; Suzuki, H.; Tanaka, M. Organometallics 1995. 14. 3855.

⁽¹⁵⁾ Cirrano, M.; Howard, J. A. K.; Spencer, J. L.; Stone, F. G. A.; Wadepohl, H. J. Chem. Soc., Dalton Trans 1979, 1749.
(16) Hofmann, P.; Heiss, H.; Neiteler, P.; Müller, G.; Lachmann, J.

Angew. Chem., Int. Ed. Engl. **1990**, *29*, 880. (17) (a) Lin, W.; Wilson, S. R.; Girolami, G. Organometallics **1994**,

^{13, 2309. (}b) Hua, R.; Akita, M.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1996. 541.