Phosphorus-Containing Dendrimers as Multidentate Ligands: Palladium, Platinum, and Rhodium Complexes

Manuel Bardaji, Monika Kustos, Anne-Marie Caminade,* Jean-Pierre Majoral,* and Bruno Chaudret*

Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex, France

Received July 23, 1996[®]

New dendrimers **3**-[**G**'₁]–**3**-[**G**'₄] possessing from 6 to 48 N(CH₂PPh₂)₂ terminal groups are described. The corresponding Pd, Pt, and Rh complexes [N(CH₂PPh₂)₂MRR']_y (*y* from 6 to 24; generations 1–3) [M = Pd: R = R' = Cl, Br; R = Cl, R' = Me; R = Br, R' = Me; R = Cl, R' = COMe; R = Cl, R' = norbornyl-COMe. M = Pt: R = R' = Br, Cl, Me; R = Br, R' = Me. M = Rh: R, R' = acac] are prepared by reacting **3**-[**G**'₁]–**3**-[**G**'₃] with the appropriate transition metal complexes.

Introduction

The design of new ligands and the use of their corresponding complexes as effective catalysts for a variety of reactions is more than ever of current interest. Much effort has been made to enhance the regioselectivity of a number of reactions, the steric and electronic properties of the ligands having a dramatic influence on the reactivity of organometallic complexes.

Recently, attention has been focused on the use of dendrimers¹ as multidentate ligands. These macromolecules can incorporate, within the cascade structure or on the surface, metals such as ruthenium,² osmium,²a,e,f,j

(3) (a) Achar, S.; Puddephatt, R. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 847. (b) Achar, S.; Puddephatt, R. J. J. Chem. Soc., Chem. Commun. 1994, 1895. platinum,³ palladium,⁴ iron,^{2h,5} cobalt,⁶ gold,⁷ tungsten,^{7a} nickel,⁸ copper,⁹ etc.

Some of these new complexes have been shown to be luminescent,^{2d} to display redox^{4a,b,5e} properties, or to have been used as catalysts.^{4a,b,5e,8} For example, a silane molecular tree containing 12 nickel groups exhibits catalytic activity for the Kharash addition of polyhalogenoalkanes to a carbon–carbon double bond⁸ or a phosphorus-containing dendrimer in which five Pd^{II} groups bonded to tripodal phosphines catalyze the electrochemical reduction of CO₂ to CO.^{4a,b}

We have reported for these last 2 years the preparation of phosphorus-containing dendrimers built to the 10th generation^{7a,10} and possessing either aldehyde groups or P–Cl bonds on the surface. Reactivity of these terminal functions allowed us to prepare a large number of multi di-, tri-, or tetrafunctionalized dendrimers¹¹ as well as dendrimers possessing up to 3072 phosphino end groups. As a first application of these

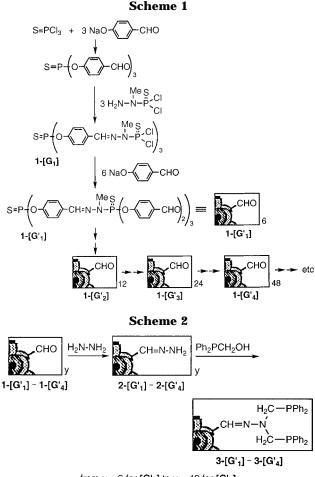
(9) Ottaviani, M. F.; Bossmann, S.; Turro, N. J.; Tomalia, D. A. J. Am. Chem. Soc. 1994, 116, 661.

(10) (a) Launay, N.; Caminade, A.-M.; Lahana, R.; Majoral, J.-P. Angew. Chem., Int. Ed. Engl. **1994**, 33, 1589. (b) Launay, N.; Caminade, A.-M.; Majoral, J.-P. J. Am. Chem. Soc. **1995**, 117, 3282.

(11) (a) Launay, N.; Slany, M.; Caminade, A.-M.; Majoral, J.-P. J. *Org. Chem.* **1996**, *61*, 3799. (b) Lartigue, M.-L.; Slany, M.; Caminade, A.-M.; Majoral, J.-P. *Chem. Eur. J.*, in press.

[®] Abstract published in Advance ACS Abstracts, December 1, 1996.
(1) For a review on dendrimers see for example: (a) Tomalia, D. A.; Naylor, A. M.; Goddart, W. A., III. Angew. Chem., Int. Ed. Engl. 1990, 29, 138. (b) Mekelburger, H. B.; Jaworek, W.; Vögtle, F. Angew. Chem., Int. Ed. Engl. 1992, 31, 1571. (c) Tomalia, D. A.; Durst, H. D. In Topics in Current Chemistry, Vol. 165 (Weber, E., Ed.); Springer Verlag: Berlin, Heidelberg, 1993; p 193. (d) Ottaviani, H. D.; Bossmann, S.; Turro, N. J.; Tomalia, D. A. J. Am. Chem. Soc. 1994, 116, 661. (e) Fréchet, J. M. J. Science 1994, 263, 1710. (f) Issberner, J.; Moors, R.; Vögtle, F. Angew. Chem. 1994, 106, 2507; Angew. Chem., Int. Ed. Engl. 1994, 33, 2413. (g) Moorefield, C. N.; Newkome, G. R. In Advances in Dendritic Molecules; Vol. 1 (Newkome, G. R., Ed.); JAI Press: Greenwich, CT, 1994; p 1. (h) Caminade, A.-M.; Majoral, J.-P. Main Group Chem. News 1995, 1, 14. (i) Ardoin, N.; Astruc, D. Bull. Soc. Chim. Fr. 1995, 132, 876. (j) Dandliker, P. J.; Diederich, F.; Gisselbrecht, J. P.; Louati, A.; Gross, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 2725. (k) Newkome, G. R.; Güther, R.; Moorefield, C. N.; Cardiello, F.; Echegoyen, L.; Perez-Cordero, E.; Luftmann, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2023. (l) Duan, R. G.; Miller, L. L.; Tomalia, D. A. J. Am. Chem. Soc. 1995, 117, 10783. (m) Ottaviani, M. F.; Cossu, E.; Turro, J. N.; Tomalia, D. A. J. Am. Chem. Soc. 1995, 117, 4387. (n) Jansen, J. F. G. A.; Peerlings, H. W. I.; de Brabander-van der Berg, E. M. M.; Meijer, E. W. Angew. Chem., Int. Ed. Engl. 1995, 34, 1207.

<sup>Jansen, J. F. G. A.; Peerlings, H. W. I.; de Brabander-van der Berg, E. M. M.; Meijer, E. W. Angew. Chem., Int. Ed. Engl. 1995, 34, 1207.
(2) (a) Denti, G.; Campagna, S.; Serroni, S.; Ciano, M.; Balzani, V. J. Am. Chem. Soc. 1992, 114, 2944. (b) Campagna, S.; Denti, G.; Serroni, G.; Ciano, M.; Juris, A.; Balzani, V. Inorg. Chem. 1992, 31, 2982. (c) Serroni, S.; Denti, G.; Campagna, S.; Juris, A.; Ciano, M.; Balzani, V. Angew. Chem., Int. Ed. Engl. 1992, 31, 1493. (d) Juris, A.; Balzani, V.; Campagna, S.; Denti, G.; Serroni, S.; Frei, G.; Güdel, H. U. Inorg. Chem. 1994, 33, 1491. (e) Campagna, S.; Giannetto, A.; Serroni, S.; Denti, G.; Trusso, S.; Mallamace, F.; Micali, N. J. Am. Chem. Soc. 1995, 117, 1754. (f) Campagna, S.; Denti, G.; Serroni, S.; Juris, A.; Venturi, M.; Ricevuto, V.; Balzani, V. Chem. Eur. J. 1995, 1, 211. (g) Newkome, G. R.; Cardullo, F.; Constable, E. C.; Moorefield, C. N.; Thompson, A. M. W. C. J. Chem. Soc., Chem. Commun. 1993, 925. (h) Liao, Y. H.; Moss, J. R. J. Chem. Soc., Chem. Commun. 1993, 1774. (i) Liao, Y. H.; Moss, J. R. Organometallics 1995, 14, 2130. (j) Haga, M. A.; Ali, M. M.; Akakawa, R. Angew. Chem., Int. Ed. Engl. 1996, 35, 76.</sup>


^{(4) (}a) Miedaner, A.; Curtis, C. J.; Barkley, R. M.; DuBois, D. L. Inorg. Chem. 1994, 33, 5482. (b) Herring, A. M.; Steffey, B. D.; Miedaner, A.; Wander, S. A.; DuBois, D. L. Inorg. Chem. 1995, 34, 1100. (c) Huck, W. T. S.; van Veggel, F. C. J. M.; Kropman, B. L.; Blank, D. H. A.; Keim, E. G.; Smithers, M. M. A.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 8293. (d) Huck, W. T. S.; van Veggel, F. C. J. M.; Reinhoudt, D. N. Angew. Chem., Int. Ed. Engl. 1996, 1213, 35. (5) (a) Astruc, D. Top. Curr. Chem. 1991, 160, 47. (b) Astruc, D.

New J. Chem. 1992, 16, 305. (c) Moulines, F.; Gloaguen, B.; Astruc, D. Angew. Chem., 1nt. Ed. Engl. 1992, 28, 458. (d) Moulines, F.; Djakovitch, L.; Boese, R.; Gloaguen, B.; Thiel, W.; Fillaut, J. L.; Delville, M. H.; Astruc, D. Angew. Chem., Int. Ed. Engl. 1993, 32, 1075. (e) Fillaut, J. L.; Linares, J.; Astruc, D. Angew. Chem., Int. Ed. Engl. 1994, 30, 2460 and references included. (f) Alonso, B.; Cuadrado, I.; Moran, M.; Losada, J. J. Chem. Soc., Chem. Commun. 1994, 2575.

⁽b) (a) Moors, R.; Vögtle, F. Chem. Commun. 1994, 2575.
(c) (a) Moors, R.; Vögtle, F. Chem. Ber. 1993, 126, 2133.
(b) Newkome, G. R.; Moorefield, C. N. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 1993, 34, 75.
(c) Newkome, G. R.; Moorefield, C. N. Macromol. Symp. 1994, 77, 63.

 ^{(7) (}a) Slany, M.; Bardaji, M.; Casanove, M. J.; Caminade, A. M.;
 Majoral, J. P.; Chaudret, B. J. Am. Chem. Soc. 1995, 117, 9764. (b)
 Lange, P.; Schier, A.; Schmidbaur, H. Inorg. Chim. Acta 1995, 235, 263. (c)
 Lange, P.; Schier, A.; Schmidbaur, H. Inorg. Chem. 1996, 35, 637.

⁽⁸⁾ Knapen, J. W. J.; van der Made, A. W.; de Wilde, J. C.; van Leeuven, P. W. N. M.; Wijkens, P.; Grove, D. M.; van Koten, G. *Nature* **1994**, *372*, 659.

from y = 6 for **[G'₁]** to y = 48 for **[G'₄]**

dendrimers, gold complexes were prepared and were imaged by high-resolution electron microscopy in order to compare the size of consecutive generations.^{7a}

We report here the grafting of diphosphino groups on the surface of some of these dendrimers and the synthesis of the corresponding Pd, Pt, and Rh complexes. It will be also demonstrated that an organometallic chemistry on the dendritic surface can be readily developed.

Results and Discussion

Dendrimers of generations 1-4 (**1**-[**G**'₁] to **1**-[**G**'₄]; 6-48 terminal aldehyde groups) were prepared using the strategy outlined on Scheme 1.^{7a,10} Addition of hydrazine to these macromolecules gave rise quantitatively to dendrimers **2**-[**G**'₁]-**2**-[**G**'₄] incorporating CH=NNH₂ end groups, which were further reacted with the phosphine Ph₂PCH₂OH (2 equiv of phosphine/NH₂ group) to give the new dendrimers **3**-[**G**'₁]-**3**-[**G**'₄] (Scheme 2, Figure 1) possessing between 6 and 48 N(CH₂PPh₂)₂ terminal groups.

Palladium Complexes. The dendrimer **3**-[**G**'₁] in solution in dichloromethane (1 equiv) was first reacted with PdCl₂(COD) (6 equiv). The resulting complex **4**-[**G**'₁] obtained in 84% yield (Scheme 3) was characterized by means of ³¹P, ¹H, and ¹³C NMR spectroscopy and elemental analysis. The ³¹P NMR spectrum showed, for example, three singlets at 7.0 (PPh₂), 54.9 (P core), and 64.2 (P generation 1) ppm with an expected deshielding effect for the diphenylphosphino groups linked to PdCl₂ ($\Delta \delta = 32$ ppm). An easy halogen

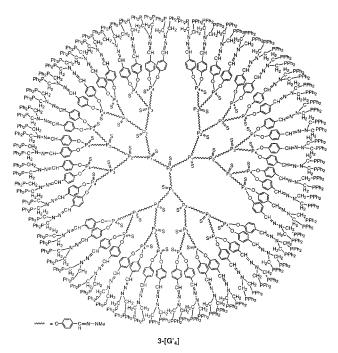
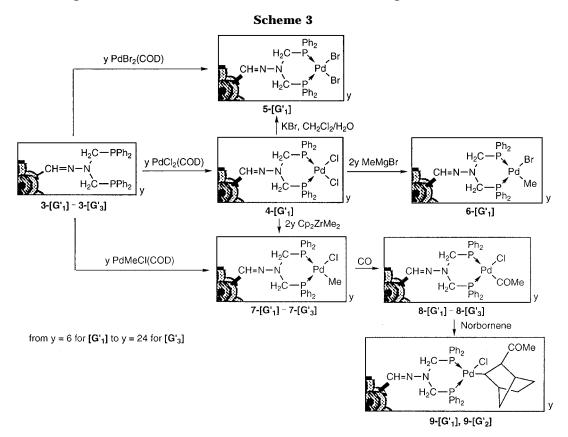


Figure 1.

exchange took place when a dichloromethane solution of **4-[G'_1]** was reacted with KBr. The complex **5-[G'_1]** was isolated as an orange powder in 66% yield. The same complex can be directly prepared in 80% yield by adding PdBr₂(COD) to **3-[G'_1]**. A deshielding effect analogous to the one observed during the transformation **3-[G'_1]** \rightarrow **4-[G'_1]** was also detected in ³¹P NMR [$\Delta \delta$ = 28 ppm; **5-[G'_1]**, singlets at 3.2 (PPh₂), 54.9 (P core), and 64.3 (P generation 1) ppm].

Treatment of $4-[G'_1]$ with 12 equiv of the Grignard reagent BrMgMe led to the unsymmetrical bis-substituted palladium complex $6-[G'_1]$; here halogen exchange and alkylation on palladium took place simultaneously. This new complex was characterized in solution; it is slowly converted into $5-[G'_1]$ in a few days at room temperature.


The ³¹P NMR spectrum of **6-**[**G**'₁] showed for the terminal PPh₂ groups two doublets at -12.0 [² $J_{PP} = 43.3$ Hz, Ph₂P trans to Me–(Pd)] and 18.2 [(² $J_{PP} = 43.3$ Hz, Ph₂P trans to Br)] ppm which were attributed by comparison with similar Pd diphosphine complexes.¹² Such an assignment was corroborated by ¹³CO experiments. The ¹H NMR spectrum displayed for the methyl group bonded to Pd a doublet of doublets at 0.67 (² $J_{PP} = 7.7$ and 4 Hz) ppm.

On the other hand monomethylation, exclusively, can be clearly performed when $4-[G'_1]$ is treated with Cp₂-ZrMe₂. The dendritic complex $7-[G'_1]$ was isolated in 65% yield (Scheme 3) and exhibited spectroscopic data similar to those of $6-[G'_1]$.

Therefore, methylation of the surface metal complexes for generation 1 can be achieved either by using MeMgBr or Cp_2ZrMe_2 . In the first case methylation is accompanied by halogen exchange while only methylation takes place in the second case.

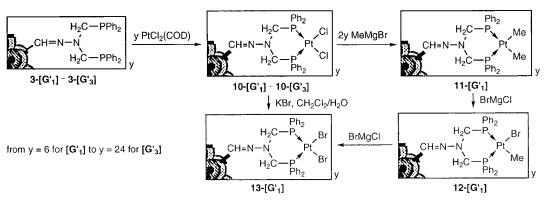
7- $[G'_1]$ can be also prepared from **3-** $[G'_1]$ (1 equiv) and PdMeCl(COD) (6 equiv) (85% yield) (Scheme 3).

⁽¹²⁾ Dekker, G. P. C. M.; Elsevier, C. J.; Vrieze, K.; van Leeuwen, P. W. N. M. Organometallics **1992**, *11*, 1598.

A third type of reaction, namely CO insertion, was attempted on the dendritic surface. A few reports have described the carbonylation of organopalladium derivatives containing bidentate ligands with P-N,¹³ N-N,¹⁴ P-P,^{12,15} or $N-O^{16}$ donor atoms. The rate of CO insertion into the Pd–Me bond in several diphosphine monomers has been recently studied^{12,15} and was found to be very dependent of the nature on the ligand.

A deuteriodichloromethane solution of $7-[G'_1]$ was pressurized to 1 bar of CO to give quantitatively 8- $[G'_1]$. Upon carbonylation all the phosphorus resonances of the terminal diphosphino-palladium moieties were shifted to higher field: from -11.5 to -13.7 (Ph₂P trans to Me then trans to COMe) and from 21.8 to 7.4 (Ph₂P trans to Cl) ppm. The chemical shifts of the internal phosphorus atoms were unchanged, whereas, as already reported,^{15a} the coupling constant ${}^{2}J_{PP}$ increased on going from the methyl complex $(7-[G'_1])$ to the acetyl one $(8-[G'_1])$: from 43.3 to 72.2 Hz. IR spectroscopy confirmed CO insertion ($\nu_{C=O}$ 1686 cm⁻¹). The ¹H NMR spectrum exhibited a singlet for the COMe group at 1.87 ppm (to be compared with the doublet of doublets $(^{2}J_{HP})$ = 7.8 and 3.5 Hz) detected at 0.58 ppm for PdMe in **7-[G'₁]).** ¹³C NMR data clearly confirmed the absence of a doublet which could be attributed to the Me-Pd group. Insertion with ¹³CO was performed in order to corroborate the proposed attribution. Indeed experiments with ¹³CO allowed to detect the resonance of the CO group in ¹³C NMR at 236.0 (dd, ² $J_{CPtrans} = 118.5$ Hz, ² $J_{CPcis} = 13.1$ Hz) (not observed with CO) and to assign unequivocally the two phosphorus resonances in the ³¹P{¹H} NMR spectrum. In the ¹H NMR, the signal due to MeCOPd became a multiplet instead of a singlet. A similar ¹³CO experiment has been precedently used to identify by high-pressure NMR spectroscopy a diphosphino intermediate incorporating the Pd(CO)Me moiety.¹⁷

8-[**G**'₁] was found to be stable more than 1 day in deuterated dichloromethane and can be stored as a solid for 3 days under argon without decomposition. Insertion of norbornene in the Pd-acetyl bond of complex **8**-[**G**'₁] took place readily with the formation of the new complex **9**'-[**G**'₁]. Resonances at -8.8 (d, ${}^{2}J_{PP} = 58.1$ Hz, Ph₂P trans to COMe) and 23.7 (d, ${}^{2}J_{PP} = 58.1$ Hz, Ph₂P trans to Cl) ppm were observed for the terminal diphosphino groups in **9**'-[**G**'₁]. These ³¹P chemical shifts as well as the ${}^{2}J_{PP}$ (smaller than in the starting complex **8**-[**G**'₁]) are typical of alkyl complexes.^{15a} ¹H NMR showed that the signal of the olefinic hydrogen at 6 ppm disappeared while that of the acyl group shifted from 1.8 to 2.2 ppm (a typical value for ketones).


The ability of dendrimers of higher generations, *i.e.* dendrimers **3-**[**G**'₂] and **3-**[**G**'₃], to act as ligands toward PdMeCl(COD) was also investigated. The reactions were performed under the same experimental conditions as those used for **3-**[**G**'₁] and led to the formation of dendritic complexes **7-**[**G**'₂] and **7-**[**G**'₃] possessing 12 or 24 PdClMe moieties on the surface (Scheme 3). These new complexes were fairly soluble in dichloromethane

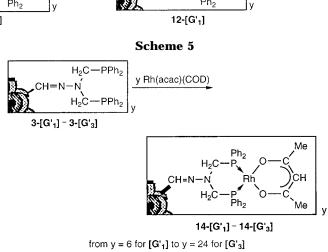
⁽¹³⁾ Dekker, G. P. C. M.; Buijis, A.; Elsevier, C. J.; Vrieze, K.; van Leeuwen, P. W. N. M.; Smeets, W. J. J.; Spek, A. L.; Wang, Y. F.; Stam, C. H. *Organometallics* **1992**, *11*, 1937.

^{(14) (}a) de Graaf, W.; Boersma, J.; van Koten, G. Organometallics **1990**, 9, 1479. (b) van Asselt, R.; Gielens, E. E. C. G.; Rülke, R. E.; Vrieze, K.; Elsevier, C. J. J. Am. Chem. Soc. **1994**, 116, 977. (c) Rülke, R. E.; Kaasjager, V. E.; Kliphuis, D.; Elsevier, C. J.; van Leeuwen, P. W. N. M.; Vrieze, K.; Gonlitz, K. Organometallics **1996**, 15, 668. (d)
Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. **1996**, 118, 4746.

⁽¹⁵⁾ Dekker, G. P. C. M.; Elsevier, C. J.; Vrieze, K.; van Leeuwen, P. W. N. M. *J. Organomet. Chem.* **1992**, *430*, 357.

⁽¹⁶⁾ Frankcombe, K.; Cavell, K.; Knott, R.; Yates, B. J. Chem. Soc., Chem. Commun. 1996, 781.

Scheme 4


as **7-**[**G**'₁] and were also fully characterized by NMR, IR, and elemental analysis. They reacted readily with CO to give the expected insertion products **8-**[**G**'₂] and **8-**[**G**'₃] showing NMR properties similar to those of **8-**[**G**'₁]. The insertion of norbornene into the Pd-acetyl bond of **8-**[**G**'₂] gave **9-**[**G**'₂].

Pt Complexes. Reaction of **3-**[**G**'₁] (1 equiv) in a dichloromethane solution with $PtCl_2(COD)$ (6 equiv) led to the complex **10-**[**G**'₁] obtained as a yellow powder in 95% yield.

The same reaction done with **3**-[**G**'₂] and **3**-[**G**'₃] allowed the isolation of complexes **10**-[**G**'₂] and **10**-[**G**'₃] incorporating 12 and 24 PtCl₂ moieties on the dendrimer surface (Scheme 4). In addition to the singlets due to the internal phosphorus atoms, the ³¹P NMR spectra of **10**-[**G**'₁], **10**-[**G**'₂], and **10**-[**G**'₃] also showed a singlet at ca. -9 ppm with ¹⁹⁵Pt satellites for the Ph₂P end groups (¹J_{P1⁹⁵Pt} from 3434 to 3440 Hz). The ¹⁹⁵Pt{¹H} NMR spectrum corroborated such assignment. A triplet was observed for example for **10**-[**G**'₁] at -4516 ppm. In the ¹H NMR spectra the complexation of platinum is revealed by the presence of ³J_{H1⁹⁵Pt} of 39.6-40.7 Hz between the CH₂ protons of the CH₂P groups and Pt.

Substitution on platinum was attempted by reacting a THF/toluene solution of MeMgBr (12 equiv) with a CD_2Cl_2 solution of **10-**[**G**'₁] (1 equiv) for 1 h at room temperature. The ${}^{31}P{}^{1}H$ NMR spectrum of the resulting solution indicated the presence of only one phosphorus compound characterized in situ; only one singlet at -1.3 ppm (${}^{1}J_{P^{195}Pt} = 1795$ Hz) was detected for the terminal diphenylphosphino groups. The change of the ${}^{1}J_{P^{195}Pt}$ value from 3440 Hz for 10-[G'₁] to 1795 Hz for **11-** $[G'_1]$ is a consequence of the well-known "trans influence" and has to be compared with the values obtained for related complexes, such as Cl₂Pt(dppe) (J = 3618 Hz) and Me₂Pt(dppe) (J = 1794 Hz).¹⁸ The ¹H NMR spectrum revealed the presence of two methyl groups linked to Pt [δ (MePt) = 0.436 (br s with ¹⁹⁵Pt satellites, ${}^{2}J_{\text{H1}^{195}\text{Pt}} = 68.8$ Hz)], and ${}^{13}\text{C}$ NMR data corroborated that a Cl-Me exchange reaction occurred.

All these NMR data were in agreement with the formation of **11-**[**G**'₁], a compound possessing six terminal PtMe₂ groups. However, **11-**[**G**'₁] was found to be unstable in the presence of ClMgBr generated in the reaction. Attempts to quench ClMgBr with an aqueous solution of NH₄⁺Cl⁻¹⁹ did not allow its complete removal. Stirring **11-**[**G**'₁] with ClMgBr in THF/toluene/

 CD_2Cl_2 solution first led to the complex **12-**[**G**'₁] with Pt(Me)Br end groups and then to **13-**[**G**'₁] with $PtBr_2$ end groups.

The ³¹P NMR spectrum of compound **12-[G'1]** exhibited two doublets at $\delta = 0.0$ and $\delta = -3.7$ ppm ($^2J_{\rm PP} =$ 17 Hz) corresponding to two types of terminal PPh₂ groups. This indicates an unsymmetrical substitution on platinum, with one remaining methyl group, as shown by ¹H NMR. Furthermore, the values of ${}^{1}J_{P^{195}Pt}$ (4151 Hz for $\delta = 0.0$ and 1673 Hz for $\delta = -3.7$ ppm) were very different and in the range for a phosphino group trans to halogen and trans to methyl, respectively. At this step, the nature of the halogen on platinum (Cl or Br) was not clear, but compound $12\text{-}[G^\prime_1]$ evoluted slowly toward the symmetrical complex $13-[G'_1]$. This compound was fully halogenated as shown by the value of ${}^{1}J_{P^{195}Pt}$ (3363 Hz). This value is slightly different from that of the chlorine derivative $10-[G'_1]$ (3440 Hz) and indicated the formation of the $PtBr_2$ complex 13-[G'₁] rather than that of the starting $PtCl_2$ complex **10-**[G'_1]. This assignment was corroborated by the reaction of KBr with $10-[G'_1]$ in CH_2Cl_2 which gave the same compound 13- $[G'_1]$, isolated and fully characterized. The main difference between compounds $10-[G'_1]$ and 13- $[\mathbf{G'_1}]$ is observed on the ¹⁹⁵Pt NMR spectra which gave a triplet at $\delta = -4516$ and $\delta = -4789$ ppm, respectively.

Rhodium Complexes. The reaction of the rhodium complex Rh(acac)(COD) (6, 12, or 24 equiv) with **3-**[**G**'₁], **3-**[**G**'₂], or **3-**[**G**'₃] (1 equiv), respectively, yielded after workup yellow orange powders characterized as the expected diphosphino-rhodium complexes **14-**[**G**'₁], **14-**[**G**'₂], or **14-**[**G**'₃] (Scheme 5). ³¹P NMR spectra exhibited for the terminal diphosphino groups doublets ($^{1}J_{P-Rh}$ from 130.8 to 131.2 Hz) at 21.8-23.5 ppm, besides the singlets due to the internal phosphorus

⁽¹⁸⁾ Appleton, T. G.; Bennett, M. A. *Inorg. Chem.* **1978**, *17*, 738. (19) Merwin, R. K.; Schnabel, R. C.; Koola, J. D.; Roddick, D. M. Organometallics **1992**, *11*, 2972.

groups. ¹H NMR did not show any resonance which could be attributed to COD and showed characteristic data for acac moieties. Moreover ¹³C NMR spectra also exhibited the acac resonances.

Conclusion

It has been demonstrated that a number of diphosphino groups (up to 48) can be anchored on the surface of dendrimers and that these diphosphino end groups remained perfectly available for further complexation reactions. Indeed, a variety of Pd, Pt, and Rh complexes were prepared, the surface of dendrimers being covered by up to 24 metal atoms. Preliminary experiments showed that it was possible to do some clear organometallic chemistry on the surface suggesting that these new metallic dendrimers might be of use as catalysts. Such an assumption is under investigation.

Experimental Section

General Methods. All manipulations were carried out with standard high-vacuum or dry argon atmosphere techniques. ¹H, ¹³C, and ³¹P NMR spectra were recorded on a Bruker AC 200, AC 250, or AMX 400 spectrometer. The NMR chemical shifts are reported in ppm, relative to Me₄Si for $^1\!\mathrm{H}$ and ¹³C, relative to 85% H₃PO₄ for ³¹P, and relative to H₂PtCl₆ for ¹⁹⁵Pt. The numbering of the dendrimer skeleton used for $^1\text{H},\ ^{13}\text{C},$ and ^{31}P NMR is depicted on the following scheme:

-P0-0-	$C_0^2 : C_0^3$ $C_0^1 , C_0^4 - C_0^3$	Me 2= № № ₽₁− C	$C_1^2 = C_1^3$ = $C_1^1 \qquad C_1^4 =$	Me C=N-N-P2-	$C_2^2 = C_2^3$ C_2^1 C_2^4 $C_2^2 - C_2^3$	Me -C=N-N-P3-	etc
S	C0 ² C0 ³	i s	C ₁ ² -C ₁ ³	н s	$C_2^2 - C_2^3$	н s	

Note: Signals of the CH₂ groups are partially overlapped by the solvent for all complexes whose ${}^{13}C{}^{1}H$ NMR spectra are run in CD₂Cl₂.

Compounds 2-[G'1]-2-[G'4],^{11a} PdCl₂(COD), PdBr₂(COD), and PtCl₂(COD),²⁰ PdMeCl(COD),²¹ Rh(acac)(COD),²² and Ph₂-PCH₂OH²³ were prepared according to literature procedures.

General procedure for the Synthesis of Compounds **3-** $[G'_n]$. A solution of **2-** $[G'_n]$ (n = 1, 0.146 g, 0.097 mmol; n= 2, 0.18 g, 0.05 mmol; **n** = 3, 0.31 g, 0.04 mmol; **n** = 4, 0.16 g, 0.01 mmol) in THF (5 mL) was added at room temperature to a mixture of Ph_2PH (n = 1, 0.21 mL, 1.2 mmol; n = 2, 0.23mL, 1.3 mmol; *n* = 3, 0.36 mL, 2.1 mmol; *n* = 4, 0.18 mL, 1.05 mmol) and $(CH_2O)_x$ (n = 1, 0.036 g; n = 2, 0.039 g, n = 3,0.063 g; $\mathbf{n} = 4$, 0.032 g), which was heated without solvent in a pressure Schlenk tube for 90 min at 120 °C. The resulting mixture was stirred for 12 h at room temperature. The solvent was removed to give a yellow oil. After the oil was washed with 2×10 mL of pentane/ether (1:1), **3-[G'_n]** was obtained as a white powder.

3-[G'₁]: White powder, mp 91 °C; 88% yield. ³¹P{¹H} NMR (δ, CDCl_3) : -25.5 (s, PPh₂), 51.8 (s, P₀), 62.0 (s, P₁) ppm. ¹H NMR (δ , CDCl₃): 3.3 (d, ³*J*_{HP1} = 10.2 Hz, 9H, P₁-N-CH₃), 4.2 (s, 24H, CH2-P), 7.1-7.8 (m, 165H, C6H5, C6H4 and CH=N) ppm. ¹³C{¹H} NMR (δ , CDCl₃): 33.2 (d, ²J_{CP1} = 13.1 Hz, P_1 –N–CH₃), 56.8 (d, ${}^{1}J_{CP} = 7.0$ Hz, CH₂–P), 121.4 (br s, C_1^2), 121.6 (s, C_0^2), 126.7 (s, C_0^3 and C_1^3), 128.6 (d, ${}^3J_{CP} = 3.4$ Hz, m-C₆H₅), 128.9 (s, p-C₆H₅), 130.0 (s, C₀⁴), 131.1 (s, C₁⁴), 133.1 (d, ${}^{2}J_{CP} = 19.9$ Hz, o-C₆H₅), 133.1 (s, CH=NNCH₂), 137.3 (d, ${}^{1}J_{CP} = 14.2$ Hz, *i*-C₆H₅), 138.2 (d, ${}^{3}J_{CP1} = 11.9$ Hz, (CH=N)₀), 149.6 (d, ${}^{2}J_{CP1} = 7.7$ Hz, $C_{1}{}^{1}$), 151.1 (d, ${}^{2}J_{CP0} = 7.8$ Hz, $C_{0}{}^{1}$)

ppm. Anal. Calc for C222H198N18O9P16S4: C, 68.62; H, 5.14; N, 6.49. Found: C, 68.31; H, 4.95; N, 6.18.

3-[G'2]: White powder, mp 96 °C; 89% yield. ³¹P{¹H} NMR (δ, CDCl₃): -25.5 (s, PPh₂), 51.8 (s, P₀), 62.1 (s, P₁, P₂) ppm. ¹H NMR (δ , CDCl₃): 3.4 (d, ³J_{HP1} = 8.2 Hz, 27H, P₁₋₂-N-CH₃), 4.2 (s, 48H, CH₂-P), 7.0-7.8 (m, 345H, C₆H₅, C₆H₄ and CH=N) ppm. ¹³C{¹H} NMR (δ , CDCl₃): 33.0 (d, ²J_{CP1-2} = 13.1 Hz, P_{1-2} -N-CH₃), 56.6 (d, ${}^{1}J_{CP} = 9.1$ Hz, CH₂-P), 121.3 (br s, C₂²), 121.8 (m, C₀² and C₁²), 126.5 (s, C₀³, C₁³ and C₂³), 128.4 (d, ${}^{3}J_{CP} = 5.3$ Hz, m-C₆H₅), 128.7 (s, p-C₆H₅), 129.8 (s, C₀⁴ and C_1^4), 131.0 (s, C_2^4), 132.9 (d, ${}^2J_{CP} = 19.1$ Hz, o- C_6H_5), 133.0 (s, *C*H=NNCH₂), 137.2 (d, ${}^{1}J_{CP} = 14.0$ Hz, *i*-C₆H₅), 138.6 (m, $(CH=N)_{0-1}$, 149.4 (d, ² $J_{CP2} = 8.5$ Hz, C_2^{1}), 151.2 (m, C_0^{1} and C₁¹) ppm. Anal. Calc for C₄₆₈H₄₂₀N₄₂O₂₁P₃₄S₁₀: C, 67.38; H, 5.07; N, 7.05. Found: C, 67.25; H, 4.92; N, 6.93.

3-[G'₃]: White powder, mp 108 °C; 87% yield. ³¹P{¹H} NMR $(\delta, CDCl_3)$: -25.5 (s, PPh₂), 51.8 (s, P₀), 61.9 (s, P₁, P₂), 62.1 (s, P₃) ppm. ¹H NMR (δ , CDCl₃): 3.4 (m, 63H, P₁₋₂₋₃-N-CH₃), 4.1 (s, 96H, CH₂-P), 7.1-7.8 (m, 705H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CDCl₃): 33.0 (d, ²*J*_{CP1-2-3} = 13.0 Hz, P_{1-2-3} -N-CH₃), 56.7 (d, ${}^{1}J_{CP}$ = 9.8 Hz, CH₂-P), 121.2 (d, ${}^{3}J_{CP2} = 3.3$ Hz, $C_{3}{}^{2}$), 121.7 (m, $C_{0}{}^{2}$, $C_{1}{}^{2}$, and $C_{2}{}^{2}$), 126.5 (s, C_0^3 , C_1^3 , C_2^3 , and C_3^3), 128.4 (d, ${}^3J_{CP} = 5.1$ Hz, *m*-C₆H₅), 128.7 (s, p-C₆H₅), 129.9 (m, C₀⁴, C₁⁴, and C₂⁴), 130.9 (s, C₃⁴), 132.9 (d, ${}^{2}J_{CP} = 19.3$ Hz, o-C₆H₅), 132.9 (s, CH=NNCH₂), 137.1 (d, ${}^{1}J_{CP} = 14.0$ Hz, *i*-C₆H₅), 138.3 (m, (CH=N)₀₋₁₋₂), 149.4 (d, ${}^{2}J_{CP3}$ = 7.4 Hz, C_3^{1}), 151.1 (m, C_0^{1} , C_1^{1} , and C_2^{1}) ppm. Anal. Calc for C₉₆₀H₈₆₄N₉₀O₄₅P₇₀S₂₂: C, 66.82; H, 5.05; N, 7.31. Found: C, 66.69; H, 4.88; N, 7.15.

B-[G'4]: White powder, mp 119 °C; 91% yield. ³¹P{¹H} NMR (d, CDCl₃): -25.5 (s, PPh₂), 61.9 (s, P₁, P₂, P₃), 62.1 (s, P₄) ppm. ¹H NMR (δ, CDCl₃): 3.2 (m, 135H, P₁₋₂₋₃₋₄-N-CH₃), 4.1 (br s, 96H, CH₂-P), 7.1-7.7 (m, 1425H, C₆H₅, C₆H₄ and CH=N) ppm. ¹³C{¹H} NMR (δ , CDCl₃): 33.0 (d, ²J_{CP1-2-3-4} = 12.9 Hz, P₁₋₂₋₃₋₄-N-CH₃), 56.2 (br s, CH₂-P), 121.2 (br s, $C_4{}^2$), 121.7 (m, $C_0{}^2$, $C_1{}^2$, $C_2{}^2$, and $C_3{}^2$), 126.5 (s, $C_0{}^3$, $C_1{}^3$, $C_2{}^3$, $C_{3}{}^{3}$, and $C_{4}{}^{3}$), 128.4 (d, ${}^{3}J_{CP} = 3.9$ Hz, *m*-C₆H₅), 128.7 (s, p-C₆H₅), 130.9 (m, C₀⁴, C₁⁴, C₂⁴, and C₃⁴), 132.1 (s, C₄⁴), 132.9 (d, ${}^{2}J_{CP} = 19.8$ Hz, o-C₆H₅), 132.9 (s, CH=NNCH₂), 137.1 (d, ${}^{1}J_{CP} = 14.4$ Hz, *i*-C₆H₅), 138.5 (m, (CH=N)₀₋₁₋₂₋₃), 149.4 (d, ${}^{2}J_{CP4} = 6.9$ Hz, C₄¹), 151.2 (m, C₀¹, C₁¹, C₂¹, and C₃¹) ppm. Anal. Calc for $C_{1944}H_{1752}N_{186}O_{93}P_{142}S_{46}$: C, 66.56; H, 5.03; N, 7.43. Found: C, 66.40; H, 4.94; N, 7.23.

Synthesis of Compound 4-[G'₁]. To a solution of PdCl₂(COD) (0.044 g; 0.154 mmol or 0.088 g; 0.309 mmol) in CH_2Cl_2 (20 or 30 mL) was added slowly a dichloromethane solution (20 or 35 mL) containing 3-[G'₁] (0.1 g; 25.7 μ mol or 0.2 g; 51.5 μ mol). The mixture was stirred for 1 h, and then the solvent was removed under vacuum. The yellow residue was washed with 1:1 diethyl ether/tetrahydrofuran (2 \times 10 mL) and then with diethyl ether (10 mL).

4-[G'₁]: Yellow powder, mp 240 °C; 84% yield. ³¹P{¹H} NMR (ô, CD₂Cl₂): 5.8 (s, PPh₂), 52.7 (s, P₀), 62.0 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 3.32 (d, ³J_{HP1} = 10.7 Hz, 9H, P₁-N-CH₃), 4.27 (s, 24H, CH₂-P), 7.1-7.9 (m, 165H, C₆H₅, C₆H₄, and CH=N) ppm. ${}^{13}C{}^{1}H$ NMR (δ , CD₂Cl₂): 33.3 (d, ${}^{2}J_{CP1}$ = 10.1 Hz, P₁-N-CH₃), 52.3 (m, CH₂-P), 121.4 (br s, C₁²), 121.8 (s, C₀²), 127.5 (s, C₀³ and C₁³), 128.7 (d, *i*-C₆H₅, overlapped with m-C₆H₅), 129.0 (d, ${}^{3}J_{CP} = 11.4$ Hz, m-C₆H₅), 132.0 (s, p-C₆H₅, C_0^4 and C_1^4), 134.1 (d, ${}^2J_{CP} = 10.4$ Hz, o-C₆H₅), 137.1 (br s, *C*H=NNCH₂), 139.0 (br s (CH=N)₀), 150.8 (d, ²J_{CP1} = 7.7 Hz, C_1^{1}), 151.4 (d, ${}^2J_{CP0} = 5.8$ Hz, C_0^{1}) ppm. IR (KBr): 290 (ν_{Pd-Cl}) cm $^{-1}$. Anal. Calc for $C_{222}H_{198}N_{18}Cl_{12}O_9P_{16}S_4Pd_6$: C, 53.87; H, 4.03; N, 5.09. Found: C, 53.4; H, 4.45; N, 4.7.

Synthesis of Compound 5-[G'₁]. First Method. To a solution of PdBr₂(COD) (0.058 g; 0.154 mmol) in CH₂Cl₂ (20 mL) was added slowly a dichloromethane solution (20 mL) containing **3-**[$\mathbf{G'}_1$] (0.1 g; 25.7 μ mol). The mixture was stirred for 1 h, and then the solvent was removed under vacuum. The orange residue was washed with 1:1 diethyl ether/tetrahydrofuran (2 \times 10 mL) and then with diethyl ether (10 mL). Yield: 80%.

⁽²⁰⁾ Drew, D.; Doyle, J. R. *Inorg. Synth.* **1972**, *13*, 47. (21) Rülke, R. E.; Ernsting, J. M.; Elsevier, C. J.; Spek, A. L.; van Leeuwen, P. W. N. M.; Vrieze, K. *Inorg. Chem.* **1993**, *32*, 5769. (22) Bonati, F.; Wilkinson, G. *J. Chem. Soc.* **1964**, 3156.

⁽²³⁾ Hellmann, H.; Bader, J.; Birkner, H.; Schumacher, O. Liebigs Ann. Chem. 1962, 659, 49.

Second Method. To a solution of complex 4-[G'_1] (0.06 g; 12.1 μ mol) in CH₂Cl₂ (20 mL) was added a water solution (10 mL) containing 0.04 g (0.336 mmol) of KBr. The mixture was stirred for 2 h, and then the organic layer was extracted and washed with water (2 × 5 mL). Anhydrous MgSO₄ was added, the solution filtered, and the solvent removed to give an orange powder which was washed with diethyl ether (10 mL). Yield: 66%.

5-[G′₁]: Orange powder, mp 215 °C. ³¹P{¹H} NMR (δ , CD₂-Cl₂): 1.0 (s, PPh₂), 52.7 (s, P₀), 62.1 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 3.32 (d, ³J_{HP1} = 10.4 Hz, 9H, P₁–N–CH₃), 4.27 (s, 24H, CH₂–P), 6.9–7.9 (m, 165H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂Cl₂): 33.2 (d, ²J_{CP1} = 12.6 Hz, P₁–N–CH₃), 52.1 (m, CH₂–P), 121.4 (br s, C₁²), 121.7 (s, C₀²), 127.4 (s, C₀³ and C₁³), 128.3 (d, *i*-C₆H₅, overlapped with *m*-C₆H₅), 128.9 (d, ³J_{CP} = 11.3 Hz, *m*-C₆H₅), 132.0 (s, *p*-C₆H₅), 132.1 (s, C₀⁴ and C₁⁴), 134.2 (d, ²J_{CP} = 9.8 Hz, *o*-C₆H₅), 136.3 (br s, CH=NNCH₂), 138.9 (br s, (CH=N)₀), 150.7 (d, ²J_{CP1} = 6.3 Hz, C₁¹), 151.2 (d, ²J_{CP0} = 8.7 Hz, C₀¹) ppm. Anal. Calc for C₂₂₂H₁₉₈N₁₈Br₁₂O₉P₁₆S₄Pd₆: C, 48.63; H, 3.64; N, 4.60. Found: C, 48.5; H, 3.7; N, 4.15.

"In Situ" Synthesis of Compound 6-[**G**'₁]. To a deuteriodichloromethane (0.5 mL) solution of complex **4-**[**G**'₁] (0.015 g, 3.03 μ mol) was added MgBrMe (0.4 mmol, 28 μ L of a 1.4 M THF/toluene solution). The yellow solution became orange.

6-[**G**'₁]. ³¹P{¹H} NMR (δ , CD₂Cl₂): -14.2 (d, ²J_{PP} = 43.3 Hz, PPh₂ trans Me), 16.0 (d, ²J_{PP} = 43.3 Hz, PPh₂ trans Br), 52.8 (s, P₀), 62.3 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 0.67 (dd, ²J_{HP} = 7.7 and 4.0 Hz, 18H, Me–Pd), 3.32 (d, ³J_{HP1} = 10.6 Hz, 9H, P₁–N–CH₃), 4.36 (s, 12H, CH₂–P), 4.43 (s, 12H, CH₂–P), 6.6–7.9 (m, 165H, C₆H₅, C₆H₄, and CH=N) ppm.

Synthesis of Compound 7-[G'1]. First Method. To a solution of complex **4-[G'1]** (0.05 g; 10.1 μ mol) in CH₂Cl₂ (20 mL) at 0 °C and protected from light was added Cp₂ZrMe₂ (0.03 g; 0.12 mmol). The mixture was stirred for 3 h, leaving the temperature to increase. Then the solvent was removed under vacuum to give a yellow powder which was washed with diethyl ether (2 × 5 mL) and then with tetrahydrofuran (2 × 5 mL) to eliminate unreacted ZrCp₂Me₂. Yield: 65%.

General Procedure for the Synthesis of Compounds 7-[G'n]. A solution of dendrimer **3-[G'n]** (n = 1, 0.200 g, 51.5 μ mol; n = 2, 0.050 g, 6.0 μ mol; n = 3, 0.055 g, 3.19 μ mol) in dichloromethane (10 mL) was slowly added to a solution of PdMeCl(COD) (n = 1, 0.082 g, 0.309 mmol; n = 2, 0.019 g, 0.072 mmol, n = 3, 0.020 g, 0.077 mmol) in dichloromethane (10 mL). The mixture was stirred for 2 h, and then the solvent was removed under vacuum. The yellow residue was washed with 1/1 diethyl ether/tetrahydrofuran (2×5 mL) and then with diethyl ether (5 mL).

7-[G'₁]: Yellow powder, mp 203 °C; 85% yield. ³¹P{¹H} NMR (δ , CD₂Cl₂): -13.7 (d, ²J_{PP} = 43.3 Hz, PPh₂ trans Me), 19.6 (d, ${}^{2}J_{PP} = 43.3$ Hz, PPh₂ trans Cl), 52.7 (s, P₀), 62.2 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 0.58 (dd, ²J_{HP} = 7.8 and 3.5 Hz, 18H, Me–Pd), 3.33 (d, ${}^{3}J_{HP1} = 10.1$ Hz, 9H, P₁–N–CH₃), 4.38 (s, 12H, CH2-P), 4.42 (s, 12H, CH2-P), 6.5-7.9 (m, 165H, C_6H_5 , C_6H_4 , and CH=N) ppm. ¹³ $C{^1H}$ NMR (δ , CD_2Cl_2): 13.7 (d, ${}^{2}J_{CP} = 100.3$ Hz, Pd–CH₃), 33.1 (d, ${}^{2}J_{CP1} = 12.4$ Hz, P₁– N-CH₃), 55.6 (m, CH₂-P), 56.2 (m, CH₂-P), 121.2 (s, C₁²), 121.7 (s, C₀²), 126.8 (s, C₀³ and C₁³), 128.7 (m, m-C₆H₅), 129.8 (d, ${}^{1}J_{CP} = 49.4$ Hz, *i*-C₆H₅), 130.5 (s, *p*-C₆H₅), 131.1 (s, *p*-C₆H₅), 132.1 (d, ${}^{1}J_{CP} = 55.2$ Hz, *i*-C₆H₅), 132.2 (s, C₀⁴ and C₁⁴), 133.9 (m, o-C₆H₅), 134.8 (s, CH=NNCH₂), 138.5 (br s, (CH=N)₀), 150.1 (d, ${}^{2}J_{CP1} = 7.3$ Hz, $C_{1}{}^{1}$), 151.1 (d, ${}^{2}J_{CP0} = 7.3$ Hz, $C_{0}{}^{1}$) ppm. IR (KBr): 289 (ν_{Pd-Cl}) cm⁻¹. Anal. Calc for C₂₂₈H₂₁₆-N₁₈Cl₆O₉P₁₆S₄Pd₆: C, 56.73; H, 4.51; N, 5.22. Found: C, 56.1; H, 4.5; N, 4.85.

7-[**G**'₂]: Yellow powder, mp 205 °C; 80% yield. ³¹P{¹H} NMR (δ , CD₂Cl₂): -13.9 (d, ²*J*_{PP} = 42.7 Hz, PPh₂ trans Me), 19.5 (d, ²*J*_{PP} = 42.7 Hz, PPh₂ trans Cl), 52.7 (s, P₀), 62.3 (s, P₁, P₂) ppm. ¹H NMR (δ , CD₂Cl₂): 0.58 (m, 36H, Me–Pd), 3.29 (d, ³*J*_{HP1-2} = 7.8 Hz, 27H, P₁₋₂–N–CH₃), 4.37 (s, 24H, CH₂– P), 4.40 (s, 24H, CH₂–P), 6.6–8.0 (m, 345H, C₆H₅, C₆H₄, and CH=N) ppm. ${}^{13}C{}^{1}H$ NMR (δ , CD₂Cl₂): 13.9 (d, ${}^{2}J_{CP} = 100.6$ Hz, Pd–CH₃), 33.1 (d, ${}^{2}J_{CP1-2} = 11.6$ Hz, P₁₋₂–N–CH₃), 55.6 (m, CH₂–P), 56.3 (m, CH₂–P), 121.2 (s, C₂²), 122.0 (s, C₀² and C₁²), 126.9 (s, C₀³, C₁³, and C₂³), 128.9 (m, *m*-C₆H₅), 129.9 (d, {}^{1}J_{CP} = 49.3 Hz, i-C₆H₅), 130.6 (s, *p*-C₆H₅), 131.2 (s, *p*-C₆H₅), 132.2 (d, {}^{1}J_{CP} = 53.7 Hz, i-C₆H₅), 132.3 (s, C₀⁴, C₁⁴, and C₂⁴), 134.1 (m, *o*-C₆H₅), 134.9 (s, CH=NNCH₂), 138.1 (m, (CH=N)₀₋₁), 150.3 (br s, C₂¹), 151.6 (m, C₀¹ and C₁¹) ppm. IR (KBr): 287 (ν_{Pd-Cl}) cm⁻¹. Anal. Calc for C₄₈₀H₄₅₆N₄₂Cl₁₂O₂₁P₃₄S₁₀Pd₁₂: C, 56.38; H, 4.49; N, 5.75. Found: C, 55.15; H, 4.6; N, 4.95.

7-[G'₃]: Yellow powder, mp 195 °C; 75% yield. ³¹P{¹H} NMR (δ , CD₂Cl₂): -13.9 (d, ²J_{PP} = 40.5 Hz, PPh₂ trans Me), 19.5 (d, ${}^{2}J_{PP} = 40.5$ Hz, PPh₂ trans Cl), 52.7 (s, P₀), 62.2 (s, P₁, P₂, P₃) ppm. ¹H NMR (δ, CD₂Cl₂): 0.58 (m, 72H, Me-Pd), 3.28 (br s, 63H, P₁₋₂₋₃-N-CH₃), 4.37 (br s, 96H, CH₂-P), 6.5-8.0 (m, 705H, C₆H₅, C₆H₄, and CH=N) ppm. $^{13}C\{^1H\}$ NMR (d, CD₂Cl₂): 13.9 (d, ${}^{2}J_{CP} = 100.6$ Hz, Pd–CH₃), 33.2 (d, ${}^{2}J_{CP1-2-3}$ = 11.6 Hz, P_{1-2-3} -N-CH₃), 55.7 (m, CH₂-P), 56.3 (m, CH₂-P), 121.2 (s, C_3^2), 122.0 (s, C_0^2 , C_1^2 , and C_2^2), 126.9 (s, C_0^3 , C_1^3 , $C_{2^{3}}$, and $C_{3^{3}}$), 128.9 (m, *m*-C₆H₅), 129.9 (d, ¹J_{CP} = 50.9 Hz, *i*-C₆H₅), 130.6 (s, *p*-C₆H₅), 131.2 (s, *p*-C₆H₅), 132.2 (d, ${}^{1}J_{CP} =$ 55.2 Hz, *i*-C₆H₅), 132.3 (s, C_0^4 , C_1^4 , C_2^4 , and C_3^4), 134.1 (m, o-C₆H₅), 134.9 (s, CH=NNCH₂), 139.4 (m, (CH=N)₀₋₁₋₂), 150.2 (m, C_3^{1}), 151.5 (m, C_0^{1} , C_1^{1} , and C_2^{1}) ppm. IR (KBr): 289 (ν_{Pd-Cl}) cm⁻¹. Anal. Calc for C₉₈₄H₉₃₆N₉₀Cl₂₄O₄₅P₇₀S₂₂Pd₂₄: C, 56.22; N, 4.49; N, 6.00. Found: C, 54.0; H, 4.15; N, 5.65.

General Procedure for the "in Situ" Synthesis of Compounds 8-[G'_n]. A 1 mL volume of a CD_2Cl_2 solution of complex 7-[G'_n] (n = 1, 0.02 g, 4.14 µmol; n = 2, 0.02 g, 1.96 µmol; n = 3, 0.02 g, 0.95 µmol) in a 10 mL Fisher Porter bottle was carefully evacuated and pressurized 3 times to 1 bar of CO. The solution became darker and was stirred for 6 h. It was then transferred to an NMR tube. The same experiment was performed with ¹³CO for 7-[G'₁] and afforded compound 8-[G'₁](¹³CO).

8-[G'_1]. ³¹P{¹H} NMR (δ , CD₂Cl₂): -15.9 (d, ²*J*_{PP} = 72.2 Hz, PPh₂ trans COMe), 5.2 (d, ²*J*_{PP} = 72.2 Hz, PPh₂ trans Cl), 52.7 (s, P₀), 62.3 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 1.87 (s, 18H, Me–COPd), 3.34 (d, ³*J*_{HP1} = 10.1 Hz, 9H, P₁–N–CH₃), 4.35 (s, 12H, CH₂–P), 4.51 (s, 12H, CH₂–P), 6.5–7.9 (m, 165H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂Cl₂): 33.1 (d, ²*J*_{CP1} = 10.6 Hz, P₁–N–CH₃), 36.7 (dd, ³*J*_{CP} = 38.3, ³*J*_{CP} = 22.7 Hz, *C*H₃–CO–Pd), 55.6 (m, CH₂–P), 56.2 (m, CH₂–P), 121.3 (s, C₁²), 121.7 (s, C₀²), 126.9 (s, C₀³ and C₁³), 129.0 (m, *m*-C₆H₅), 130.0 (d, ¹*J*_{CP} = 42.3 Hz, *i*-C₆H₅), 130.6 (s, *p*-C₆H₅), 131.1 (s, C₀⁴ and C₁⁴), 131.3 (s, *p*-C₆H₅), 132.7 (d, ¹*J*_{CP} = 57.9 Hz, *i*-C₆H₅), 133.9 (m, *o*-C₆H₅), 134.1 (s, *C*H=NNCH₂), 138.8 (br s, (CH=N)₀), 150.2 (d, ²*J*_{CP1} = 6.9 Hz, C₁¹), 151.2 (d, ²*J*_{CP0} = 8.7 Hz, C₀¹) ppm. IR (CD₂Cl₂): 1686 ($\nu_{C=0}$) cm⁻¹.

8-[**G**'₁](¹³**CO**). ³¹P{¹H} NMR (δ , CD₂Cl₂): -15.9 (dd, ²J_{PC} = 118.5 Hz, ²J_{PP} = 72.2 Hz, PPh₂ trans COMe), 5.2 (dd, ²J_{PC} = 13.1 Hz, ²J_{PP} = 72.2 Hz, PPh₂ trans Cl), 52.7 (s, P₀), 62.3 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 1.87 (m, 18H, Me–COPd), 3.34 (d, ³J_{HP1} = 10.5 Hz, 9H, P₁–N–CH₃), 4.35 (s, 12H, CH₂–P), 4.51 (s, 12H, CH₂–P), 6.5–7.9 (m, 165H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂Cl₂): 236.0 (dd, ²J_{CPtrans} = 118.5 Hz, ²J_{CPcis} = 13.1 Hz, *C*OMe).

8-[**G**'₂]. ³¹P{¹H} NMR (δ , CD₂Cl₂): -16.1 (d, ²*J*_{PP} = 71.3 Hz, PPh₂ trans COMe), 5.1 (d, ²*J*_{PP} = 71.3 Hz, PPh₂ trans Cl), 52.6 (s, P₀), 62.3 (s, P₁, P₂) ppm. ¹H NMR (δ , CD₂Cl₂): 1.86 (s, 36H, Me–COPd), 3.30 (d, ³*J*_{HP1} = 9.0 Hz, 27H, P_{1–2}–N–CH₃), 4.35 (s, 24H, CH₂–P), 4.51 (s, 24H, CH₂–P), 6.5–7.9 (m, 345 H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂Cl₂): 33.6 (s, P_{1–2}–N–CH₃), 36.3 (m, *C*H₃–CO–Pd), 55.6 (m, CH₂–P), 56.2 (m, CH₂–P), 121.3 (s, C₂²), 121.7 (s, C₀² and C₁²), 126.9 (s, C₀³, C₁³ and C₂³), 129.0 (m, *m*-C₆H₅), 130.1 (d, ¹*J*_{CP} = 44.0 Hz, *i*-C₆H₅), 130.7 (s, *p*-C₆H₅), 131.3 (s, *p*-C₆H₅), 132.2 (d, ¹*J*_{CP} = 55.9 Hz, *i*-C₆H₅), 132.5 (s, C₀⁴, C₁⁴, and C₂⁴), 133.9 (m, *o*-C₆H₅), 134.1 (s, *C*H=NNCH₂), 139.1 (m, (CH=N)_{0–1}), 150.3 (br s, C₂¹), 151.5 (m, C₀¹ and C₁¹) ppm. IR (CD₂Cl₂): 1686 (ν _{C=0}) cm⁻¹.

8-[**G**'₃]. ³¹P{¹H} NMR (δ , CD₂Cl₂): -16.0 (d, ²*J*_{PP} = 73.9 Hz, PPh₂ trans COMe), 5.2 (d, ²*J*_{PP} = 73.9 Hz, PPh₂ trans Cl), 52.7 (s, P₀), 62.2 (s, P₁, P₂, P₃) ppm. ¹H NMR (δ , CD₂Cl₂): 1.86 (s, 72H, Me–COPd), 3.30 (br s, 63H, P_{1–2–3}–N–CH₃), 4.34 (br s, 48H, CH₂–P), 4.50 (br s, 48H, CH₂–P), 6.5–8.0 (m, 705H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂Cl₂): 33.2 (s, P_{1–2–3}–N–CH₃), 36.5 (m, *C*H₃–CO–Pd), 55.6 (m, CH₂–P), 56.2 (m, CH₂–P), 121.3 (s, C₃²), 122.0 (s, C₀², C₁², and C₂²), 126.9 (s, C₀³, C₁³, C₂³, and C₃³), 129.0 (m, *m*-C₆H₅), 130.2 (d, ¹*J*_{CP} = 50.0 Hz, *i*-C₆H₅), 130.7 (s, *p*-C₆H₅), 131.2 (s, C₀⁴, C₁⁴, C₂⁴, and C₃⁴), 131.4 (s, *p*-C₆H₅), 132.4 (d, ¹*J*_{CP} = 40.1 Hz, *i*-C₆H₅), 133.9 (m, *o*-C₆H₅), 134.1 (s, *C*H=NNCH₂), 138.4 (br s, (CH=N)_{0–1–2}), 150.2 (s, C₃¹), 151.5 (m, C₀¹, C₁¹, and C₂¹). IR (CD₂Cl₂): 1685 (ν _{C=0}) cm⁻¹.

General Procedure for the "in Situ" Synthesis of 9-**[G**'_{*n*]. To a deuteriodichloromethane (0.5 mL) solution of **8**-**[G**'_{*n*]} (n = 1, 4.14 μ mol; n = 2, 1.96 μ mol) prepared *in situ* as described above and transferred to a NMR tube was added norbornene (n = 1, 2.4 mg, 24.8 μ mol; n = 2, 2.2 mg, 23.5 μ mol). Then proton and phosphorus NMR spectra were run.}

9-**[G**'₁]. ³¹P{¹H} NMR (δ , CD₂Cl₂): -11.0 (d, ²*J*_{PP} = 58.1 Hz, PPh₂ trans COMe), 21.5 (d, ²*J*_{PP} = 58.1 Hz, PPh₂ trans Cl), 52.6 (s, P₀), 62.2 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 0.7–2.6 (m, 60H, inserted norbornane), 2.20 (s, 18H, Me–CO), 3.28 (d, ³*J*_{HP1} = 9.0 Hz, 9H, P₁–N–CH₃), 4.42 (br s, 12H, CH₂–P), 4.55 (br s, 12H, CH₂–P), 6.9–8.0 (m, 165H, C₆H₅, C₆H₄, and CH=N) ppm.

9-[**G**'₂]. ³¹P{¹H} NMR (δ , CD₂Cl₂): -11.4 (d, ²*J*_{PP} = 56.8 Hz, PPh₂ trans COMe), 21.2 (d, ²*J*_{PP} = 56.8 Hz, PPh₂ trans Cl), 52.3 (s, P₀), 62.4 (s, P₁, P₂) ppm. ¹H NMR (δ , CD₂Cl₂): 0.7–2.7 (m, 120H, inserted norbornane), 2.18 (s, 36H, Me–CO), 3.30 (d, ³*J*_{HP1} = 9.0 Hz, 27H, P₁₋₂–N–CH₃), 4.43 (br s, 24H, CH₂–P), 4.56 (br s, 24H, CH₂–P), 6.8–8.0 (m, 345 H, C₆H₅, C₆H₄, and CH=N) ppm.

General Procedure for the Synthesis of Compounds 10-[**G**'_{*n*}]. A solution of **3-**[**G**'_{*n*}] (n = 1, 99.5 mg, 0.0256 mmol; n = 2, 96 mg, 0.011 mmol, n = 3, 161.5 mg, 0.0095 mmol) in CH₂Cl₂ (5 mL) was slowly added within 1 h at room temperature to a solution of (COD)PtCl₂ (n = 1, 57.7 mg, 0.154 mmol; n = 2, 50 mg, 0.134 mmol; n = 3, 85.4 mg, 0.228 mmol) in CH₂Cl₂ (5 mL). The solution was stirred overnight, and then the solvent was evaporated and the yellow powder obtained washed with CHCl₃ (2 × 10 mL).

10-[G'_1]: Yellow powder, mp 235 °C; 95% yield. ³¹P{¹H} NMR (δ , CD₂Cl₂): -8.9 (s, ¹J_P¹⁹⁵pt = 3440 Hz, PPh₂), 52.5 (s, P₀), 62.0 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 3.31 (br d, ³J_{HP} = 10.7 Hz, 9H, P₁-N-CH₃), 4.34 (m, 24H, CH₂-P), 6.9-8.0 (m, 165H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂-Cl₂): 33.4 (d, ²J_{CP} = 12 Hz, P₁-N-CH₃), 51.3 (m, CH₂P), 121.6 (s, C₁²), 121.9 (s, C₀²), 127.2 (br d, ¹J_{CP} = 65 Hz, *i*-C₆H₅), 127.5 (s, C₀³, C₁³), 129.1 (m, *m*-C₆H₅), 130.2 (s, C₀⁴), 132.2 (s, *p*-C₆H₅), 132.6 (s, C₁⁴), 134.2 (m, *o*-C₆H₅), 135.6 (s, CH=NN), 138.3 (d, ³J_{CP} = 10 Hz, (CH=N)₀), 150.9 (d, ²J_{CP} = 7 Hz, C₁¹), 151.4 (d, ²J_{CP} = 8 Hz, C₀¹) ppm. ¹⁹⁵Pt{¹H} NMR (δ , CD₂Cl₂): -4516 (t, ¹J₁₉₅PtP = 3438 Hz) ppm. Anal. Calc for C₂₂₂H₁₉₈N₁₈Cl₁₂-O₉P₁₆S₄Pt₆: C, 48.64; H, 3.64; N, 4.60. Found: C, 48.23; H, 3.75; N, 4.48.

10-[**G**'₂]: Yellow powder, mp 260 °C (dec); 90% yield. ³¹P{¹H} NMR (δ , CD₂Cl₂): -9 (s, ¹J_{P195Pt} = 3438 Hz, PPh₂), 52.3 (s, P₀), 61.9 (s, P₂), 62.5 (s, P₁) ppm. ¹H NMR (δ , CD₂-Cl₂): 3.31 (br s, 27H, P₁₋₂-N-CH₃), 4.35 (m, 48H, CH₂-P), 6.9-7.9 (m, 345H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂Cl₂): 33.5 (br s, P₁₋₂-N-CH₃), 50.3 (m, CH₂P), 120.7 (s, C₂²), 121.6 (br s, C₀², C₁²), 126.2 (br d, ¹J_{CP} = 71 Hz, *i*-C₆H₅), 126.6 (br s, C₀³, C₁³, C₂³), 128.2 (m, *m*-C₆H₅), 130.6 (s, C₀⁴, C₁⁴), 131.3 (s, *p*-C₆H₅), 131.6 (s, C₂⁴), 133.3 (m, *o*-C₆H₅), 134.9 (s, CH=NN), 138.6 (CH=N)₀₋₁), 149.9 (br s, C₂¹), 150.7 (m, C₀¹, C₁¹) ppm. Anal. Calc for C₄₆₈H₄₂₀N₄₂Cl₂₄O₂₁P₃₄S₁₀-Pt₁₂: C, 48.73; H, 3.67; N, 5.10. Found: C, 48.19; H, 3.80; N, 4.62.

10-[G'₃]: Yellow powder, mp 251 °C (dec); 91% yield. ${}^{31}P{}^{1}H{}$ NMR (δ , CD₂Cl₂): -9 (br s, ${}^{1}J_{P^{195}Pt} = 3434$ Hz, PPh₂),

52.3 (s, P₀), 61.9 (s, P₃), 62.4 (s, P₂), 62.5 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 3.35 (br s, 63H, P₁₋₂₋₃-N-CH₃), 4.30 (m, 48H, CH₂-P), 7.0-7.9 (m, 705H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂Cl₂): 32.5 (br s, P₁₋₂₋₃-N-CH₃), 50.3 (m, CH₂P), 120.7 (s, C₃²), 121.3 (br s, C₀², C₁², C₂², C₃²), 126.2 (br d, ¹J_{CP} = 62 Hz, *i*-C₆H₅), 127.3 (br s, C₀³, C₁³, C₂³, C₃³), 128.2 (m, *m*-C₆H₅), 130.7 (s, C₀⁴, C₁⁴, C₂⁴), 131.3 (s, *p*-C₆H₅), 131.6 (s, C₃⁴), 133.3 (m, *o*-C₆H₅), 134.9 (s, CH=NN), 138.5 (m, (CH=N)₀₋₁₋₂), 150.0 (br s, C₃¹), 150.7 (m, C₀¹, C₁¹, C₂¹) ppm. Anal. Calc for C₉₆₀H₈₆₄N₉₀Cl₄₈O₄₅P₇₀S₂₂Pt₂₄: C, 48.78; H, 3.68; N, 5.33. Found: C, 48.02; H, 3.87; N, 4.67.

"In Situ" Synthesis of Compound 11-[G'₁]. A solution of MeMgBr in 3/1 thf/toluene (0.080 mL, 0.112 mmol, c = 1.4M) was added slowly at room temperature to a solution of **10**-[G'₁] (43.4 mg, 0.0079 mmol) in 2 mL of CD₂Cl₂. The solution, which was heterogeneous at the beginning of the addition, cleared up within 5 min. The NMR spectra, performed after stirring the solution for 1 h, showed the presence of only one phosphorus compound, **11**-[G'₁].

11-[G'_1]. ³¹P{¹H} NMR (δ , CD₂Cl₂): -1.3 (s, ¹*J*_P¹⁹⁵Pt = 1795 Hz, PPh₂), 52.4 (s, P₀), 62.2 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 0.44 (br s, ²*J*_H¹⁹⁵Pt = 68.8 Hz, 36H, CH₃-Pt), 3.38 (br d, ³*J*_{HP} = 10.0 Hz, 9H, P₁-N-CH₃), 4.47 (m, 24H, CH₂-P), 6.9-8.0 (m, 165H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂-Cl₂): 4.1 (dd, ²*J*_{CPtrans} = 100 Hz, ²*J*_{CPcis} = 10 Hz, ¹*J*_C¹⁹⁵Pt = 605 Hz, CH₃-Pt), 33.6 (d, ²*J*_{CP} = 12 Hz, P₁-N-CH₃), 52.0 (m, CH₂P), 121.4 (s, C₁²), 121.9 (s, C₀²), 126.7 (s, C₀³, C₁³), 128.4 (m, *m*-C₆H₅), 130.3 (s, *p*-C₆H₅), 131.8 (s, C₀⁴), 132.6 (br d, ¹*J*_{CP} = 57 Hz, *i*-C₆H₅), 132.8 (s, C₁⁴), 134.0 (m, *o*-C₆H₅), 134.8 (s, CH=NN), 138.8 (br s, (CH=N)₀), 150.1 (d, ²*J*_{CP} = 8 Hz, C₁¹), 151.4 (d, ²*J*_{CP} = 9 Hz, C₀¹) ppm.

Synthesis of Compound 12- $[G'_1]$. The slow evolution of **11-** $[G'_1]$ in solution at room temperature resulted in a new compound, **12-** $[G'_1]$, which was isolated after evaporation of the solvent and washings with ether (3 × 5 mL).

12-**[G**'₁]. ³¹P{¹H} NMR (δ , CD₂Cl₂): -3.7 (d, ²J_{PP} = 17 Hz, ¹J_P¹³⁵_{Pt} = 1673 Hz, PPh₂ trans Me), 0.0 (d, ²J_{PP} = 17 Hz, ¹J_P¹³⁵_{Pt} = 4151 Hz, PPh₂ trans Br), 52.4 (s, P₀), 62.2 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 0.52 (dd, ³J_{HP} = 6.8 Hz, ³J_{HP} = 4.7 Hz, ²J_H¹³⁵_{Pt} = 59.2 Hz, 18H, CH₃-Pt), 3.32 (br d, ³J_{HP} = 10.2 Hz, 9H, P₁-N-CH₃), 4.44 (m, 12H, CH₂-P), 4.46 (m, 12H, CH₂-P), 6.7-7.8 (m, 165H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂Cl₂): 6.9 (dd, ²J_{CPtrans} = 95 Hz, ²J_{CPcis} = 6 Hz, ¹J_C¹³⁵_{Pt} = 680 Hz, CH₃-Pt), 33.2 (d, ²J_{CP} = 12 Hz, P₁-N-CH₃), 51.2 (m, CH₂P), 121.2 (br s, C₁²), 121.7 (s, C₀²), 126.9 (s, C₀³, C₁³), 127.7 (br d, ¹J_{CP} = 48 Hz, *i*-C₆H₅), 128.7 (m, *m*-C₆H₅), 130.0 (s, C₀⁴), 130.7 (s, *p*-C₆H₅), 131.1 (s, C₁⁴), 131.4 (s, *p*-C₆H₅), 132.5 (br d, ¹J_{CP} = 47 Hz, *i*-C₆H₅), 134.1 (m, *o*-C₆H₅), 134.5 (s, CH=NN), 138.8 (d, ³J_{CP} = 16 Hz (CH=N)₀), 150.3 (d, ²J_{CP} = 7 Hz, C₁¹), 151.3 (d, ²J_{CP} = 8 Hz, C₀¹) ppm.

Synthesis of Compound 13-[**G**'₁]. A solution of **10-**[**G**'₁] (57 mg, 0.0104 mmol) in 25 mL of CH_2Cl_2 was added to a solution of KBr (47 mg, 0.154 mmol) in 10 mL of water, at room temperature. After the solution was stirred for 3 h, the two phases were separated and the organic phase was dried over MgSO₄ and evaporated.

13-[G'1]: Yellow powder, mp 270 °C (dec); 90% yield. ³¹P{¹H} NMR (δ , CD₂Cl₂): -9.9 (s, ¹J_P¹⁹⁵Pt = 3363 Hz, PPh₂), 52.4 (s, P₀), 61.9 (s, P₁) ppm. ¹H NMR (δ , CD₂Cl₂): 3.32 (br d, ³J_{HP} = 10.2 Hz, 9H, P₁-N-CH₃), 4.33 (m, 24H, CH₂-P), 6.9-7.9 (m, 165H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂Cl₂): 33.3 (d, ²J_{CP} = 11 Hz, P₁-N-CH₃), 50.9 (m, CH₂P), 121.4 (br s, C₁²), 121.7 (br s, C₀²), 127.3 (s, C₀³, C₁³), 127.5 (br d, ¹J_{CP} = 69 Hz, *i*-C₆H₅), 128.8 (m, *m*-C₆H₅), 130.0 (s, C₀⁴), 132.0 (s, *p*-C₆H₅), 132.5 (s, C₁⁴), 134.1 (m, *o*-C₆H₅), 134.9 (s, CH=NN), 139.0 (d, ³J_{CP} = 13 Hz, (CH=N)₀), 150.7 (d, ²J_{CP} = 7 Hz, C₁¹), 151.2 (d, ²J_{CP} = 8 Hz, C₀¹) ppm. ¹⁹⁵Pt{¹H} NMR (δ , CD₂Cl₂): -4789 (t, ¹J_{1¹⁵PtP} = 3485 Hz) ppm. Anal. Calc for C₂₂₂H₁₉₈N₁₈Br₁₂O₉P₁₆S₄Pt₆: C, 44.33; H, 3.32; N, 4.19. Found: C, 43.96; H, 3.45; N, 3.98.

General Procedure for the Synthesis of Compounds 14-[**G**'_{*n*}]. A solution of **3-**[**G**'_{*n*}] ($n = 1, 100 \text{ mg}, 25.7 \mu \text{mol}; n =$ 2, 100 mg, 12.0 μ mol; $\mathbf{n} = 3$, 60 mg, 3.48 μ mol) in dichloromethane (15 mL) was added slowly to a solution of Rh(acac)-(COD) ($\mathbf{n} = 1$, 48 mg, 0.154 mmol; $\mathbf{n} = 2$, 45 mg, 0.144 mmol; $\mathbf{n} = 3$, 26 mg, 0.083 mmol) in dichloromethane (15 mL). The mixture was stirred for 2 h, and then the solvent was removed under vacuum and the yellow-orange residue washed three times with diethyl ether (10 mL).

14-[**G**'₁]: Yellow-orange powder, mp 245 °C; 76% yield. ³¹P-{¹H} NMR (δ , CDCl₃): 21.8 (d, ¹J_{PRh} = 130.8 Hz, PPh₂), 52.8 (s, P₀), 62.6 (s, P₁) ppm. ¹H NMR (δ , CDCl₃): 1.84 (s, 36H, CH₃ acac), 3.33 (br s, 9H, P₁–N–CH₃), 4.61 (m, 24H, CH₂–P), 5.41 (s, 6H, CH acac), 6.7–8.2 (m, 165H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CDCl₃): 27.7 (s, CH₃ acac), 33.1 (d, ²J_{CP1} = 9.9 Hz, P₁–N–CH₃), 52.3 (m, CH₂–P), 98.7 (s, CH acac), 121.6 (br s, C₁² and C₀²), 127.5–135.8 (m, C₀³, C₁³, C₀⁴, C₁⁴, *i*-C₆H₅, *m*-C₆H₅, *p*-C₆H₅, *o*-C₆H₅, and *C*H=NNCH₂), 139.6 (s, (CH=N)₀), 150.6 (d, ²J_{CP1} = 7.9 Hz, C₁¹), 151.1 (d, ²J_{CP0} = 7.9 Hz, C₀¹), 184.9 (s, CO acac) ppm. Anal. Calc for C₂₅₂H₂₄₀N₁₈O₂₁P₁₆S₄Rh₆: C, 59.37; H, 4.74; N, 4.95. Found: C, 55.6; H, 4.45; N, 4.4. Anal. Calc for **14**-[**G**'₁]-6CH₂Cl₂: C, 55.26; H, 4.53; N, 4.49.

14-[G'_2]: Yellow-orange powder, mp 250 °C; 80% yield. ³¹P-{¹H} NMR (δ , CDCl₃): 22.0 (d, ¹*J*_{PRh} = 130.8 Hz, PPh₂), 62.6 (s, P₁, P₂) ppm. ¹H NMR (δ , CDCl₃): 1.84 (s, 72H, CH₃ acac), 3.28 (br s, 27H, P₁₋₂–N–CH₃), 4.61 (m, 48H, CH₂–P), 5.40 (s, 12H, CH acac), 6.6–8.1 (m, 345H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CDCl₃): 27.6 (s, CH₃ acac), 32.9 (s, $P_{1-2}-N-CH_3),\,51.8$ (m, $CH_2-P),\,98.6$ (s, CH acac), 121.6 (br s, $C_0{}^2,\,C_1{}^2,\,and\,C_2{}^2),\,127.5-135.8$ (m, $C_0{}^3,\,C_1{}^3,\,C_2{}^3,\,C_0{}^4,\,C_1{}^4,\,C_2{}^4,\,i\text{-}C_6H_5,\,m\text{-}C_6H_5,\,p\text{-}C_6H_5,\,a\text{-}C_6H_5,\,and\,CH=NNCH_2),\,139.3$ (m, (CH=N)_{0-1}), 150.5 (br s, $C_2{}^1)$, 151.4 (m, $C_0{}^1$ and $C_1{}^1)$, 184.9 (s, CO acac) ppm.

14-[**G**'₃]: Orange powder, mp 256 °C; 75% yield. ³¹P{¹H} NMR (δ , CD₂Cl₂): 23.5 (d, ¹J_{PRh} = 131.2 Hz, PPh₂), 64.7 (s, P₁, P₂, P₃) ppm. ¹H NMR (δ , CD₂Cl₂): 1.86 (s, 144H, CH₃ acac), 3.33 (br s, 63H, P₁₋₂₋₃-N-CH₃), 4.61 (m, 96 H, CH₂-P), 5.44 (s, 24H, CH acac), 6.8-8.1 (m, 705H, C₆H₅, C₆H₄, and CH=N) ppm. ¹³C{¹H} NMR (δ , CD₂Cl₂): 27.5 (s, CH₃ acac), 33.0 (d, ²J_{CP1-2-3} = 10.2 Hz, P₁₋₂₋₃-N-CH₃), 51.4 (m, CH₂-P), 98.4 (s, CH acac), 121.6 (br s, C₀², C₁², C₂², and C₃²), 127.4-135.8 (m, C₀³, C₁³, C₂³, C₃³, C₀⁴, C₁⁴, C₂⁴, C₃⁴, *i*-C₆H₅, *m*-C₆H₅, *p*-C₆H₅, *o*-C₆H₅, and *C*H=NNCH₂), 139.4 (m, (CH=N)₀₋₁₋₂), 150.5 (m, C₃¹), 151.3 (m, C₀¹, C₁¹, and C₂), 184.9 (s, CO acac) ppm.

Acknowledgment. Thanks are due to the CNRS for financial support and the Ministerio de Educacion y Cultura (Spain) for a grant (M.B.).

Supporting Information Available: NMR spectra (6 pages). Ordering information is given on any current masthead page.

OM9606101