Triple-Decker Complexes. 13.¹ Synthesis of the First **Triple-Decker Complexes with a Bridging Phospholyl** Ligand. Structures of the Triple-Decker Complex $[(\mu-C_4Me_4P){Fe(C_5Me_4CH_2C_6H_{11})}(RuCp^*)]CF_3SO_3$ and the **Related Sandwich Complex Fe(C₄Me₄P)(C₅Me₄CH₂C₆H₁₁)**

Gerhard E. Herberich* and Beate Ganter

Institut für Anorganische Chemie, Technische Hochschule Aachen, D-52056 Aachen, Germany

Received November 21, 1996[®]

Summary: The stacking reaction of the phosphaferrocene $Cp*Fe(C_4Me_4P)$ (1) with the metallo-electrophiles [Cp*Ru- $(solv)_{x}^{\dagger}$ (solv = acetone, $CH_{2}Cl_{2}$) gives the 30e tripledecker complex $[(\mu - C_4 Me_4 P)(FeCp^*)(RuCp^*)]CF_3SO_3(\mathbf{3}),$ the first compound with a central phospholyl ligand. The cyclohexylmethyl derivative $[(\mu - C_4Me_4P)]$ Fe(C_5Me_4 - $CH_2C_6H_{11}$ (RuCp*) [CF₃SO₃ (**10**) shows metal-to-phospholyl distances of 164.4(1) pm for Fe and 180.4(1) pm for Ru.

Phospholyl ligands display a rich coordination chemistry,² but triple-decker complexes with bridging phospholyl ligands are as yet unknown. This seems astonishing, since the pentaphospholyl $(P_5)^3$ and 1,2,4triphospholyl rings $(P_2(CR)_2P$ with $R = Bu^t)^4$ are known to act as bridging ligands in triple-decker structures. In this communication we describe the first synthesis of a triple-decker complex with a bridging 2,3,4,5tetramethylphospholyl ligand.

We selected the phosphaferrocene Cp*Fe(C₄Me₄P) (1) as the starting compound and studied stacking reactions of 1 with metallo-electrophiles.⁵ Complex 1⁶ was readily made from [Cp*Fe(NCMe)₃]PF₆⁷ and Li(C₄Me₄P).⁸ Dehalogenation of [Cp*RuCl]₄ with AgCF₃SO₃ in acetone or CH₂Cl₂ produces the metallo-electrophiles [Cp*Ru- $(solv)_{x}$]⁺ (solv = acetone, CH₂Cl₂). These undergo stacking reactions with the complex 1. The 30e triple-decker cation $[(\mu-C_4Me_4P)(FeCp^*)(RuCp^*)]^+$ (2⁺) is formed within

(5) Herberich, G. E.; Englert, U.; Marken, F.; Hofmann, P. Organometallics 1993, 12, 4039.

Scheme 1^a

^a Legend: (a) 4 Li in THF; (b) [Cp*Fe(NCMe)₃]PF₆ in THF; (c) $[Cp^*Ru(solv)_3]^+$ in acetone or CH_2Cl_2 .

1 h and could be isolated as the salt (2)CF₃SO₃ (\equiv 3)⁹ (Scheme 1).

Two regiochemistries are conceivable for the stacking reaction of 1, one which gives 2^+ and an alternative which would give a triple-decker cation with a bridging Cp* ligand. We note here that triple-decker complexes with terminal phospholyl ligands¹⁰ as well as other ones with bridging pentamethylcyclopentadienyl ligands¹¹ are known. On the basis of the present experimental data we cannot decide whether 2^+ is the more stable isomer. The formation of $\mathbf{2}^+$ could also be the outcome of kinetic control. Attack of the metallo-electrophile at the open face of the phospholyl ligand of 1 could for

© 1997 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, February 1, 1997. (1) Part 12: Herberich, G. E.; Englert, U.; Ganter, B.; Lamertz, C. Organometallics 1996, 15, 5236.

⁽²⁾ Mathey, F. Coord. Chem. Rev. 1994, 137, 1

 ^{(3) (}a) Scherer, O. J. Angew. Chem., Int. Ed. Engl. 1990, 29, 1104.
(b) Rink, B.; Scherer, O. J.; Heckmann, G.; Wolmershäuser, G. Chem. Ber. 1992, 125, 1011. (c) Scherer, O. J.; Brück, T.; Wolmershäuser, G. Chem. Ber. 1989, 122, 2049.

⁽⁴⁾ Hitchcock, P. B.; Johnson, J. A.; Nixon, J. F. Organometallics 1995, 14, 4382

⁽⁶⁾ Preparation of 1: To a solution of C₄Me₄PCl (1.56 g, 8.9 mmol) in THF was added freshly cut lithium metal (250 mg). After the reaction mixture was stirred for 4 h, unreacted lithium was removed from the solution. $[Cp*Fe(NCMe)_3]PF_6^7$ (4.12 g, 8.9 mmol) was added, and the dark red mixture was stirred for 1 h. After removal of all volatiles under vacuum, the residue was dissolved in CH₂Cl₂, and the volatiles under vacuum, the residue was dissolved in CH₂Cl₂, and the solution was filtered through silica (5 cm) using hexane (300 mL) as eluent. The orange solution was evaporated to dryness to give **1** (2.42 g, 82%) as orange crystals. Anal. Calcd for $C_{18}H_{27}FeP$: C, 65.47; H, 8.24. Found: C, 65.08; H, 8.17. ¹H NMR (500 MHz, CDCl₃): δ 1.64 (d, $J_{PH} = 9.8$ Hz, 2 Me_a), 1.74 (s, Cp*), 1.88 (s, 2 Me_β), 1³C{¹H} NMR (63 MHz, CDCl₃): δ 10.03 (s, Cp*), 11.36 (s, 2 Me_β), 13.07 (d, $J_{PC} = 23.8$ Hz, 2 Me_a), 81.48 (s, Cp*), 91.61 (d, $J_{PC} = 3.8$ Hz, 2 C_β), 91.77 (d, 2C, $J_{PC} = 53.6$ Hz, 2 C_a). ³¹P{¹H} NMR (202 MHz, CDCl₃): δ - 61.2. MS (EI): m/z (I_{rel}) 330.2 (100, M⁺), 315.0 (15, M⁺ – Me). (7) Catheline, D: Astruc. D. *Organometallics* **1984**, 3, 1094.

⁽⁷⁾ Catheline, D.; Astruc, D. *Organometallics* **1984**, *3*, 1094. (8) Douglas, T.; Theopold, K. H. *Angew. Chem., Int. Ed. Engl.* **1989**, 28, 1367. See also: Nief, F.; Mathey, F.; Ricard, L.; Robert, F. Organometallics **1988**, 7, 921.

⁽⁹⁾ Preparation of 3: A suspension of [Cp*RuCl]₄ (187 mg, 0.17 mmol) in acetone (or CH_2Cl_2) was cooled to 0 °C; AgCF₃SO₃ (176 mg, 0.68 mmol) was added, and the mixture was stirred for 30 min. The suspension was filtered through Kieselguhr into a Schlenk tube with 1 (226 mg, 0.68 mmol), and stirring was continued for 1 h. The reaction mixture was evaporated to dryness, dissolved in acetone (10 mL), and filtered through a layer of alumina (5% H₂O, 3 cm); the product was eluted with acetone. The solution was concentrated to a small volume eluted with acetone. The solution was concentrated to a small volume and layered with Et₂O to give **3** (135 mg, 28%) as violet crystalline powder. Anal. Calcd for C₂₉H₄₂F₃FeO₃PRuS: C, 48.68; H, 5.92. Found: C, 48.62; H, 6.12. ¹H NMR (500 MHz, *d*₆-acetone): δ 1.67 (s, RuCp*), 1.81 (s, FeCp*), 1.94 (d, *J*_{PH} = 8.3 Hz, 2 Me_a), 2.66 (s, 2 Me_β). ¹³C{¹H} NMR (125 MHz, *d*₆-acetone): δ 9.21 (s, FeCp*), 9.69 (s, RuCp*), 12.19 (s, 2 Me_β), 14.27 (d, *J*_{PC} = 15.9 Hz, 2 Me_a), 75.58 (d, *J*_{PC} = 85.0 Hz, 2 C_a), 76.61 (d, *J*_{PC} = 7.6 Hz, 2 C_β), 83.18 (s, FeCp*), 89.47 (s, RuCp*). ³¹P{¹H} NMR (202 MHz, *d*₆-acetone): δ -39.5. SIMS: *m*, *C*(*J*, 552 (100 M¹) from cation concertsum 148.9 (100 CESO₆⁻¹) from (Irel) 567.2 (100, M⁺) from cation spectrum, 148.9 (100, CF₃SO₃⁻) from anion spectrum.

⁽¹⁰⁾ Chase, K. J.; Bryan, R. F.; Woode, M. K.; Grimes, R. N. Organometallics 1991, 10, 2631.

⁽¹¹⁾ Kudinov, A. R.; Rybinskaya, M. I.; Struchkov, Yu. T.; Yanovskii, A. I.; Petrovskii, P. V. *J. Organomet. Chem.* **1987**, *336*, 187.

^a Legend: (a) 0.5 [Cp*Ru(NCMe)₃]⁺; (b) 2 [Cp*Ru(NCMe)₃]⁺; (c) MeCN, slow.

instance be favored by an intermediate σ -coordination of the ruthenium to the phosphorus atom.

As one goes from 1 to 3, the ¹H NMR signals show a downfield shift for the methyl groups of the phospholyl ring. The same trend has also been noted for tripledecker complexes with e.g. cyclopentadienyl ligands C₅H₄Me¹² and Cp^{*11} rings as central ligands. Quite remarkably, the ³¹P NMR resonance is also shifted downfield (δ ⁽³¹P) -61.2 for **1** and δ ⁽³¹P) -39.5 ppm for 3).

When **3** is dissolved in acetonitrile, nucleophilic degradation takes place within 5-10 days at ambient temperature to give the complex $[Cp*Ru(NCMe)_2(\mu-C_4-$ Me₄P)FeCp*]CF₃SO₃ ((4)CF₃SO₃)¹³ with a Ru–P σ -bond. On the other hand, mixtures of $[Cp*Ru(NCMe)_3]^{+14}$ and **1** form the same species $\mathbf{4}^+$ as well as the complex $[Cp*Ru(NCMe){(\mu-C_4Me_4P)FeCp*}_2]CF_3SO_3$ ((5) CF_3 -SO₃).¹⁵ The σ -coordination of the phosphaferrocene **1** is indicated by a considerable downfield shift of the ³¹P resonances (δ (³¹P) 16.2 for **4**⁺ and δ (³¹P) 1.4 ppm for **5**⁺).¹⁶ With an excess of $[Cp*Ru(NCMe)_3]^+$ only **4**⁺ is formed, while with an excess of 1 only 5^+ is seen (Scheme 2).¹⁷ We conclude that these reactions are thermodynamically controlled, and the triple-decker cation $\mathbf{2}^+$ will only be formed if stabilizing ligands such as acetonitrile are absent.

^{*a*} Legend: (a) $Fe(CO)_5$ in refluxing octane; (b) $[FeCp_2]PF_6$ in CH₂Cl₂/MeCN; (c) hv, MeCN; (d) Li(C₄Me₄P) in THF; (e) $[Cp*Ru(solv)_x]^+$ in acetone or CH_2Cl_2 .

When 3 was recrystallized from acetone/ether/tetrahydropyran (THP), cocrystals with THP, 6^{18} ($6 \equiv 3$ · THP), were obtained. The crystal structure of 6 showed an orientational disorder for the cations; therefore, the Fe and Ru positions were not distinguishable. In order to overcome this problem, we replaced the FeCp* fragment in $\mathbf{2}^+$ with a Fe(C₅Me₄CH₂C₆H₁₁) fragment. The required 1-(cyclohexylmethyl)-2,3,4,5-tetramethylcyclopentadiene (7) was prepared from $C_6H_{11}CH_2Br$, Li, and 2,3,4,5-tetramethylcyclopentenone (cf. the synthesis of Cp*H¹⁹). The subsequent synthetic steps, via the phosphaferrocene $\mathbf{8}^{20}$ to the triple-decker complex (9)CF₃- SO_3 (=10),²¹ closely follow the synthesis of 3 and are summarized in Scheme 3.

Compound 8 crystallizes in the monoclinic space group $P2_1/n$ with two independent molecules in the asymmetric unit;²² the two molecules differ in the orientation of the cyclohexyl groups. The X-ray crystallographic study of compound 10 reveals a typical tripledecker structure (Figure 1).²³ The distances to the best phospholyl plane amount to 164.4(1) pm for Fe and 180.4(1) pm for Ru. These distances are almost equal

⁽¹²⁾ Salzer, A.; Werner, H. Angew. Chem., Int. Ed. Engl. 1972, 11, 930.

⁽¹³⁾ NMR data for **4**⁺: ¹H NMR (500 MHz, CD_2Cl_2) δ 1.37 (d, $J_{PH} =$ $(2.4)^{-1.1}$ ($(3.4)^{-1.1}$ Cl₂) δ 16.2.

^{(14) (}a) [Cp*Ru(NCMe)₃]PF₆: Schrenk, J. L.; McNair, A. M.; Mc-Cormick, F. B.; Mann, K. R. Inorg. Chem. 1986, 25, 3501. (b) [Cp*Ru-(NCMe)₃]CF₃SO₃: Fagan, P. J.; Ward, M. D.; Calabrese, J. C. *J. Am. Chem. Soc.* **1989**, *111*, 1698.

Chem. Soc. **1989**, *111*, 1096. (15) NMR data for 5⁺: ¹H NMR (500 MHz, CD_2Cl_2) δ 1.42 (d, $J_{PH} =$ 11.9 Hz, 4 Me_{α}), 1.66 (s, 2 FeCp*), 1.69 (s, RuCp*), 1.96 (s, 4 Me_{β}), 2.43 (s, MeCN); ³¹P{¹H} NMR (202 MHz, CD_2Cl_2): δ 1.4 (br). (16) For reference data see: (a) Deschamps, B.; Mathey, F.; Fischer, L. V. Johnson, J. H. J. Mathey, T. Sterner, J. W. Johnson, J. H. Mathey, T. Sterner, J. W. Johnson, J. H. Mathey, T. Sterner, J. M. J. Mathey, J. Sterner, J. M. J. Mathey, T. Sterner, J. M. Mathey, J. Sterner, J. M. J. Mathey, J. Sterner, J. M. J. Mathey, J. Sterner, J. M. J. Mathey, J. Mathey, J. Mathey, J. Sterner, J. M. J. Mathey, J. Mathey, J. Sterner, J. M. J. Mathey, J. Math

J. Nelson, J. H. Inorg. Chem. 1984, 23, 3455. (b) Nelson, J. H.; Mathey, J.; Nelson, J. H. Inorg. Chem. 1984, 23, 3455. (b) Nelson, J. H.; Mathey, F. In Phosphorus-31 NMR spectroscopy in Stereoechemical Analysis; Verkade, J. G., Quin, L. D., Eds.; VCH: Weinheim, Germany, 1987.
(12) Thurus, G. Bartis, S. Chemistric, S. Chemi

⁽¹⁷⁾ There are no indications for the formation of the triply substituted species $[Cp^*Ru(1)_3]^+$, even with a large excess of 1, presumably because of too much steric hindrance.

⁽¹⁸⁾ A solution of 3 in a mixture of acetone (5 mL) and tetrahydropyran (5 mL) was layered with Et₂O (30 mL) to give 6 as violet crystals which were suitable for X-ray structure determination; they lose THP at room temperature.

^{(19) (}a) King, R. B.; Bisnette, M. B. J. Organomet. Chem. 1967, 8,

^{287. (}b) Feitler, D.; Whitesides, G. M. *Inorg. Chem.* **1975**, *15*, 466. (20) Data for **8**: Anal. Calcd for $C_{24}H_{37}FeP$: C, 69.90; H, 9.04. Found: C, 69.46; H, 9.11. ¹H NMR (500 MHz, CDCl₃): δ 0.85 (m, 2H, Cy), 1.10 (m, 3H, Cy), 1.15 (m, 1H, CH, Cy), 1.58 (m, 5H, Cy), 1.62 (d, $J_{\rm PH} = 9.8$ Hz, 2 Me_a), 1.72 and 1.73 (s, C₃Me₄), 1.86 (s, 2 Me_b), 2.11 (d, J = 7.0 Hz, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 10.10 and 10.69 J = 7.0 Hz, CH₂). ¹³C(¹H) NMR (123 MHz, CDCl₃): δ 10.10 and 10.69 (s, C₅Me₄), 11.41 (s, 2 Me₆), 13.16 (d, $J_{PC} = 23.6$ Hz, 2 Me₆), 26.40 (s, 2C, Cy), 26.51 (s, 1C, Cy), 33.47 (s, 2C, Cy), 33.79 (s, 1C, CH₂), 39.62 (s, 1C, Cy), 81.51 and 81.67 (s, C_5Me_4), 84.92 (s, Fe CCH₂Cy), 91.48 (d, $J_{PC} = 53.2$ Hz, 2 C₆), 91.56 (d, $J_{PC} = 4.4$ Hz, 2 C₆). ³¹P{¹H} NMR (202 MHz, CDCl₃): δ -61.3. MS (EI): m/z (I_{rel}) 412.1 (95, M⁺), 58.0 (100). (21) Data for **10**: Anal. Calcd for C₃₅H₅₂F₃Feo₃PRuS: C, 52.70; H, 6.57. Found: C, 52.85; H, 6.77. ¹H NMR (500 MHz, d_6 -acetone): δ 0.91 (m 2H Cy) 1.11 (m 3H Cy) 1.25 (m CH Cy) 1.53 (m 2H Cy) 1.61

^{6.57.} Found: C, 52.85; H, 6.77. ¹H NMR (500 MHz, *d*₆-acetone): δ 0.94 (m, 2H, Cy), 1.11 (m, 3H, Cy), 1.25 (m, CH, Cy), 1.53 (m, 2H, Cy), 1.61 (m, 3H, Cy), 1.66 (s, RuCp*), 1.82 and 1.84 (s, C₅Me₄), 1.94 (d, *J*_{PH} = 7.9 Hz, 2 Me_α), 2.38 (d, *J* = 7.3 Hz, CH₂), 2.65 (s, 2 Me_β), ¹³C{¹H} NMR (125 MHz, *d*₆-acetone): δ 9.22 and 9.93 (s, C₅Me₄), 9.69 (s, RuCp*, 12.25 (s, 2 Me_β), 14.36 (d, *J*_{PC} = 15.9 Hz, 2 Me_α), 26.84 (s, 2C, Cy), 26.93 (s, 1C, Cy), 32.84 (s, 1C, CH₂), 33.82 (s, 2C, Cy), 39.56 (s, 1C, Cy), 75.64 (d, *J*_{PC} = 7.6 Hz, 2 C_β), 83.15 and 83.71 (s, *C*₅Me₄), 86.06 (s, FeCCH₂Cy), 89.47 (s, RuCp*). ³¹P{¹H} NMR (202 MHz, *d*₆-acetone): δ -39.3. SIMS: *m*/*z* (*I*_{rel}) 649.2 (100, M⁺) from cation spectrum, 148.9 (100, CF₃SO₃⁻) from anion spectrum.

Figure 1. PLATON²⁵ plot of **10** (at the 30% probability level). Bond distances (pm): Ru–P, 241.2(2); Fe–P, 229.2(3); Ru–C2, 225.2(7); Ru–C3, 221.2(9); Ru–C4, 220.7-(7); Ru–C5, 221.2(7); Fe–C2, 208.9(7); Fe–C3, 209.0(9); Fe–C4, 209.1(7); Fe–C5, 210.1(7); P–C2, 180.9(8); P–C5, 185.5(8); C2–C3, 145(1); C3–C4, 147(1); C4–C5, 143(1). Distances from ring planes (pm): Ru–(C₄Me₄P), 180.4; Ru–Cp*, 180.4; Fe–(C₄Me₄P), 164.4; Fe–(C₅Me₄CH₂C₆H₁₁), 166.3. Bond angles (deg): Ru–P–Fe, 94.26(9); C2–P–C5, 88.2(3).

to those in comparable sandwich complexes (165.1(1) pm for **8** and 181.4 pm for $Cp^*Ru(2,5-Bu^tC_4H_2P)^{24}$).

Work is in progress in order to generalize the results presented here. Degradation reactions of triple-decker complexes with bridging phospholyl rings and phospholyl ligand transfer reactions are also currently under investigation. **Acknowledgment.** We thank Dr. U. Englert for advice with the structure determinations. This work was generously supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Supporting Information Available: PLATON plots of **8** and tables of bond distances and angles, positional and anisotropic thermal parameters, and hydrogen atom coordinates for **8** and **10** (21 pages). Ordering information is given on any current masthead page.

OM960985M

(22) Crystal data for **8**: orange crystals, $0.60 \times 0.45 \times 0.25$ mm, monoclinic, a = 1687(1) pm, b = 1474(1) pm, c = 1773(1) pm, $\beta =$ 92.39(5)°, V = 4.405(8) nm³, Z = 8, space group $P2_1/n$ (No. 14), $D_{calcd} =$ 1.244 g cm⁻³, $\mu = 7.60$ cm⁻¹, F(000) = 1776. Data collection: ENRAF-Nonius CAD4, Mo K α radiation, graphite monochromator, ω scan (3 $< \theta < 27^{\circ}$) at 203 K, 10 291 reflections measured, 5885 unique reflections with $I > \sigma(I)$. Solution²⁶ and refinement:²⁷ 749 parameters, R = 0.067, $R_w = 0.060$, $w^{-1} = \sigma^2(F_0)$, GOF = 1.426, non-hydrogen atoms were refined anisotropically, most of the hydrogen atoms were treated as riding.²⁸

were refined anisotropically, host of the flyin ogen atoms were treated as riding.²⁸ (23) Crystal data for **10**: violet crystals, $0.50 \times 0.25 \times 0.08$ mm, monoclinic, a = 1721(1) pm, b = 1109.6(3) pm, c = 1862.2(6) pm, $\beta =$ 92.81(4)°, V = 3.553(4) nm³, Z = 4, space group *Ia* (No. 9), *D*_{caled} = 1.490 g cm⁻³, $\mu = 9.73$ cm⁻¹, *F*(000) = 1656. Data collection: ENRAF-Nonius CAD4, Mo K α radiation, graphite monochromator, ω scan (3 $< \theta < 28^{\circ}$) at 203 K, 10 298 reflections measured, 6445 unique reflections with $I > \sigma(I)$. Solution²⁶ and refinement:²⁷ 404 parameters, R = 0.063, $R_w = 0.054$, $w^{-1} = \sigma^2(F_0)$, GOF = 1.137, non-hydrogen atoms were refined anisotropically, all hydrogen atoms were treated as riding.²⁸

(24) Carmichael, D.; Ricard, L.; Mathey, F. J. Chem. Soc., Chem. Commun. 1994, 1167.

(25) Spek, A. L. Acta Crystallogr. 1990, A46, C34.

(26) Sheldrick, G. M. SHELXS-86, Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1986.

(27) MolEN, An Interactive Structure Solution Procedure; ENRAF-Nonius: Delft, The Netherlands, 1990.

(28) Further details of the crystal structure analyses are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany, on quoting the depository number CSD-406301 for **8** and CSD-406302 for **10**, the names of the authors, and this journal citation.