# Oxidation of Ruthenium(II) to Ruthenium(IV) $\eta^4$ -Diene **Complexes: Swing Mechanism and Diene-Allyl** Conversion

Christian Gemel,<sup>†</sup> Dominique Kalt,<sup>†</sup> Kurt Mereiter,<sup>‡</sup> Valentin N. Sapunov,<sup>†,§</sup> Roland Schmid,<sup>†</sup> and Karl Kirchner<sup>\*,†</sup>

Institute of Inorganic Chemistry and Institute of Mineralogy, Crystallography, and Structural Chemistry, Technical University of Vienna, Getreidemarkt 9, A-1060 Vienna, Austria

Received August 13, 1996<sup>®</sup>

This paper reports on the synthesis and reactivity of Ru(IV)  $\eta^4$ -diene complexes of the type  $Ru(\eta^5-C_5Me_5)(\eta^4$ -diene)Br<sub>2</sub><sup>+</sup> obtained by oxidative bromine additions to Ru(II)  $\eta^4$ -diene complexes. Mechanistic details are derived from the reaction products varying with the oxidizing agent and the leaving ligand and are backed up by extended Hückel molecular orbital calculations. The diene fragment in Ru(IV) is prone to *gauche* deformation and is therefore extremely susceptible to nucleophilic attack of even weak anionic bases generating the corresponding Ru(IV)  $\eta^3$ -allyl complexes. Accordingly, Ru(IV)  $\eta^4$ -diene complexes are stabilized either by using 2,3-disubstituted diene ligands in which case gauche deformation is highly unfavorable or else by excluding nucleophilic agents. For the latter method, two convenient routes to affording Ru(IV)  $\eta^4$ -diene complexes are (i) the reaction of Br<sup>+</sup>CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> with  $\operatorname{Ru}(\eta^5-\operatorname{C}_5\operatorname{Me}_5)(\eta^4-\operatorname{diene})$ Br and (ii) the reaction of dibromine with labile  $\operatorname{Ru}(\eta^5-\operatorname{C}_5\operatorname{Me}_5)(\eta^4-\operatorname{diene})$ diene)(CF<sub>3</sub>SO<sub>3</sub>). The conversion of the Ru(II)  $\eta^4$ -diene to the Ru(IV)  $\eta^4$ -diene complex is suggested to proceed via a swing of the diene ligand by changing the dihedral angle between the  $C_5Me_5$  and diene ligands from about +20 to about  $-70^\circ$  concomitantly pushing the leaving ligand (Br<sup>-</sup> or CF<sub>3</sub>SO<sub>3</sub><sup>-</sup>) out.

## Introduction

Higher oxidation state  $\eta^4$ -diene complexes are interesting compounds in which the diene moiety is bound in a  $\sigma^2$ ,  $\pi$  fashion approaching a metallacyclopentene limiting structure. Such complexes are often highly reactive species participating in a variety of stoichiometric and catalytic transformations of organic molecules.<sup>1</sup> Hitherto, however, restriction was largely to early transition metals. Previously we have reported on the first Ru(IV)  $\eta^4$ -diene complexes of the type [Ru( $\eta^5$ - $C_5Me_5)(\eta^4$ -diene) $Br_2$ <sup>+</sup> as obtained via oxidative addition of Br<sub>2</sub> to Ru( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^{4}$ -diene)Br.<sup>2,3</sup> However, these transformations take place only in the case of 2,3disubstituted dienes like 2,3-dimethyl- and 2,3dimethoxy-1,3-butadiene. For all other dienes considered, Ru(IV)  $\eta^3$ -allyl complexes are obtained (Scheme 1). In the context of this scheme several challenging questions concerning the mechanistic details arise: (i) Are the two products formed competitively or consecutively; in other words, is the Ru(IV)  $\eta^3$ -allyl compound



formed via intermediacy of the Ru(IV)  $\eta^4$ -diene complex and, if so, how is the diene complex transformed into the allyl complex? (ii) Why is the formation of the Ru-(IV)  $\eta^4$ -diene complexes restricted to 2,3 disubstituted dienes? Is the addition of bromide to the diene a separate step of reaction, prohibited in the case of 2,3 disubstituted dienes?

In the present contribution we will introduce two general synthetic strategies to obtaining Ru(IV)  $\eta^4$ -diene complexes. One utilizes, for the first time as it appears, the bromonium ion Br<sup>+</sup> as a strong electrophile reacting with  $Ru(\eta^5-C_5Me_5)(\eta^4-diene)Br$ . The other proceeds ene)( $\eta^1$ -OSO<sub>2</sub>CF<sub>3</sub>) to be reacted with Br<sub>2</sub>. Furthermore, we shall try to get an answer to the above questions by means of extended Hückel molecular orbital (EHMO) calculations.

Institute of Inorganic Chemistry

<sup>&</sup>lt;sup>‡</sup> Institute of Mineralogy, Crystallography, and Structural Chem-

<sup>&</sup>lt;sup>§</sup> On leave of absence from D. Mendeleyev University of Chemical

 <sup>&</sup>lt;sup>a</sup> Oh leave of absence from D. Mendeleyev Oniversity of Chemical Technology of Russia, Miusskaja 9, 125047 Moscow, Russia.
 <sup>a</sup> Abstract published in Advance ACS Abstracts, January 1, 1997.
 (1) (a) Yasuda, H.; Tatsumi, K.; Nakamura, A. Acc. Chem. Res. 1985, 18, 120. (b) Yasuda, H.; Tatsumi, K.; Okamoto, T.; Mashima, K.; Lee, K.; Nakamura, A.; Kai, Y.; Kanehisa, N.; Kasai, N. *J. Am. Chem. Soc.* **1995**, *107*, 2410. (c) Mashima, K.; Fujikawa, S.; Tanaka, Y.; Urata, H.; Oshiki, T.; Tanaka, E.; Nakamura, A. *Organometallics* **1995**, *14*, 2633. (d) Mashima, K.; Fujikawa, S.; Nakamura, A. *J. Am. Chem.* Soc. 1993, 115, 10990. (e) Wielstra, Y.; Gambarotta, S.; Spek, A. L. Organometallics 1990, 9, 572.

<sup>(2)</sup> Gemel, C.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1995, 14, 1405.

<sup>(3)</sup> Gemel, C.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1996, 15, 532.

#### **Experimental Section**

**General Information.** Manipulation were performed under an inert atmosphere of purified argon by using Schlenk techniques. All chemicals were standard reagent grade and used without further purification. The solvents were purified according to standard procedures and dried over 4 Å molecular sieves.<sup>4</sup> The deuterated solvents were purchased from Aldrich and dried over 4 Å molecular sieves. <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra were recorded on a Bruker AC-250 spectrometer operating at 250.13 and 62.86 MHz, respectively, and were referenced to SiMe<sub>4</sub>. Microanalysis were done by Microanalytical Laboratories, University of Vienna.

Synthesis.  $\operatorname{Ru}(\eta^{5} \cdot \operatorname{C}_{5}\operatorname{Me}_{5})(\eta^{4} \cdot \operatorname{CH}_{2}\operatorname{CHCHCH}_{2})(\eta^{1} \cdot \operatorname{OSO}_{2^{-}}\operatorname{CF}_{3})$  (2). A solution of 1a (410 mg, 1.11 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was treated with AgCF<sub>3</sub>SO<sub>3</sub> (285 mg, 1.11 mmol) at room temperature and was stirred for 30 min. The mixture was filtered, and the volatile materials were removed under reduced pressure. The residue was redissolved in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub>. On addition of diethyl ether a yellow precipitate was formed which was collected on a glass frit, washed with diethyl ether, and dried under vacuum. Yield: 378 mg (77%). Anal. Calcd for C<sub>15</sub>H<sub>21</sub>F<sub>3</sub>O<sub>3</sub>RuS: C, 41.00; H, 4.82. Found: C, 40.86; H, 4.97. <sup>1</sup>H NMR ( $\delta$ , CDCl<sub>3</sub>, 20 °C): 4.70 (m, 2H), 3.86 (d, 2H, <sup>3</sup>J = 6.2 Hz), 2.32 (d, 2H, <sup>3</sup>J = 10.3 Hz), 1.59 (s, 15H). <sup>13</sup>C{<sup>1</sup>H} NMR ( $\delta$ , CDCl<sub>3</sub>, 20 °C): 97.1 ( $C_{5}$ Me<sub>5</sub>), 96.4 (internal C atoms), 56.6 (terminal C atoms), 9.9 (C<sub>5</sub>Me<sub>5</sub>).

**Ru**(η<sup>5</sup>-**C**<sub>5</sub>**Me**<sub>5</sub>)(η<sup>4</sup>-**CH**<sub>2</sub>**CHCHCH**<sub>2</sub>)(η<sup>1</sup>-**OCOCF**<sub>3</sub>) (3). This compound has been synthesized by an analogous route to **2** but using AgCF<sub>3</sub>COO instead of AgCF<sub>3</sub>SO<sub>3</sub>. Yield: 75%. Anal. Calcd for C<sub>16</sub>H<sub>21</sub>F<sub>3</sub>O<sub>2</sub>Ru: C, 47.52; H, 5.24. Found: C, 47.38; H, 5.12. <sup>1</sup>H NMR ( $\delta$ , CDCl<sub>3</sub>, 20 °C): 4.59 (m, 2H), 3.75 (dd, 2H, <sup>3</sup>*J* = 6.4 Hz, <sup>2</sup>*J* = 2.1 Hz), 1.63 (m, 2H), 1.60 (s, 15H).

 $[Ru(\eta^{5}-C_{5}Me_{5})(\eta^{4}-CH_{2}CHCHCH_{2})Br_{2}]CF_{3}SO_{3}$ (4a). Method A. Br<sup>+</sup>CF<sub>3</sub>SO<sup>-</sup> has been prepared according to a literature procedure developed for the synthesis of I+CF<sub>3</sub>COO<sup>-.5</sup> A Schlenk flask which was protected from light with aluminum foil was charged with a solution of Br<sub>2</sub> (20.8  $\mu$ L, 0.405 mmol) in CH<sub>2</sub>Cl<sub>2</sub>, and AgCF<sub>3</sub>SO<sub>3</sub> (104 mg, 0.405 mmol) was added. After 30 min of stirring at room temperature, the mixture was transferred via cannula to a solution of 1a (150 mg, 0.405 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL). After 30 min of stirring at -60 °C, the reaction mixture was allowed to warm to -20 °C and the solvent was removed under vacuum. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, insoluble materials were removed by filtration, and addition of diethyl ether afforded an orange precipitate of analytically pure 4a. Yield: 197 mg (87%). Anal. Calcd for C<sub>15</sub>H<sub>21</sub>Br<sub>2</sub>F<sub>3</sub>O<sub>3</sub>RuS: C, 30.07; H, 3.53; Br, 26.67. Found: C, 29.92; H, 3.65; Br, 26.80. <sup>1</sup>H NMR (d, CD<sub>3</sub>NO<sub>2</sub>, -20 °C): 7.27 (m, 2H), 3.97 (dd, 2H, J = 7.5 Hz, J = 1.2 Hz), 2.41 (dd, 2H, J = 7.8 Hz, J = 1.2 Hz), 2.15 (s, 15H). <sup>13</sup>C{<sup>1</sup>H} NMR (δ, CD<sub>3</sub>NO<sub>2</sub>, -20 °C): 125.4, 118.5 (C<sub>5</sub>Me<sub>5</sub>), 72.1, 12.1  $(C_5Me_3)$ .

**Method B.** A solution of **2** (120 mg, 0.273 mmol) in CH<sub>2</sub>-Cl<sub>2</sub> (5 mL) was treated with Br<sub>2</sub> (7.9  $\mu$ L, 0.273 mmol) at -60 °C. After being stirred for 30 min, the solution was allowed to warm to -20 °C and the solvent was removed under vacuum. The resulting orange solid was dissolved in CH<sub>2</sub>Cl<sub>2</sub> at -20 °C, and insoluble materials were removed by filtration. On addition of diethyl ether, a dark red precipitate was formed which was collected on a glass frit, washed with diethyl ether, and dried under vacuum. Yield: 140 mg (86%).

[Ru( $\eta^{5}$ -C<sub>5</sub>Me)( $\eta^{4}$ -CH<sub>2</sub>CHCMeCH<sub>2</sub>)Br<sub>2</sub>]CF<sub>3</sub>SO<sub>3</sub> (4b). This complex has been prepared analogously to 4a (method A) with 1b as starting material. Yield: 68%. Anal. Calcd for C<sub>17</sub>H<sub>23</sub>-Br<sub>2</sub>F<sub>3</sub>O<sub>3</sub>RuS: C, 31.34; H, 3.78; Br, 26.06. Found: C, 31.23; H, 3.92; Br, 26.38. <sup>1</sup>H NMR ( $\delta$ , acetone- $d_6$ , -20 °C): 6.89 (dd,

1H,  ${}^{3}J$  = 7.5 Hz,  ${}^{3}J$  = 10.0 Hz), 4.15 (d, 1H,  ${}^{3}J$  = 7.5 Hz), 3.64 (s, 1H), 2.92 (s, 3H), 2.72 (d, 1H,  ${}^{3}J$  = 10.0 Hz), 2.54 (s, 1H), 2.19 (s, 15H).  ${}^{13}C{}^{1}H$  NMR ( $\delta$ , acetone- $d_{6}$ , -20 °C): 145.6, 123.4, 117.8 ( $C_{5}Me_{5}$ ), 72.4, 68.5, 24.9 (Me), 12.6 ( $C_{5}Me_{5}$ ).

 $Ru(\eta^5-C_5Me_5)(\eta^3-CH_2CHCHCH_2OCOCF_3)Br_2$ (5a). Method A. A Schlenk flask which was protected from light with aluminum foil was charged with a solution of Br<sub>2</sub> (20.8  $\mu$ L, 0.446 mmol) in CH<sub>2</sub>Cl<sub>2</sub>, and AgCF<sub>3</sub>COO (99 mg, 0.446 mmol) was added. After 30 min of stirring at room temperature, the mixture was transferred via cannula to a solution of 1a (165 mg, 0.446 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL). After 30 min of stirring at -60 °C, the reaction mixture was allowed to warm to -20 °C, and the solvent was removed under vacuum. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, insoluble materials were removed by filtration, and addition of diethyl ether afforded a red precipitate of analytically pure 5a. Yield: 206 mg (82%). Anal. Calcd for C<sub>16</sub>H<sub>21</sub>Br<sub>2</sub>F<sub>3</sub>O<sub>2</sub>Ru: C, 34.12; H, 3.76; Br, 28.37. Found: C, 33.93; H, 3.54; Br, 27.78. <sup>1</sup>H NMR (δ, nitromethane $d_3$ , 20 °C): 5.60 (m, 1H), 5.23 (m, 1H), 4.19 (dd, 1H, J = 6.3Hz, J = 1.6 Hz), 3.76 (dd, 1H, J = 8.7 Hz, J = 3.8 Hz), 3.15 (dd, 1H, J = 11.8 Hz, J = 8.7 Hz), 3.12 (dd, 1H, J = 10.4 Hz, J = 1.6 Hz), 1.76 (s, 15H).

**Method B.** To a solution of **3** (131 mg, 0.324 mmol) in CH<sub>2</sub>-Cl<sub>2</sub> (3 mL) at -60 °C was added Br<sub>2</sub> (6.3  $\mu$ L, 0.324 mmol), and the mixture was stirred for 30 min. The volatile materials were removed under vacuum, and the residue was redissolved in CH<sub>2</sub>Cl<sub>2</sub>. On addition of diethyl ether, a red precipitate was formed which was collected on a glass frit, washed with diethyl ether, and dried under vacuum. Yield: 126 mg (69%).

**Ru**(η<sup>5</sup>-**C**<sub>5</sub>**Me**<sub>5</sub>)(η<sup>3</sup>-**CH**<sub>2</sub>**CMeCHCH**<sub>2</sub>**OCOCF**<sub>3</sub>)**Br**<sub>2</sub> (5b). This complex was synthesized analogously to **5a** (method A) but with **1b** as starting material. Yield: 79%. Calcd for C<sub>17</sub>H<sub>23</sub>-Br<sub>2</sub>F<sub>3</sub>O<sub>2</sub>Ru: C, 35.37; H, 4.02; Br, 27.69. Found: C, 35.23; H, 4.17; Br, 27.92. <sup>1</sup>H NMR ( $\delta$ , CDCl<sub>3</sub>, 20 °C): 4.47 (dd, 1H, *J* = 11.0 Hz, *J* = 11.7 Hz), 4.03 (s, 1H), 3.46 (dd, 1H, *J* = 3.5 Hz, *J* = 11.7 Hz), 2.64 (dd, 1H, *J* = 3.5 Hz, *J* = 11.0 Hz), 2.39 (s, 3H), 2.22 (s, 1H), 1.71 (s, 15H). <sup>13</sup>C{<sup>1</sup>H} NMR ( $\delta$ , CDCl<sub>3</sub>, 20 °C): 108.4, 104.7 (*C*<sub>5</sub>Me<sub>5</sub>), 77.9, 71.4, 63.9 (*C*H<sub>2</sub>O), 34.4 (Me), 10.8 (C<sub>5</sub>*Me*<sub>5</sub>).

**Reaction of 4a with NEt<sub>4</sub>X (X = Cl<sup>-</sup>, Br<sup>-</sup>) and NaCF<sub>3</sub>-COO.** A 5 mm NMR tube was charged with **4a** (30 mg, 0.081 mmol), and NEt<sub>4</sub>Cl (27 mg, 0.162 mmol) and CD<sub>3</sub>NO<sub>2</sub> (0.5 mL) was added via syringe. The sample was transferred to a NMR probe. A <sup>1</sup>H NMR spectra was immediately recorded showing the quantitative formation of Ru( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^{3}$ -CH<sub>2</sub>CHCHCH<sub>2</sub>-Cl)Br<sub>2</sub> (**6**). <sup>1</sup>H NMR ( $\delta$ , CD<sub>3</sub>NO<sub>2</sub>, 20 °C): 5.27 (m, 1H), 5.09 (m, 1H), 4.06 (dd, 1H, J = 6.1 Hz, J = 1.4 Hz), 3.65 (dd, 1H, J = 9.9 Hz, J = 4.5 Hz), 3.00 (m, 2H), 1.63 (s, 15H).

The same reaction performed with both NEt<sub>4</sub>Br (2 equiv) and NaCF<sub>3</sub>COO (2 equiv) revealed the quantitative formation of Ru( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^{3}$ -CH<sub>2</sub>CHCHCH<sub>2</sub>-Br)Br<sub>2</sub> (7) and 5a. The <sup>1</sup>H NMR spectrum of 7 is in agreement with literature-reported values.<sup>2,3</sup>

**X-ray Structure Determination for 2, 3, and 7.** Crystal data and experimental details are given in Table 1. X-ray data were collected on a Philips PW 1100 four-circle diffractometer using graphite-monochromated Mo K $\alpha$  ( $\lambda = 0.710$  69 Å) radiation and the  $\theta$ - $2\theta$  scan technique. Three representative reference reflections were measured every 120 min and used to correct for crystal decay and system instability. Corrections for Lorentz and polarization effects and for absorption were applied. The structures were solved by direct methods.<sup>6</sup> All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were included in idealized positions.<sup>7</sup> The structures were refined against  $F^2$ .

**EHMO Calculations.** The extended Hückel molecular orbital calculations were conducted by using the original

<sup>(4)</sup> Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*, 3rd ed.; Pergamon: New York, 1988.

<sup>(5)</sup> Liebeskind, L. S.; Bombrun, A. J. Am. Chem. Soc. 1991, 113, 8736.

<sup>(6)</sup> Sheldrick, G. M. SHELX86: Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1986.

<sup>(7)</sup> Sheldrick, G. M. SHELX86: Program for Crystal Structure Refinement, University of Göttingen, Germany, 1993.

|                                            | 2                                                                 | 3                          | 7                        |
|--------------------------------------------|-------------------------------------------------------------------|----------------------------|--------------------------|
| formula                                    | C <sub>15</sub> H <sub>21</sub> F <sub>3</sub> O <sub>3</sub> RuS | $C_{16}H_{21}F_{3}O_{2}Ru$ | C14H21Br3Ru              |
| fw                                         | 439.45                                                            | 403.40                     | 530.11                   |
| cryst size, mm                             | 0.25	imes 0.28	imes 0.50                                          | 0.28	imes 0.33	imes 0.72   | 0.16	imes 0.20	imes 0.35 |
| space group                                | Pbca (No. 61)                                                     | $P2_1/c$ (No. 14)          | $P2_1/c$ (No. 14)        |
| a, Å                                       | 9.029(2)                                                          | 7.248(2)                   | 7.349(2)                 |
| b, Å                                       | 14.396(5)                                                         | 14.750(4)                  | 13.758(4)                |
| <i>c</i> , Å                               | 27.132(6)                                                         | 15.889(5)                  | 16.841(5)                |
| $\beta$ , deg                              |                                                                   | 94.12(1)                   | 96.42(1)                 |
| V, Å <sup>3</sup>                          | 3527(2)                                                           | 1694.3(8)                  | 1692.1(8)                |
| F(000)                                     | 1776                                                              | 816                        | 1016                     |
| Z                                          | 8                                                                 | 4                          | 4                        |
| $\rho_{\rm calc},  {\rm g}  {\rm cm}^{-3}$ | 1.655                                                             | 1.581                      | 2.081                    |
| Т, К                                       | 296                                                               | 300                        | 293                      |
| $\mu$ , mm <sup>-1</sup> (Mo K $\alpha$ )  | 1.046                                                             | 0.958                      | 7.994                    |
| abs corr                                   | none                                                              | empirical                  | empirical                |
| transm factors, min/max                    |                                                                   | 0.91/1.09                  | 0.91/1.09                |
| $\theta_{\max}, \deg$                      | 25                                                                | 25                         | 24.1                     |
| index ranges                               | $0 \le h \le 10$                                                  | $-8 \le h \le 8$           | $0 \le h \le 8$          |
|                                            | $0 \leq k \leq 17$                                                | $0 \le k \le 17$           | $0 \le k \le 15$         |
|                                            | $0 \leq l \leq 32$                                                | $0 \leq l \leq 18$         | $-19 \leq l \leq 19$     |
| no. of rflns measd                         | 3480                                                              | 3362                       | 3022                     |
| no. of unique rflns                        | 3103                                                              | 2989                       | 2669                     |
| no. of rflns $F > 4\sigma(F)$              | 1750                                                              | 2564                       | 1992                     |
| no. of params                              | 214                                                               | 232                        | 171                      |
| no. of restraints                          | 35                                                                | 11                         |                          |
| $R(F)(R \geq 4\sigma(F))$                  | 0.051                                                             | 0.024                      | 0.041                    |
| R(F)(all data)                             | 0.123                                                             | 0.033                      | 0.065                    |
| $wR(F^2)$ (all data)                       | 0.113                                                             | 0.061                      | 0.082                    |
| min/max diff Fourier peaks, e Å $^{-3}$    | -0.36/0.43                                                        | -0.32/0.28                 | -0.76/0.74               |

## Table 1. Crystallographic Data

Table 2. Reaction of  $Ru(\eta^5-C_5Me_5)(\eta^4-diene)X$  with  $Br^+Y^-$  in  $CH_2Cl_2$  at -60 °C



|       | reactants                                                                       |                | products                   |          |                            |          |
|-------|---------------------------------------------------------------------------------|----------------|----------------------------|----------|----------------------------|----------|
| entry | I                                                                               | $Br^+Y^-$      | II                         | yield, % | III                        | yield, % |
| 1     | $\mathbf{1a}, \mathbf{R} = \mathbf{H}, \mathbf{X} = \mathbf{Br}$                | Y = Br         | Y = Br                     | 92       |                            |          |
| 2     | <b>1b</b> , $\mathbf{R} = \mathbf{Me}$ , $\mathbf{X} = \mathbf{Br}$             | Y = Br         | $\mathbf{Y} = \mathbf{Br}$ | 96       |                            |          |
| 3     | <b>2</b> , $R = H$ , $X = CF_3SO_3$                                             | Y = Br         |                            |          | <b>4a</b> , $Y = CF_3SO_3$ | 86       |
| 4     | <b>3</b> , $\mathbf{R} = \mathbf{H}$ , $\mathbf{X} = \mathbf{CF}_3\mathbf{COO}$ | Y = Br         | <b>5a</b> , $Y = CF_3COO$  | 69       |                            |          |
| 5     | $\mathbf{1a}, \mathbf{R} = \mathbf{H}, \mathbf{X} = \mathbf{Br}$                | $Y = CF_3SO_3$ |                            |          | <b>4a</b> , $Y = CF_3SO_3$ | 87       |
| 6     | <b>1b</b> , R = Me, X = Br                                                      | $Y = CF_3SO_3$ |                            |          | <b>4b</b> , $Y = CF_3SO_3$ | 68       |
| 7     | 1a, R = H, X = Br                                                               | $Y = CF_3COO$  | <b>5a</b> , $Y = CF_3COO$  | 82       |                            |          |
| 8     | <b>1b</b> , $\mathbf{R} = \mathbf{Me}$ , $\mathbf{X} = \mathbf{Br}$             | $Y = CF_3COO$  | <b>5b</b> , $Y = CF_3COO$  | 79       |                            |          |

program developed by Hoffmann and Lipscomb<sup>8</sup> and modified by Mealli and Proserpio.<sup>9</sup> The atomic parameters used in this study were taken from the CACAO program.

## Results

**Reaction of Ru**( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^{4}$ -diene)Br Complexes with Br<sup>+</sup>CF<sub>3</sub>SO<sub>3</sub><sup>-</sup>. Treatment of Ru( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^{4}$ -CH<sub>2</sub>-CHCHCH<sub>2</sub>)Br (1a) or Ru( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^{4}$ -CH<sub>2</sub>CHCMe-CH<sub>2</sub>)Br (1b) with 1 equiv of Br<sup>+</sup>CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> (Br<sup>+</sup>CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> has been prepared *in situ* by the reaction of Br<sub>2</sub> with 1 equiv of AgCF<sub>3</sub>SO<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub>) at -60 °C in CH<sub>2</sub>Cl<sub>2</sub> affords the cationic Ru(IV)  $\eta^{4}$ -diene complexes [Ru( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^{4}$ -CH<sub>2</sub>CHCHCH<sub>2</sub>)Br<sub>2</sub>]CF<sub>3</sub>SO<sub>3</sub> (4a) and [Ru( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^{4}$ -CH<sub>2</sub>CHCMeCH<sub>2</sub>)Br<sub>2</sub>]CF<sub>3</sub>SO<sub>3</sub> (4b) in 87 and 68 % yield, respectively (Table 2). These complexes are stable to air in the solid state but decompose in solution at elevated temperatures. Characterization of these complexes was by elemental analysis and particularly by <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectroscopy carried out at -20 °C in CD<sub>3</sub>NO<sub>2</sub> or acetone- $d_6$  as the solvents.

The <sup>1</sup>H NMR spectrum of **4a** displays the characteristic resonances of the diene ligand. The syn and anti protons (H<sub>a</sub>, H<sub>b</sub>) give rise to two doublets of doublets centered at 3.97 (2H,  ${}^{3}J_{ac} = 7.5$  Hz,  ${}^{2}J_{ab} = 1.2$  Hz) and 2.41 ppm (2H,  ${}^{3}J_{bc} = 7.8$  Hz,  ${}^{2}J_{ab} = 1.2$  Hz), respectively, while the signal of the internal protons (H<sub>c</sub>) of the butadiene ligand is extremely downfield shifted resonating at 7.27 ppm (2H). The signal for the  $C_5Me_5$ ligand appears at 2.15 ppm (15H) (cf, the respective Ru-(II)  $\eta^4$ -diene complex **1a** exhibits resonances at 4.36 (m, 2H, H<sub>c</sub>), 3.14 (dd,  ${}^{3}J_{ac} = 8.3$  Hz,  ${}^{2}J_{ab} = 1.6$  Hz, H<sub>a</sub>), 1.69 (15H), and 1.61 ppm (dd,  ${}^{3}J_{bc} = 9.9$  Hz,  ${}^{2}J_{ab} = 1.6$  Hz, H<sub>b</sub>). In complex **4a** the vicinal *trans* and *cis* coupling constants are very similar, while in 4b, as expected for  $\eta^4$ -diene complexes, the vicinal *trans* coupling constant is larger (10.0 Hz) than the vicinal cis coupling constant

<sup>(8) (</sup>a) Hoffman, R.; Lipscomb, W. N. J. Chem. Phys. 1962, 36, 2179.
(b) Hoffman, R.; Lipscomb, W. N. J. Chem. Phys. 1962, 36, 3489. (c) Hoffman, R. J. Chem. Phys. 1963, 39, 1397.

<sup>(9)</sup> Mealli, C.; Proserpio, D. M. J. Chem. Educ. 1990, 67, 399.

(7.5 Hz). The <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **4a** shows singlets at 125.4 (internal C atoms), 118.5 ( $C_5$ Me<sub>5</sub>), 72.1 (terminal C atoms), and 12.1 ppm ( $C_5Me_5$ ). The marked downfield shifts are indicative of the high oxidation state of the ruthenium center (*cf.* in **1a** the respective resonances are found at 95.4 (internal C atoms), 91.4 ( $C_5$ Me<sub>5</sub>), 52.4 (terminal C atoms), and 10.4 ppm ( $C_5Me_5$ )). The <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of **4b** are very similar to those of **4a** and are not discussed here.

Both <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of complexes **4** indicate the existence of only one isomer in solution without observation of a possible conformational equilibrium between *endo* (**I**) and *exo* (**II**) isomers:



In order to establish what kind of diene orientation is being adopted we performed NOE enhancement experiments on **4a**. Irradiation of the  $C_5Me_5$  ligand singlet showed a strong interaction between the  $C_5Me_5$  protons and the  $H_a$  protons of the diene moiety (16%) suggesting that the *endo* isomer **I** is the predominant conformer in solution, at least at low temperature. The solid-state structures of complexes **4** could not be determined since no X-ray-quality crystals could be obtained. However, we have previously shown that the *endo* conformation is adopted in the crystalline state for the 2,3-dimethyl-1,3-butadiene and 2,3-dimethoxy-1,3-butadiene analogues.<sup>2,3</sup> Therefore it is likely that in complexes **4** the diene ligand is *endo* oriented also in the solid state.

Reaction of  $Ru(\eta^5-C_5Me_5)(\eta^4-diene)Br$  Complexes with Br<sup>+</sup>CF<sub>3</sub>COO<sup>-</sup>. In contrast to the reactions described above, addition of Br<sup>+</sup>CF<sub>3</sub>COO<sup>-</sup> (Br<sup>+</sup>CF<sub>3</sub>COO<sup>-</sup> has been prepared *in situ* by the reaction of Br<sub>2</sub> with 1 equiv of AgCF<sub>3</sub>COO in CH<sub>2</sub>Cl<sub>2</sub>) to 1a or 1b does not yield the cationic complexes **4a,b** with CF<sub>3</sub>COO<sup>-</sup> remaining as the counterion but results in the formation of the trifluoracetato-substituted Ru(IV)  $\eta^3$ -allyl complexes 5a,b (Table 2). This reaction involves regioselective addition of the CF<sub>3</sub>COO<sup>-</sup> anion at the terminal carbon atom and apparently on the face of the cisoid  $\eta^4$ -diene moiety opposite to the metal center. In case of 5b, addition occurs such that the methyl substituent ends up on the central allyl carbon atom. Under these conditions, the addition is kinetically controlled resulting in the sole formation of anti  $\eta^3$ -allyl isomers (as drawn). Confirmation of the regioselectivity of this process is readily apparent from the spectroscopic characterization of the products in comparison with literature analogs.<sup>2,3,10</sup> The <sup>1</sup>H NMR spectra of **5a,b** show the expected singlet resonances of the C<sub>5</sub>Me<sub>5</sub> rings at 1.76 and 1.71 ppm, respectively, while characteristic multiplet resonances assignable to the allyl ligands are observed in the usual ranges. The signal of the CH<sub>2</sub>- $OCOCF_3$  moiety gives rise to multiplets in the range 2.6–3.7 ppm. The instability of **5a** in solution precluded the recording of a  $^{13}C\{^1H\}$  NMR spectrum. The  $^{13}C$ -<sup>1</sup>H} NMR spectra of **5b** contains no surprising features



**Figure 1.** Structural view of  $\text{Ru}(\eta^5-\text{C}_5\text{Me}_5)(\eta^4-\text{CH}_2-\text{CHCHCH}_2)(\eta^{1}-\text{OSO}_2\text{CF}_3)$  (2). Selected bond lengths (Å) and angles (deg):  $\text{Ru}-\text{C}(1-5)_{\text{av}}$  2.205(5), Ru-C(11) 2.206-(8), Ru-C(12) 2.129(7), Ru-C(13) 2.139(7), Ru-C(14) 2.211(8), Ru-O(1) 2.177(4), Ru-O(1)-S 146.4(3).



with the resonance of the  $sp^3$  carbon atom bearing the trifluoracetato substituent observed at 63.9 ppm. The signals of the CF<sub>3</sub>COO group were not detected.

Reaction of  $Ru(\eta^5-C_5Me_5)(\eta^4-diene)X$  Complexes with  $Br_2$  (X = CF<sub>3</sub>SO<sub>3</sub><sup>-</sup>, CF<sub>3</sub>COO<sup>-</sup>). Chloride abstraction from 1a using AgCF<sub>3</sub>SO<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> as the solvent gives quantitatively AgCl and a new species 2, which could be isolated as yellow crystals in good yield (Scheme 2). Since the <sup>1</sup>H and <sup>13</sup>C $\{^{1}H\}$  solution NMR data for 2 are very similar to those of neutral 1a and not consistent with an ionic  $[Ru(\eta^5-C_5Me_5)(\eta^4-CH_2 CHCHCH_2$ ]+ $CF_3SO_3^-$  composition, a single-crystal Xray structure determination of 2 has been undertaken. This study shows **2** to be the neutral complex  $Ru(\eta^5-C_5-$ Me<sub>5</sub>)( $\eta^4$ -CH<sub>2</sub>CHCHCH<sub>2</sub>)( $\eta^1$ -OSO<sub>2</sub>CF<sub>3</sub>). A structural view of 2 is depicted in Figure 1 with important bond distances and angles reported in the caption. The diene ligand is exo oriented with respect to the CF<sub>3</sub>SO<sub>3</sub>ligand; i.e., the terminal CH<sub>2</sub> groups of the diene are directed toward the CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> ligand. The dihedral angle between the  $C_5Me_5$  and butadiene planes is 20.2° (cf. in Ru( $\eta^5$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^4$ -CH<sub>2</sub>CHCHCH<sub>2</sub>)I this angle is 33.2°).<sup>11</sup> The diene C-C bonds exhibit a short-long-short pattern (1.364(9) vs 1.401(4) Å). The average  $Ru-C(C_5-$ Me<sub>5</sub>) distance is 2.205(5) Å. The bond distances between Ru and the diene are long for C(11) and C(14), 2.206(8) and 2.211(8) Å, respectively, and short for C(12) and C(13), 2.129(7) and 2.137(7) Å, respectively, a feature that is characteristic of transition metal complexes where the diene is predominantly  $\pi$ -bound. The Ru– O(1) distance and the Ru–O(1)–C(15) angle are 2.177-(4) Å and 146.4(3)°, respectively. It is worth noting that only few ruthenium complexes with the  $\eta^1$ -OSO<sub>2</sub>CF<sub>3</sub> ligand are known and structurally characterized.<sup>12-14</sup>

Following the procedure above, halide abstraction from **1a** with AgCF<sub>3</sub>COO in CH<sub>2</sub>Cl<sub>2</sub> gave complex  $Ru(\eta^{5}-$ 

<sup>(10)</sup> Masuda, K.; Saitoh, M.; Aoki, K.; Itoh, K. J. Organomet. Chem. 1994, 473, 285.

<sup>(11)</sup> Fagan, P. J.; Mahoney, W. S.; Calabrese, J. C.; Williams, I. D. Organometallics 1990, 9, 1843.



**Figure 2.** Structural view of  $\text{Ru}(\eta^5\text{-}C_5\text{Me}_5)(\eta^4\text{-}C\text{H}_2\text{-}C\text{HCHCH}_2)(\eta^1\text{-}O\text{COCF}_3)$  **(3)**. Selected bond lengths (Å) and angles (deg):  $\text{Ru}-\text{C}(1-5)_{av}$  2.204(3), Ru-C(11) 2.193(3), Ru-C(12) 2.158(3), Ru-C(13) 2.178(3), Ru-C(14) 2.238-(3), Ru-O(1) 2.146(2), Ru-O(1)-C(15) 126.2(2).

 $C_5Me_5$ )( $\eta^4$ -CH<sub>2</sub>CHCHCH<sub>2</sub>)( $\eta^1$ -OCOCF<sub>3</sub>) (3) in 75% yield (Scheme 2). Both <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of **3** are similar to those of 1 and 2 and are not discussed here. The structure of **3**, as depicted in Figure 2, has been determined by X-ray crystallography. Important bond distances and angles are given in the caption. The overall structure of 3 is very similar to that of 2 showing that the diene ligand is also *exo* oriented. The dihedral angle between the  $C_5Me_5$  and butadiene planes is 19.7°. The diene character of the 1,3-butadiene ligand is still apparent as indicated by the long-short-long pattern of C-C distances (1.388(5) vs 1.411(6) Å). The Ru-C distances are slightly shorter by about 0.04 Å for C(12) and C(13) than for C(11) and C(14). The  $CF_3COO^$ molecule is coordinated to the metal center as an  $\eta^{1}$ oxygen donor ligand (Ru-O(1) = 2.146(2) Å). The Ru-O(1)-C(15) angle is  $126.2(2)^{\circ}$ .

The weakly coordinating nature of the CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> and  $CF_3COO^-$  ligands in complexes **2** and **3** should enable these complexes to react as the formally 16e fragment  $[Ru(\eta^5-C_5Me_5)(\eta^4-CH_2CHCHCH_2)]^+$ . Oxidative addition, which involves ligand displacement in octahedral d<sup>6</sup> systems, would thus be expected to be a facile process. This has indeed been demonstrated by adding a stoichiometric amount of Br<sub>2</sub> to **2** in CH<sub>2</sub>Cl<sub>2</sub> at -60 °C yielding 4a in essentially quantitative yield. While the reaction of **3** with Br<sub>2</sub> also proceeds smoothly to a single product, not **4a** but the Ru(IV)  $\eta^3$ -allyl complex **5a** was obtained (Table 2). The latter reaction, likewise, appears to proceed via the intermediacy of a Ru(IV)  $\eta^4$ diene complex, but in contrast to CF<sub>3</sub>SO<sub>3</sub><sup>-</sup>, CF<sub>3</sub>COO<sup>-</sup> is already nucleophilic enough to attack the activated diene ligand.

Therefore, in sharp contrast to Ru(IV)  $\eta^4$ -diene complexes with diene = 2,3-disubstituted 1,3-butadienes reported previously, **4a** might be quite reactive toward nucleophiles. This has been tested by reacting **4a** with NEt<sub>4</sub>Cl, NEt<sub>4</sub>Br, and NaCF<sub>3</sub>COO.

**Reaction of 4a with NEt<sub>4</sub>X (X = Cl<sup>-</sup>, Br<sup>-</sup>) and NaCF<sub>3</sub>COO.** Addition of 2 equiv of NEt<sub>4</sub>X and NaCF<sub>3</sub>-COO to **4a** affords quantitatively the Ru(IV)  $\eta^3$ -allyl



**Figure 3.** Structural view of  $Ru(\eta^5-C_5Me_5)(\eta^3-CH_2-CHCHCH_2Br)Br_2$  (7). Selected bond lengths (Å) and angles (deg):  $Ru-C(1-5)_{av}$  2.242(6), Ru-C(11) 2.188(7), Ru-C(12) 2.123(7), Ru-C(13) 2.271(9), Ru-Br(1) 2.553(1), Ru-Br(2) 2.544(1), C(11)-C(12)-C(13) 119.1(8).



complexes  $Ru(C_5Me_5)(\eta^3-CH_2CHCHCH_2Cl)Br_2$  (6),  $Ru(C_5 Me_5$ )( $\eta^3$ -CH<sub>2</sub>CHCHCH<sub>2</sub>Br)Br<sub>2</sub> (7), and 5a, respectively, as monitored by <sup>1</sup>H NMR spectroscopy (Scheme 3). A structural view of complex 7 (Figure 3), as determined by X-ray crystallography, demonstrates that Br<sup>-</sup> addition on the diene has occurred at a terminal carbon atom and anti to the coordinated ruthenium. Selected bond distances and angles are given in the captions. The allyl function of the CH<sub>2</sub>CHCHCH<sub>2</sub>Br ligand is bonded asymmetrically to the metal center with the Ru-C bond to the central allyl carbon atom C(12) (2.123(7) Å) shorter than those of the outer carbon atoms C(11) and C(13) and 2.271(9) Å, respectively). This bonding pattern is similar to that found for many asymmetrically substituted Ru(IV)  $\eta^3$ -allyl complexes.<sup>2,3,10,15</sup> The Ru– Br(1) and Ru-Br(2) distances are very similar, being 2.553(1) and 2.544(1) Å, respectively.

## Discussion

As depicted in Table 2, when  $Br_2$  is reacted with  $Ru(\eta^5-C_5Me_5)(\eta^4$ -diene)Br where diene is 1,3-butadiene or 2-methyl-1,3-butadiene (entries 1 and 2), dibromoruthenium(IV)  $\eta^3$ -allyl compounds are formed. Bromine attack occurred selectively at one of the termini of the diene ligand and from the face opposite to the metal center (see Figure 3). This reaction can be envisioned as occurring by an electrophilic attach of  $Br_2$  with either Br–Br or Ru–Br bond cleavage leaving a  $Br^-$  anion behind which than nucleophilically attacks the activated diene moiety. Whether this process proceeds in a

<sup>(12)</sup> Sutter, J.-P.; James, S. L.; Steenwinkel, P.; Karlen, T.; Grove, D. M.; Veldman, N.; Smeets, W. J. J.; Speck, A. L.; van Koten, G. Organometallics **1996**, *15*. 941.

Organometallics **1996**, *15*, 941. (13) Kraakman, M. J. A.; Klerk-Engels, B. d.; de Lange, P. P. M.; Vrieze, K.; Smeets, W. J. J.; Spek, A. L. Organometallics **1992**, *11*, 3774.

<sup>(14)</sup> Plosser, P. W.; Gallucci, J. C.; Wojcicki, A. Inorg. Chem. 1992, 31, 2376.

<sup>(15)</sup> Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.; Watanabe, Y. Organometallics 1995, 14, 1945.



**Figure 4.** Oxidative addition of Br<sub>2</sub> to Ru( $\eta^5$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^4$ -diene)Br complexes. CACAO drawing for the LUMO and HOMO of reactant and product (C<sub>5</sub>Me<sub>5</sub> AOs omitted for clarity) and the symmetry change of the LUMO during this reaction (swing of the diene fragment).

concerted or stepwise manner will be discussed in the following paragraph.

In order to establish whether the bromide substituent on the allyl moiety stems from the internal source (from Ru-Br bond cleavage) or an external source (from Br-Br bond cleavage), we used complexes  $Ru(\eta^5-C_5Me_5)(\eta^4-$ CH<sub>2</sub>CHCHCH<sub>2</sub>)( $\eta^1$ -OSO<sub>2</sub>CF<sub>3</sub>) (2) and Ru( $\eta^5$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^4$ - $CH_2CHCHCH_2)(\eta^1 - OCOCF_3)$  (3) bearing the weakly coordinating  $CF_3SO_3^-$  and  $CF_3COO^-$  anions as the leaving ligands (entries 3 and 4). Reaction of Br<sub>2</sub> with **2** gave exclusively the Ru(IV)  $\eta^4$ -diene complex **4a**, whereas with the somewhat more nucleophilic CF<sub>3</sub>COO<sup>-</sup> anion (entry 4), solely the Ru(IV)  $\eta^3$ -allyl complex **5a** is obtained. When **1a**,**b** are reacted with  $Br^+CF_3SO_3^-$  as the oxidant instead of Br<sub>2</sub> (entries 5 and 6), no allyl formation occurs. On the other hand, with Br<sup>+</sup>CF<sub>3</sub>COO<sup>-</sup> as the oxidant (entries 7 and 8) Ru(IV)  $\eta^3$ -allyl complexes 5a,b are obtained exclusively. These findings strongly suggest that the dibromoruthenium(IV)  $\eta^3$ -allyl complexes are generated in a stepwise fashion. First, a cationic Ru(IV)  $\eta^4$ -diene complex is formed which, in the absence of potential nucleophiles, can even be isolated. The Ru(IV)  $\eta^4$ -diene intermediates are extremely susceptible toward nucleophilic attack of even weak nucleophiles such as Cl<sup>-</sup>, Br<sup>-</sup>, and CF<sub>3</sub>COO<sup>-</sup> to furnish quantitatively the corresponding Ru(IV)  $\eta^3$ -allyl complexes (Scheme 3).

An insight into a possible mechanism of the reaction under consideration is provided by extended Hückel molecular orbital calculations using bond parameters established by X-ray crystallography.<sup>2,3,11</sup> As can be seen in Figure 4, the HOMO of the Ru(II)  $\eta^4$ -diene complex, which, as shown by the calculations, is relevant for electrophilic attack of either Br<sub>2</sub> or Br<sup>+</sup>, is a metalcentered hybrid orbital predominantly derived from  $d_{z^2}$ and is essentially nonbonding in character. A minor contribution stems from the p<sub>z</sub> orbitals of the terminal carbon atoms of the diene. In the ground state, however, electrophilic attack resulting in the formal oxidation from d<sup>6</sup> to d<sup>4</sup> is not possible without prior change of the orbital symmetry at the metal center as well as a reorientation of the diene moiety from an *exo* to an *endo* conformation with respect to the bromide ligands. What would be required is a metal-centered orbital of the  $d_{x^2-y^2}$  type (see LUMO of the Ru(IV)  $\eta^4$ -diene complex in Figure 4). The LUMO reflects basically the  $\sigma$ - $\sigma$  interaction between the two bromide ligands and the Ru  $d_{x^2-y^2}$  orbital, with the latter also interacting with the  $\pi_2$  of the diene. All these interactions are antibonding in character.

In order to establish a reasonable mechanism for the above reactions the required changes in orbital symmetry and ligand orientations have been examined by performing EHMO calculations. We investigated the effect of positional changes of the individual ligands on both overall orbital symmetries and energies by means of computer simulations using a Walsh analysis. Slipping barriers for both the C<sub>5</sub>Me<sub>5</sub> and the diene ligand, resulting in a change in hapticity, are low<sup>16</sup> but have only small effects on the orbital symmetries. On the other hand, rotation of the diene around the metal ligand axis would produce the desired symmetry change but is unfavorable by about 1 eV, the more so in the presence of bulky substituents (up to 5 eV). Finally, dissociation of bromide affects solely the orbital energies but not their symmetries. Therefore, it is reasonable to suggest that the symmetry change and ligand orientation is affected by a "swing" of the diene ligand by changing the dihedral angle between the  $C_5Me_5$  and diene ligand from about +20 (see X-ray structures of Ru(II)  $\eta^4$ -diene complexes<sup>11</sup>) to about  $-70^\circ$  (see X-ray structures of Ru(IV)  $\eta^4$ -diene complexes<sup>2,3</sup>) (Figure 4) concomitantly pushing the bromide ligand out. In fact, an optimization analysis on the  $Ru(\eta^5-C_5Me_5)(\eta^4-diene)$ fragment points to an energy minimum for a dihedral angle between 30 and 40° in line with experiment<sup>11</sup> and a second slightly less favorable one at about  $-40^{\circ}$ . Isomerization through the planar sandwich structure has small activation barriers of ca. 0.2–0.5 eV depending on the diene. The intermediate Ru(II)  $\eta^4$ -diene complex so brought about has the appropriate symmetry for both Br<sup>+</sup> and Br<sub>2</sub> attack to be feasible. Since Br<sup>+</sup>

<sup>(16)</sup> Sapunov, V. N.; Mereiter, K.; Schmid, R.; Kirchner, K. J. Organomet. Chem. 1996, in press.



**Figure 5.** Addition of  $Br^-$  to  $[Ru(\eta^5-C_5Me_5)(\eta^4-diene)Br_2]^+$  complexes. CACAO drawing for the LUMO ( $C_5Me_5$  AOs omitted for clarity) of the reactant and product as well as the *gauche* deformation of the diene in the course of conversion.

withdraws two electrons essentially from the metalcentered high-lying  $d_{x^2-y^2}$  orbital, another vacant site emerges for attachment of the remaining Br<sup>-</sup> anion. Our former suggestion that Br<sub>2</sub> attacks the Ru(II)  $\eta^4$ -diene without prior reorganization is thus revised.<sup>3</sup>

The next question concerns the mechanism of the diene allyl conversion. As shown in Figure 5 the LUMO of the ground state of the Ru(IV)  $\eta^4$ -diene complex, since not containing the  $p_z$  AO of the terminal diene carbons, has not the necessary symmetry for nucleophilic attack to take place. An appealing possibility to overcome this problem is a *gauche* deformation of the diene ligand in the activated complex. As shown in Figure 5, such a deformation shifts the  $p_z$  AO from the inner to the terminal carbon atoms induced nucleophilic attack. Furthermore, this mechanism rationalizes in a straightforward way the inability to form Ru(IV)  $\eta^3$ -allyl complexes from 2,3-disubstituted diene compounds, as in this case a *gauche* deformation is prohibited due to the

repulsion between one of the substituents of the diene and one of the two bromide coligands. In fact, according to pertinent computer simulations, the activation barrier of such a processs would be as high as about 4 eV in the case of the 2,3-disubstituted dienes but is otherwise very small, only ca. 0.2 eV.

**Acknowledgment.** Financial support by the "Jubiläumsfond der österreichischen Nationalbank" is gratefully acknowledged (Project 5305).

**Supporting Information Available:** Listings of atomic coordinates and U values, anisotropic temperature factors, complete bond lengths and angles, and least-squares planes for complexes **2**, **3**, and **7** (30 pages). Ordering information is given on any current masthead page.

OM960688H