725

Synthesis, Characterization, and Solution Dynamics of Alkali-Metal Chloride, Aluminate, and Borate Adducts of the Tridentate Amido Diphosphine Ligand Precursor LiN(SiMe₂CH₂PPrⁱ₂)₂

Michael D. Fryzuk,* Garth R. Giesbrecht, and Steven J. Rettig[†]

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1

Received July 31, 1996[®]

The preparation of LiCl, LiAlMe₄, LiAlEt₄, LiBEt₄, and NaBEt₄ adducts of the lithium salt of the potentially tridentate ligand precursor LiN(SiMe₂CH₂PPrⁱ₂)₂ is reported. The reaction of HN(SiMe₂CH₂Cl)₂ with LiPPrⁱ₂ (3 equiv) in THF at -78 °C leads to the isolation of $\{LiN(SiMe_2CH_2PPr^i_2)_2\}_2LiCl$, under certain conditions. The X-ray crystal structure shows it to exist as a 2:1 adduct with pseudo C₂ symmetry in which a LiCl molecule is sandwiched between two $LiN(SiMe_2CH_2PPr^i_2)_2$ monomers. The LiCl molecule and two Li-N units form a planar six-membered core which can best be described as a three-rung ladder. The solution ¹H NMR spectrum is consistent with this geometry. Variable-temperature ³¹P and ⁷Li NMR spectroscopy indicate that the basic structural features of this compound are maintained in solution. This is confirmed by a ⁷Li NOESY experiment. The addition of LiAlMe₄ to $LiN(SiMe_2CH_2PPr^i_2)_2$ results in the formation of $\{LiN(SiMe_2CH_2PPr^i_2)_2 \cdot LiAlMe_4\}_2$; the same product is formed upon the addition of MeLi (4 equiv) to AlCl₂[N(SiMe₂CH₂PPrⁱ₂)₂]. The X-ray crystal structure of this product indicates that a 2:2 dimer of C_2 symmetry is present. Variable-temperature NMR studies are consistent with a highly fluxional molecule under ambient conditions. The variable-temperature ⁶Li NMR spectra of the multiply labeled derivative ${^6Li^{15}N(SiMe_2CH_2PPr^i_2)_2 \cdot {^6LiAlMe_4}_2}$ indicate that lithium exchange is occurring faster than phosphine exchange. Interaggregate lithium exchange is present under ambient conditions, while at lower temperatures, intraaggregate exchange is more favorable. The behavior of this species varies greatly upon dissolution in coordinating solvents. LiAlEt $_4$ and LiBEt₄ adducts of LiN(SiMe₂CH₂PPrⁱ₂)₂ were also formed but could not be crystallized and thus studied in the solid state. The addition of $NaBEt_4$ to $LiN(SiMe_2CH_2PPr_2)_2$ affords $\{LiN(SiMe_2CH_2PPr^i_2)_2 \cdot NaBEt_4\}_x$. The X-ray crystal structure of this compound shows it to be an infinite one-dimensional polymer. In this case, the elucidated structure is the result of aggregation upon solvent evaporation. Comparison of the three crystal structures illustrates that even with varying adducts (i.e., LiCl, LiAlMe₄, and NaBEt₄) the basic geometries of the LiN(SiMe₂CH₂PPrⁱ₂)₂ unit remain similar.

Introduction

Lithium amide compounds, $LiNR_2$ (R = alkyl, aryl or silyl), have proven to be ubiquitous in organometallic chemistry as amide transfer reagents and also as mild deprotonation reagents for organic synthesis.¹ Recently, in an attempt to better explain the reactivity of organolithium reagents, structural studies have been undertaken to probe the extent and nature of their solvation as well as the degree of aggregation present in solution.²⁻¹⁵ These studies have revealed a remarkable diversity of bonding types in solution and the solid state, with solvent-separated ion pairs, monomers, dimers, trimers, tetramers, larger oligomers, polymers, ladders, and cages all being known.^{1,16-18} What becomes evident from these reports is that the coordination geometry of organolithium reagents is not straightforward and can often vary between the solution and the solid states.

Experimental Officer: UBC Crystallographic Service.

[®] Abstract published in Advance ACS Abstracts, January 15, 1997. (1) Sapse, A. M.; Schleyer, P. v. R. Lithium Chemistry; Wiley: New York, 1995; p 595.

⁽²⁾ Reich, H. J.; Gudmundsson, B. Ö. J. Am. Chem. Soc. 1996, 118, 6074

⁽³⁾ Henderson, K. W.; Dorigo, A. E.; Liu, Q.; Williard, P. G.; Schleyer, P. v. R.; Bernstein, P. R. *J. Am. Chem. Soc.* **1996**, *118*, 1339.

⁽⁴⁾ Lucht, B. L.; Collum, D. B. J. Am. Chem. Soc. 1996, 118, 2217.
(5) Lucht, B. L.; Collum, D. B. J. Am. Chem. Soc. 1995, 117, 9863.

⁽⁶⁾ Henderson, K. W.; Walther, D. S.; Williard, P. G. J. Am. Chem. Soc. 1995, 117, 8680.

⁽⁷⁾ Romesberg, F. E.; Collum, D. B. J. Am. Chem. Soc. 1994, 116, 9198

⁽⁸⁾ Nichols, M. A.; Waldmuller, D.; Williard, P. G. J. Am. Chem. Soc. 1994, 116, 1153.

⁽⁹⁾ Collum, D. B. Acc. Chem. Res. 1993, 26, 227.

⁽¹⁰⁾ Bernstein, M. P.; Romesberg, F. E.; Fuller, D. J.; Harrison, A. T.; Collum, D. B.; Liu, Q.-Y.; Williard, P. G. *J. Am. Chem. Soc.* **1992**, 114, 5100.

⁽¹¹⁾ Romesberg, F. E.; Gilchrist, J. H.; Harrison, A. T.; Fuller, D. J.; Collum, D. B. *J. Am. Chem. Soc.* **1991**, *113*, 5751.
(12) Hall, P. L.; Gilchrist, J. H.; Harrison, A. T.; Fuller, D. J.; Collum,

D. B. J. Am. Chem. Soc. 1991, 113, 9575.

⁽¹³⁾ Galiano-Roth, A. S.; Collum, D. B. J. Am. Chem. Soc. 1989, 111, 6772.

⁽¹⁴⁾ DePue, J. S.; Collum, D. B. J. Am. Chem. Soc. 1988, 110, 5518.

⁽¹⁵⁾ Williard, T. G.; Salvino, J. M. *Tetrahedron Lett.* **1985**, *26*, 3931. (16) Mulvey, R. E. *Chem. Soc. Rev.* **1991**, *209*, 167.

⁽¹⁷⁾ Neumann, F.; Hampel, F.; Schleyer, P. v. R. Inorg. Chem. 1995, 34. 6553.

⁽¹⁸⁾ Gregory, K.; Schleyer, P. v. R.; Snaith, R. Adv. Inorg. Chem. 1991, 37, 47.

Research in our group has been concerned with the use of the lithium amido-diphosphine reagent LiN- $(SiMe_2CH_2PR_2)_2$ as a starting material for the introduction of a potentially tridentate ligand to both early and late transition metals and to some main-group elements.¹⁹⁻²⁶ While this ligand system imbues crystallinity on many of its complexes, the actual lithium precursors have so far not yielded single crystals to allow crystallographic analyses. However, we have been able to isolate and crystallographically characterize LiCl, LiAlMe₄, and NaBEt₄ adducts of LiN(SiMe₂CH₂- PPr_{2}^{i} , in which three different coordination modes were observed. In this paper we provide details of these solid-state structures and include variable-temperature NMR studies to illustrate that the integrity of these compounds is not always maintained in solution.

Results and Discussion

LiCl Adduct Synthesis. The original preparation of the lithium amido diphosphine reagent LiN(SiMe₂-CH₂PPrⁱ₂)₂ requires the addition of 3 equiv of LiPPrⁱ₂ to a THF solution of 1,3-bis(chloromethyl)tetramethyldisilazane (eq 1);²⁶ 2 equiv of the phosphide is necessary

to displace the chlorides and form the phosphoruscarbon bonds, while the third equivalent deprotonates the amine. The ¹H NMR spectrum consists of peaks attributable to a $C_{2\nu}$ symmetric complex with no evidence of any phosphorus-lithium interaction in both the variable-temperature ${}^{31}P{}^{1}H{}$ and ${}^{7}Li{}^{1}H{}$ NMR spectra (singlets are observed at all temperatures). The microanalytical data support the above formulation. All of our attempts to grow crystals suitable for X-ray diffraction were foiled, due to the ease with which this compound melts near or slightly above room temperature. However, in one particular preparation, several large colorless crystals could be isolated from a saturated hexanes solution maintained at -40 °C. It became apparent that these crystals, which we label as compound 1 for convenience, were different than the material originally reported on the basis of NMR spectroscopy, elemental analyses, and, most convincingly, X-ray crystallography.

The ¹H NMR spectrum of $\mathbf{1}$ is nearly identical with that of authentic LiN(SiMe₂CH₂PPrⁱ₂)₂, with the exception that the resonances due to the methylene protons $(-CH_2P)$ and the methine protons of the isopropyl

Figure 1. Molecular structure of $\{LiN(SiMe_2CH_2PPr^i_2)_2\}_2$ LiCl (1; 33% probability thermal ellipsoids are shown). Hydrogen atoms are omitted for clarity.

groups $(-CH(CH_3)_2)$ are noticeably broadened. The ³¹P-¹H} NMR spectrum, however, consists of a broad singlet at -3.8 ppm which is indicative of an interaction of phosphorus-31 with a quadrupolar nucleus, in this case lithium-7. This is in contrast to the sharp singlet at -4.7 ppm due to LiN(SiMe₂CH₂PPrⁱ₂)₂. The combustion analysis of the crystals of 1 is consistent with a complex incorporating some degree of LiCl, although it was difficult to determine the exact stoichiometry from the analytical data. Ultimately, an X-ray crystallographic study was necessary to determine the nature of the LiCl interaction in this compound.

Structure of $\{LiN(SiMe_2CH_2PPr^i_2)_2\}_2LiCl$ (1). Cooling a saturated hexanes solution of 1 to -40 °C for 2 weeks resulted in large colorless blocks that were suitable for single-crystal X-ray diffraction. The molecular structure and numbering scheme are illustrated in Figure 1. Complete details of the structural analyses of 1, 2, and 6 are presented in Table 1. The structure of 1 can best be described as a three-rung ladder, in which a LiCl unit is sandwiched between two LiN-(SiMe₂CH₂PPrⁱ₂)₂ monomers. The formulation of **1** as {LiN(SiMe₂CH₂PPrⁱ₂)₂}₂LiCl is further supported by the microanalytical data. Compound 1 exhibits pseudo C_2 symmetry with the axis passing through the Li(3)-Cl(1)axis. The structural features are similar to those of the four other three-rung ladders of LiCl and two lithium amides previously reported.^{3,27,28} 1 contains three lithium atoms in two distinct environments: Li(1) and Li(2) maintain approximate tetrahedral geometries in which bonding to the amide nitrogen and two neutral phosphines of a LiN(SiMe₂CH₂PPrⁱ₂)₂ molecule is observed, in addition to the planar μ_3 -chloride associated with LiCl, while Li(2) resides in a distorted-trigonalplanar environment. The bridging lithium Li(2) binds to the chloride and two amido anions. The atoms in the three-rung ladder, Li(1), Cl(1), Li(2), N(2), Li(3), and N(1), define a slightly twisted plane in which the mean

⁽¹⁹⁾ Fryzuk, M. D.; Mylvaganam, M.; Zaworotko, M. J.; MacGillivray, L. R. Polyhedron 1996, 15, 689.

⁽²⁰⁾ Fryzuk, M. D.; Gao, X.; Rettig, S. J. J. Am. Chem. Soc. 1995, 117, 3106.

⁽²¹⁾ Fryzuk, M. D.; Giesbrecht, G. R.; Rettig, S. J. Organometallics 1996. 15. 3329.

 ⁽²²⁾ Fryzuk, M. D.; Mylvaganam, M.; Zaworotko, M. J.; MacGillivray,
 L. R. Polyhedron 1995, 15, 689.
 (23) Fryzuk, M. D. Can. J. Chem. 1992, 70, 2849.

⁽²⁴⁾ Fryzuk, M. D.; Haddad, T. S.; Berg, D. J.; Rettig, S. J. Pure Appl. Chem. **1991**, 63, 845. (25) Fryzuk, M. D.; Haddad, T. S.; Rettig, S. J. Organometallics

^{1992. 11. 2967}

⁽²⁶⁾ Fryzuk, M. D.; Carter, A.; Westerhaus, A. Inorg. Chem. 1985, 24. 642.

⁽²⁷⁾ Duan, Z.; Young, V. G.; Verkade, J. G. Inorg. Chem. 1995, 34, 2179.

⁽²⁸⁾ Mair, F. S.; Clegg, W.; O'Neil, P. A. J. Am. Chem. Soc. 1993, 115. 3388.

compd	${LiN(SiMe_2CH_2PPr^{i_2})_2}_2LiCl, (1)$	$\{LiN(SiMe_2CH_2PPr^i_2)_2 \cdot LiAlMe_4\}_2 \ \textbf{(2)}$	${LiN(SiMe_2CH_2PPr^i_2)_2 \cdot NaBEt_4]_x (6)}$
formula	C ₃₆ H ₈₈ ClLi ₃ N ₂ P ₄ Si ₄	$C_{44}H_{112}Al_2Li_4N_2P_4Si_4$	C ₂₆ H ₆₄ BLiNNaP ₂ Si ₂
fw	841.62	987.35	549.66
cryst syst	monoclinic	triclinic	monoclinic
space group	$P2_1/n$	$P\overline{1}$	$P2_1/c$
<i>a</i> , Å	11.878(2)	16.215(1)	12.519(2)
<i>b</i> , Å	34.137(3)	19.672(1)	35.067(6)
<i>c</i> , Å	13.683(2)	11.5163(9)	17.871(2)
α, deg	90	91.106(7)	90
β , deg	98.98(1)	108.477(6)	109.37(1)
γ, deg	90	100.085(6)	90
V, Å ³	5480(1)	3419.3(5)	7400(1)
Z	4	2	8
$\rho_{\rm calc}, {\rm g/cm^3}$	1.020	0.959	0.987
T, °C ⊂	21	21	21
radiation	Cu	Cu	Cu
λ, Å	1.541 78	1.541 78	1.541 78
μ , cm ⁻¹	27.23	21.21	18.85
transmn factors	0.73-1.00	0.91-1.00	0.88 - 1.00
$R(F)^a$	0.045	0.056	0.050
$R_{\rm w}(F)^a$	0.043	0.050	0.041

Table 1. Crystallographic Data^a

 ${}^{a}R = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|; R_{w} = (\Sigma w (|F_{0}| - |F_{c}|)^{2} / \Sigma w |F_{0}|^{2})^{1/2}.$

deviation from the plane is 0.1022 Å. Examination of the structure shows that 1 involves a LiCl molecule linking two LiN(SiMe₂CH₂PPrⁱ₂)₂ units together. However, inspection of the structure of 1 reveals four similar lithium-nitrogen bond lengths (2.06(1)-2.10(1) Å) and a lengthened Li(3)-Cl(1) interatomic distance of 2.403-(10) Å, which is longer than the distance from the chloride to each of the lithium atoms associated with the LiN(SiMe₂CH₂PPrⁱ₂)₂ units (2.336(10) and 2.333(10) Å). These data reflect the inherent stability of the ladder form in alkali-metal chemistry.^{6,12,16,29–31} No unusually short intramolecular contacts were noted. A list of bond lengths and angles for **1** can be found in Table 2.

Variable-Temperature ³¹P and ⁷Li NMR Studies of $\{LiN(SiMe_2CH_2PPr^i_2)_2\}_2LiCl(1)$. The solution ¹H NMR spectrum of **1**, recorded in C_6D_6 , is in accord with the structure in the solid state. Each LiN(SiMe₂CH₂- PPr_{2}^{i} unit possesses local C_{2v} symmetry, and the pseudo mirror plane that is defined by the Li-Cl bond renders each LiN(SiMe₂CH₂PPrⁱ₂)₂ ligand equivalent. The broadened resonances associated with the methylene (SiCH₂P) and methine (PCH(CH₃)₂) protons reflect a kinetic process in which the phosphine arms rapidly dissociate and recoordinate to the lithium atom bound to the central amide. This postulate is further supported by the variable-temperature ${}^{31}P{}^{1}H$ NMR data; at room temperature, a broad singlet at -3.8 ppm is observed for 1, which upon cooling (in C_7D_8) to -27 °C decoalesces into a 1:1:1:1 quartet at -6.2 ppm. The quartet, a result of coupling to a single quadrupolar lithium-7 nucleus ($I = \frac{3}{2}$, natural abundance 92.6%), displays a typical ${}^{1}J_{P-Li}$ coupling of 48.5 Hz.³²

At room temperature the ⁷Li¹H NMR spectrum also consists of a single broad resonance at -0.7 ppm, even though two distinct lithium environments are present in the solid state. When the temperature is gradually lowered to -38 °C, one observes broadening of the

Table 2. Selected Bond Lengths (Å) and Angles (deg) for $\{LiN(SiMe_2CH_2PPr^i_2)_2\}_2LiCl(1)$

0			
Cl(1)-Li(1)	2.34(1)	Si(1)-N(1)	1.702(4)
Cl(1)-Li(3)	2.40(1)	Si(2)-N(1)	1.687(5)
Cl(1)-Li(2)	2.33(1)	Si(3)-N(2)	1.702(5)
P(1)-Li(1)	2.59(1)	Si(4)-N(2)	1.693(4)
P(2)-Li(1)	2.63(1)	N(1)-Li(1)	2.06(1)
P(3)-Li(2)	2.61(1)	N(1)-Li(3)	2.08(1)
P(4)-Li(2)	2.58(1)	N(2)-Li(2)	2.10(1)
Li(1)-Li(3)	2.79(1)	N(2)-Li(3)	2.10(1)
Li(2)-Li(3)	2.83(1)		
	445 0(4)		70.0(1)
Li(1) - CI(1) - Li(2)	145.2(4)	Li(2) - CI(1) - Li(3)	73.2(4)
Li(1) - Cl(1) - Li(3)	72.0(3)	Li(2) - N(2) - Li(3)	84.6(4)
Li(1) - N(1) - Li(3)	84.6(4)	N(1) - Si(1) - C(1)	111.2(2)
N(1) - Si(1) - C(3)	110.2(3)	N(1)-Si(1)-C(4)	116.6(3)
N(1) - Si(2) - C(2)	109.1(2)	N(1) - Si(2) - C(5)	116.2(3)
N(1)-Li(3)-N(2)	161.0(5)	N(1)-Si(2)-C(6)	112.8(3)
N(2) - Si(4) - C(20)	109.4(3)	N(2) - Si(4) - C(23)	114.8(3)
N(2)-Si(4)-C(24)	113.4(3)	P(1)-Li(1)-P(2)	117.9(4)
P(1)-Li(1)-N(1)	97.0(4)	P(2)-Li(1)-N(1)	97.1(4)
P(3)-Li(2)-P(4)	118.9(4)	P(3)-Li(2)-N(2)	95.5(4)
P(4)-Li(2)-N(2)	96.5(4)	Cl(1) - Li(1) - P(1)	114.6(4)
Cl(1) - Li(1) - P(2)	120.4(4)	Cl(1) - Li(1) - N(1)	102.5(4)
Cl(1) - Li(2) - P(3)	116.7(4)	Cl(1) - Li(2) - P(4)	118.8(4)
Cl(1) - Li(2) - N(2)	101.7(4)	Cl(1) - Li(3) - N(1)	99.5(4)
Cl(1) - Li(3) - N(2)	99.5(4)	Si(1) - N(1) - Si(2)	122.7(3)
Si(1) - N(1) - Li(1)	107.2(4)	Si(1) - N(1) - Li(3)	106.9(4)
Si(2) - N(1) - Li(1)	110.7(4)	Si(2) - N(1) - Li(3)	117.8(4)
Si(3) - N(2) - Si(4)	122.1(3)	Si(3) - N(2) - Li(2)	107.3(3)
Si(3) - N(2) - Li(3)	106.2(4)	Si(4) - N(2) - Li(2)	110.1(3)
Si(4) - N(2) - Li(3)	119.7(4)	., ., ., .,	
	. ,		

singlet and decoalescence into two resonances of 2:1 intensity: a triplet at -0.4 ppm (${}^{1}J_{P-Li} = 48.5$ Hz) and a broad singlet at -1.4 ppm (Figure 2). The triplet, which can be attributed to the two lithium ions from the LiN(SiMe₂CH₂PPrⁱ₂)₂ units, coincides with the decoalescence behavior observed in the ${}^{31}P{}^{1}H$ spectra, while the broad singlet can be assigned to the lithium bridge between the two amide donors. At first glance, one might conclude that the $^{7}Li{^{1}H}$ NMR spectra reflect the averaging of the two lithium environments on the NMR time scale, perhaps by lithium site exchange or via the rapid association and dissociation of the phosphine arms to Li(1) and Li(2), as well as Li(3). However, it should be noted that phosphine dissociation cannot by itself average the two environments if the three-rung ladder is maintained in solution. This is illustrated in Scheme 1; if one assumes that the ladder structure is maintained in solution, then phosphine

⁽²⁹⁾ Gardiner, M. G.; Raston, C. L. *Inorg. Chem.* **1995**, *34*, 4206.
(30) Armstrong, D. R.; Barr, D.; Clegg, W.; Mulvey, R. E.; Reed, D.;
Snaith, R.; Wade, K. *J. Chem. Soc., Chem. Commun.* **1986**, 869.
(31) Armstrong, D. R.; Barr, D.; Clegg, W.; Hodgson, S. M.; Mulvey,
R. E.; Reed, D.; Snaith, R.; Wright, D. S. *J. Am. Chem. Soc.* **1989**, *111*, 4710.

⁴⁷¹⁹ (32) Fryzuk, M. D.; Love, J. B.; Rettig, S. J. J. Chem. Soc., Chem. Commun., in press.

Figure 2. Experimental (left) and simulated (right) variable-temperature ⁷Li{¹H} spectra of {LiN(SiMe₂CH₂PPrⁱ₂)₂}₂-LiCl (1) in C₇D₈.

migration from one type of lithium to the other never exchanges the two different lithium environments present. This was confirmed by the ⁷Li NOESY spectrum of the ¹⁵N-labeled derivative {Li¹⁵N(SiMe₂CH₂- $PPr_{2}^{i}_{2}_{2}LiCl$, (**1b**) run in C₇D₈ at -50 °C. As shown in Figure 3, no off-diagonal peaks were observed upon varying $t_{\rm mix}$ from 5 to 50 ms, which in previous work was found to be sufficient for observing dynamic processes in the slow-exchange limit for analogous systems.^{33–35} The low-temperature ⁷Li NOESY illustrates that lithium site exchange does not occur to any appreciable extent and that the structural integrity of 1 is retained in solution. Other LiCl adducts such as $\{(\mu_3)\}$ Cl)Li₃H₄[(Me₃SiNCH₂CH₂)₃N]₂} also retain their structural integrity even up to 65 °C.²⁷

From the variable-temperature ⁷Li{¹H} NMR data, we were able to derive kinetic parameters regarding the apparent exchange of three lithium atoms over two sites: from the Arrhenius plot, $\Delta G_{T_c}^{\dagger}$, ΔH^{\dagger} , and ΔS^{\dagger} were determined to be 13.2 kcal/mol, 11.2 kcal/mol, and -7 \pm 8 cal/(K/mol), respectively. The value of ΔS^{\dagger} , although small and subject to considerable error, is further evidence of the retention of the ladder conformation in solution and complements the ⁷Li NOESY results. If the positions of the lithium atoms in **1** were exchanged

Figure 3. ⁷Li NOESY spectrum of {Li¹⁵N(SiMe₂CH₂- $PPr_{i_2}^{i_2}$ LiCl (1b) in C_7D_8 at 223 K. The small coupling present is due to ⁷Li $^{-15}$ N coupling (¹ J_{Li}^{-15} N = 5.8 Hz).

by a process whereby the ladder structure was lost, one would expect a much different value for ΔS^{\dagger} . That the lithium environments are averaged by a nonintrusive mechanism such as phosphine dissociation and recoordination is supported by the minimal value determined for ΔS^{\ddagger} .

Still, the fact remains that at the high-temperature limit of the variable-temperature ⁷Li{¹H} NMR spectra (Figure 2), a broadened singlet is observed. This is unusual for two reasons: (i) there should be two environments for the two different types of lithiums present in the ladder structure even at high temperature, and (ii) the coupling information from the phos-

 ⁽³³⁾ Arnold, J. J. Chem. Soc., Chem. Commun. 1990, 976.
 (34) Arnold, J.; Dawson, D. Y.; Hoffman, C. G. J. Am. Chem. Soc. 1993. 115. 2707

⁽³⁵⁾ Briere, K. M.; Dettman, H. D.; Detellier, C. J. Magn. Reson. 1991, 94, 600.

phorus-31 nuclei has been lost. To rationalize the apparent observation of only one environment, we suggest that this is a result of the phosphine exchange process and the relatively small chemical shift range for ⁷Li. As shown in Scheme 1, in the fast exchange limit, each lithium can be found with two, one, or no coordinated phosphine ligands. Given the ionic nature of lithium compounds, and the fact that the small chemical shift range for lithium-7 is not that sensitive to environmental changes, the apparent observation of a single environment in the high-temperature limit is reasonable. The other unusual aspect is that this resonance appears as a *singlet*; in other words, coupling information from the phosphorus-31 nuclei has been lost. For a purely intramolecular process that involves fast phosphine dissociation and reassociation, coupling information should still be present, albeit statistically weighted to reflect residence time. However, in this case, because ⁷Li is quadrupolar, as the temperature is raised quadrupolar relaxation becomes fast with respect to J_{LiP} , resulting in the formation of a singlet and not the expected triplet.³⁶

We undertook other heteronuclear NMR spectroscopic studies on **1** in hopes of further confirming that the structure determined in the solid state was also indicative of its solution geometry. The $^{29}Si\{^{1}H\}$ NMR spectrum of the labeled derivative {Li¹⁵N(SiMe₂CH₂- $PPr_{2}^{i}_{2}_{2}LiCl$ (1b) exhibited only a broad singlet (δ -17.2 ppm), which can be viewed as indicative of either a compound with C_{2v} symmetry or a fluxional process on the NMR time scale. Similar results were garnered from the ${}^{15}N{}^{1}H$ NMR spectra, which maintained sharp singlets at both room temperature and -50 °C (δ 5.1 ppm). The lack of coupling from ^{15}N to ^{7}Li in the ¹⁵N{¹H} NMR spectra is expected on the basis of the quadrupolar moment of ⁷Li.³⁷ However, the ⁷Li{¹H} NMR spectrum obtained at -50 °C (194.4 MHz) exhibited a small ${}^{1}J_{\text{Li}-{}^{15}\text{N}}$ coupling of 5.8 Hz. Even though we were unable to obtain a suitable solution molecular weight measurement of 1 (via the Signer method), we conclude that the NMR spectroscopic data indicate that the basic structural features of 1 are maintained in solution, and the crystal structure determined is not merely a chance feature of aggregation.

Mechanism of Formation of {LiN(SiMe₂CH₂-**PPrⁱ**₂)₂}₂LiCl (1). The serendipitous discovery of 1 may be the result of incomplete removal of THF from the original reaction mixture. We suggest that the presence of small quantities of THF serves to both solubilize the LiCl coproduct and solvate the lithium amide unit, presumably in a dimeric form. Although an early report suggested that structures such as 1 arose from the trapping of a LiCl molecule by two lithium amide monomers,²⁸ recent work argues that three-rung ladders are a result of the incorporation of a LiCl molecule into an open $(R_2 NLiS_x)_2$ dimer.^{3,15,38} One can also generate 1 from the addition of LiCl to LiN(SiMe₂CH₂PPrⁱ₂)₂ (2 equiv) in either THF or toluene; the resultant crystalline solids exhibited ¹H and ³¹P{¹H} NMR spectra identical with those for 1, although no attempt was made to

further analyze them. The three-rung ladder structure of 1 does not hinder further metathesis chemistry, however, as reaction with metal halides $MX_{\it n+1}$ results in the expected $MX_n[N(SiMe_2CH_2PPr^i_2)_2]$ products (e.g., $AlCl_3$ and $ScCl_3^{21,39}$).

As a final note, we should clarify that the original preparation²⁶ of $LiN(SiMe_2CH_2PPr^i_2)_2$ is accurate as long as all the THF from the preparation is removed before extraction of the product with hexanes; in this way, all of the LiCl precipitates and formation of the LiCl adduct **1** is prevented.

LiAlMe₄ Adduct Synthesis. While examining the reaction chemistry of aluminum derivatives of the general formula $AIR_2[N(SiMe_2CH_2PPr^i_2)_2]$ (R = Cl, Me, Et, Bz),³⁹ we serendipitously discovered the formation of yet another adduct of LiN(SiMe₂CH₂PPrⁱ₂)₂. Upon the addition of 4 equiv of MeLi to the starting aluminum dichloride, $AlCl_2[N(SiMe_2CH_2PPr^i_2)_2]$, we obtained a clear colorless oil that could be crystallized from toluene. The ¹H NMR spectrum of this compound exhibits characteristic ligand backbone resonances in addition to a large singlet at -0.21 ppm that corresponds to 12 protons. The upfield position of this peak, and the absence of a triplet in the same vicinity (due to 6 methyl protons coupling to two equivalent phosphorus-31 nuclei, as is found for AlMe₂[N(SiMe₂CH₂PPrⁱ₂)₂]³⁹), points toward an aluminate type structure. Also, the ${}^{31}P{}^{1}H{}$ NMR spectrum consists of only a single sharp peak at -3.5 ppm. Previously, we have found that phosphine resonances bound to quadrupolar nuclei (i.e., ${}^{45}Sc$, I = $^{7}/_{2}$; 27 Al, $I = ^{5}/_{2}$) display broadened resonances in the absence of fast exchange.^{21,39} The elemental microanalysis of this product is also consistent with the empirical formulation LiN(SiMe₂CH₂PPrⁱ₂)₂·LiAlMe₄ (2). Additionally, if LiN(SiMe₂CH₂PPrⁱ₂)₂ is added to a slurry of LiAlMe₄ (1 equiv) in toluene, a product exhibiting identical ¹H, ³¹P{¹H}, and ⁷Li{¹H} NMR spectra is obtained (Scheme 2). All of these factors point toward **2** as being a LiAlMe₄ adduct of LiN(SiMe₂CH₂PPrⁱ₂)₂. The isolation of crystals allowed us to undertake a structural study of 2 and to show that it has a dimeric molecular formulation.

Structure of {**LiN(SiMe₂CH₂PPrⁱ₂)₂·LiAlMe₄}₂ (2).** Evaporation of a saturated toluene solution of **2** resulted in large colorless plates that were suitable for singlecrystal X-ray diffraction. The molecular structure and numbering scheme are illustrated in Figure 4. The structure is made up of two LiN(SiMe₂CH₂PPrⁱ₂)₂· LiAlMe₄ units which form a dimer with C_2 symmetry. Each $-N(SiMe_2CH_2PPr^{i_2})_2$ ligand chelates a lithium cation in a geometry intermediate between facial and meridional. The coordination of each $-N(SiMe_2CH_2$ -

⁽³⁶⁾ Harris, R. K. Nuclear Magnetic Resonance Spectroscopy, Pitman Books: London, 1983; p 187.

⁽³⁷⁾ Brand, H.; Capriotti, J. A.; Arnold, J. Inorg. Chem. 1994, 33, 4334.

⁽³⁸⁾ Romesberg, F. E.; Collum, D. B. J. Am. Chem. Soc. 1994, 116, 9187.

⁽³⁹⁾ Fryzuk, M. D.; Giesbrecht, G. R.; Olovsson, G.; Rettig, S. J. Organometallics 1996, 15, 4832.

Figure 4. Molecular structure of $\{LiN(SiMe_2CH_2PPr^i_2)_2$. LiAlMe₄ $_2$ (**2**; 33% probability thermal ellipsoids are shown). Hydrogen atoms are omitted for clarity.

PPrⁱ₂)₂ ligand to lithium rather than an aluminum is noteworthy, particularly since aluminum was the central metal in the starting material. Each lithium in the dimer maintains a roughly tetrahedral geometry: Li(1) is coordinated by two phosphines of a -N(SiMe₂CH₂- PPr_{2}^{i} ligand and an amide, in addition to a carbon associated with a bridging -AlMe4 unit. The greatest deviation from ideal is evident in the P(1)-Li(1)-P(2)angle of 124.1(3)° and the two P-Li(1)-N(1) angles of 96.3(3) and 96.9(3)°. The phosphorus-lithium bond lengths of 2.538(7) and 2.675(7) Å in 2 are both similar to those found in 1. The distances determined between lithium and both nitrogen and carbon are well within normal values associated with these types of bonds. The second lithium atom resides in a much less conventional geometry: Li(2) shares short contacts with the same amide as Li(1), two carbons, three hydrogens, and an aluminum atom. The distorted environment around the Li(2) atom is also apparent in an almost linear N(1)-Li(2)-Al(1') angle of 164.6(4)°. If one discounts the contacts present with three hydrogens (two on C(20) and one on C(21)), Li(2) can be said to reside in a greatly distorted tetrahedral environment, in which the two carbon atoms and the aluminum atom are greatly bent back from the Li(2)-N(1) bond. It may be that the steric bulk of the silvl methyl groups of the ⁻N(SiMe₂CH₂PPrⁱ₂)₂ ligand prevents a more ideal geometry from being attained. It is well-known that the environment of the small lithium cation is governed primarily by steric factors.^{1,40} The bridging tetrahedral ⁻AlMe₄ groups present no unusual bond angles or bond lengths. A partial list of bond lengths and bond angles for 2 are presented in Table 3.

Variable-Temperature NMR Studies of {LiN-(SiMe₂CH₂PPrⁱ₂)₂·LiAlMe₄}₂ (2). The fluxional behavior of {LiN(SiMe₂CH₂PPrⁱ₂)₂·LiAlMe₄}₂ was studied by variable-temperature NMR spectroscopy. All of the methyl groups of the tetramethylaluminate moiety were found to be equivalent, since the resonance corresponding to these protons (¹H NMR spectra) remained a

Table 3. Selected Bond Lengths (Å) and Angles (deg) for {LiN(SiMe₂CH₂PPrⁱ₂)₂·LiAlMe₄}, (2)^a

(*** 0 /***(2 2/2	1)
Al(1)-C(19)	1.988(4)	Al(1)-C(20)	2.012(5)
Al(1) - C(21)	2.024(5)	Al(1)-Li(2)'	2.736(8)
Al(1) - C(22)	1.964(5)	Al(2)-C(43)	2.008(6)
Al(2)-C(41)	1.992(4)	Al(2)-C(42)	2.006(5)
Al(2)-C(43)	2.008(6)	Al(2)-C(44)	1.976(6)
Al(2)-Li(4)"	2.714(8)	P(1)-Li(1)	2.538(7)
P(2)-Li(1)	2.675(7)	P(3)-Li(3)	2.656(7)
P(4)-Li(3)	2.556(7)	N(1)-Li(1)	2.075(8)
N(1)-Li(2)	1.988(9)	N(2)-Li(3)	2.076(8)
N(2)-Li(4)	1.989(8)	Li(1)-H(46)	2.47
Li(1)-H(47)	2.19	Li(1)-H(45)	2.19
Li(2)-H(48)'	2.10	Li(2)-H(49)'	2.15
Li(2)-H(53)'	2.08	Li(2)-H(52)'	2.08
Li(3)-H(100)	2.38	Li(3)-H(102)	2.26
Li(3)-H(101)	2.27	Li(4)-H(107)"	2.08
Li(4)-H(105)"	2.09	Li(4)-H(103)"	2.10
Li(4)-H(106)"	2.07	Si(1)-N(1)	1.698(3)
Si(2)-N(1)	1.707(3)	Si(3)-N(2)	1.697(3)
Si(4)-N(2)	1.709(3)	C(20)-Li(2)'	2.31(1)
C(21)-Li(2)'	2.270(9)	C(42)-Li(4)"	2.28(1)
C(43)-Li(4)"	2.261(9)		
Si(1)-N(1)-Li(1)	109.9(2)	Si(1)-N(1)-Li(2)	105.1(3)
Si(2) - N(1) - Li(1)	104.8(2)	Si(2)-N(1)-Li(2)	106.2(3)
Si(1) - N(1) - Si(2)	123.0(2)	Si(4)-N(2)-Li(4)	105.3(3)
Si(3) - N(2) - Li(3)	105.3(3)	Si(3) - N(2) - Si(4)	123.7(2)
Si(3) - N(2) - Li(4)	107.5(3)	Si(4)-N(2)-Li(3)	108.5(2)
P(1)-Li(1)-P(2)	124.1(3)	P(1)-Li(1)-N(1)	96.9(3)
P(2)-Li(1)-N(1)	96.3(3)	P(3)-Li(3)-N(2)	96.3(3)
P(3)-Li(3)-P(4)	123.9(3)	P(4) - Li(3) - N(2)	97.7(3)
Li(1) - N(1) - Li(2)	107.1(3)	Li(3) - N(2) - Li(4)	105.2(3)
N(1)-Si(1)-C(1)	109.7(2)	N(1)-Si(2)-C(2)	111.8(2)
N(1)-Si(1)-C(3)	112.4(2)	N(1)-Si(2)-C(5)	109.5(2)
N(1)-Si(1)-C(4)	115.5(2)	N(1)-Si(2)-C(6)	114.7(2)
N(2)-Si(3)-C(23)	111.3(2)	N(2)-Si(3)-C(25)	114.9(2)
N(2)-Si(3)-C(26)	110.5(2)	N(2)-Si(4)-C(24)	109.7(2)
N(2)-Si(4)-C(27)	116.0(2)	N(2)-Si(4)-C(28)	112.5(2)

^{*a*} Symbols refer to symmetry operations: (') 1 - x, 1 - y, -z; ('') 2 - x, -y, 1 - z.

singlet down to the solvent limit (-90 °C, C_7D_8), with no coupling to phosphorus or lithium being observed. The shift of this resonance was also found to be solventdependent (-0.21 ppm in C_6D_6 , -0.38 ppm in C_7D_8), which is perhaps indicative that the ⁻AlMe₄ group is mobile in solution. Previous work with lithium amides has shown that the quadrupolar interactions present (⁷Li, ¹⁴N) often prevent well-defined spectra from being attained.^{4,5,7-14} Thus, we performed ³¹P{¹H}, ⁶Li{¹H}, and ¹⁵N{¹H} NMR experiments on the labeled derivative {⁶Li¹⁵N(SiMe₂CH₂PPrⁱ₂)₂·⁶LiAlMe₄}₂ (**2b**), which was synthesized in a fashion analogous to that for **2** from AlCl₂[¹⁵N(SiMe₂CH₂PPrⁱ₂)₂] and CH₃⁶Li.

The ³¹P{¹H} NMR spectra of **2b** experienced no change as the temperature was lowered from 20 to -88°C in C₇D₈; the sharp singlet present at room temperature persisted at all temperatures and shifted upfield to -8.6 ppm (from -3.5 ppm) at the low-temperature limit. This behavior is analogous to that observed for a series of aluminum dialkyls of this ligand system, which we have attributed to the highly fluxional character of electropositive main-group compounds of N(SiMe₂CH₂PPrⁱ₂)₂.³⁹ The room-temperature ⁶Li{¹H} NMR spectrum of $\mathbf{2b}$ in C_7D_8 /pentane is also a sharp singlet (δ 1.4 ppm) (Figure 5). When the temperature is lowered to -48 °C, the singlet gradually broadens and evolves into a triplet of doublets at 1.2 ppm (${}^{1}J_{^{6}\text{Li}-P}$ = 10.8 Hz, ${}^{1}J_{^{6}\text{Li}-{}^{15}\text{N}} = 3.2$ Hz) due to the coupling of both lithium atoms to two phosphines and a single ¹⁵N nucleus $(I = \frac{1}{2})$. In this intermediate temperature regime, the presence of only one multiplet is consistent

⁽⁴⁰⁾ Schade, C.; Schleyer, P. v. R. Adv. Organomet Chem 1988, 27, 169.

Figure 5. Variable-temperature ${}^{6}Li{}^{1}H$ spectra of ${}^{6}Li{}^{15}N(SiMe_2CH_2PPri_2)_2 \cdot {}^{6}LiAlMe_4}_2$ (2b) in C_7D_8 /pentane.

with fast lithium exchange between the two equivalent sites. Further cooling (-78 °C) results in the loss of all coupling information to regenerate a broad singlet. Finally, at -108 °C, two resonances of equal intensity are evident: a triplet of doublets at 1.9 ppm (${}^{1}J_{^{6}Li-P} =$ 19.9 Hz, ${}^{1}J_{{}^{6}\mathrm{Li}{}^{-15}\mathrm{N}}$ = 2.0 Hz) due to a lithium bound to two phosphines and an amide of a ¹⁵N(SiMe₂CH₂PPrⁱ₂)₂ ligand and a doublet at 0.7 ppm (${}^{1}\mathcal{J}_{^{6}\text{Li}-{}^{15}\text{N}} = 4.0$ Hz) arising from a lithium atom bound only to the amide nitrogen. Thus, the low-temperature ⁶Li{¹H} NMR spectrum of 2b is similar to that of 1 and is in accord with the solid-state structure, in which two distinct lithium environments were determined. However, the solution data are also consistent with the monomeric adduct LiN(SiMe₂CH₂PPrⁱ₂)₂·LiAlMe₄. From the decoalescence behavior of **2b** between -78 and -108 °C, the following activation parameters were determined: $\Delta G_{\rm Tc}^{\dagger} = 9.3$ kcal/mol, $\Delta H^{\dagger} = 8.4$ kcal/mol, and $\Delta S^{\dagger} =$ -4 ± 8 cal/(K/mol). The similarity of these values to those determined for the chloride adduct 1 suggest that the mechanism of lithium exchange in this low-temperature range is also a result of phosphine dissociation and reassociation. Such a process is outlined in Scheme 3.

As mentioned above, the variable-temperature ⁶Li- $\{^{1}H\}$ NMR spectra point toward a monomeric form being present at most temperatures in solution. Additional support for this comes from the room-temperature solution molecular weight determination (Signer method) of **2b**, which corresponds to a simple 1:1 LiAlMe₄ adduct of LiN(SiMe₂CH₂PPrⁱ₂)₂. Since the dimer is held to-

gether in the solid state by two relatively weak interactions that involve only one methyl group of the aluminate moiety and the lithium bound to the phosphine donors, the formation of the monomeric form **D** is reasonable (Scheme 3). At room temperature, the molecule is highly fluxional, with rapidly dissociating phosphines and exchanging lithium centers. When the temperature is lowered to -48 °C, rapid lithium exchange is still occurring, although coupling to phosphorus-31 and nitrogen-15 is evident. To exchange the lithiums, a symmetrical intermediate such as **E** can be envisioned since it would involve dissociation of one arm of the ligand from one Li and recoordination to the other concomitant with the AlMe₄ moiety bridging the two lithiums. Cycling through structures **D**, **E**, and **D**' provides the necessary pathway to exchange the lithium centers as well as the methyls on Al. The ${}^{6}Li{}^{1}H$ NMR spectrum at -108 °C indicates that two lithium types are present, one of them not exhibiting lithiumphosphorus coupling and therefore consistent with the monomeric form **D** or **D**' in the slow exchange limit.

It should be pointed out that the fluxional process detailed in Scheme 3 is only applicable to the temperature regime below -48 °C; above this temperature, loss of coupling from ⁶Li to both ¹⁵N and ³¹P is observed, which suggests that an *intermolecular* process becomes operative that exchanges lithium centers. One possibility is dissociation of the monomeric unit **D** or **D**' into LiAlMe₄ and LiN(SiMe₂CH₂PPrⁱ₂)₂. In contrast to that previously discussed for the ladder structure of **1**, the loss of coupling for **2b** at higher temperatures is not due to quadrupolar relaxation. Because **2b** is the lithium-6-labeled material, the lower quadrupolar moment of ⁶Li (I = 1, -0.0008 b) as compared to ⁷Li ($I = \frac{3}{2}, -0.04$ b), used in **1**, effectively removes this as a mechanism for relaxation.

The results of the $^{29}\text{Si}\{^1\text{H}\}$ and $^{15}\text{N}\{^1\text{H}\}$ NMR studies were similar to those found for the labeled lithium chloride adduct **1b**. The $^{29}\text{Si}\{^1\text{H}\}$ NMR spectrum of **2b** consists of a singlet at -18.5 ppm, which again is consistent with a highly symmetric molecule (as in the crystal structure of **2**) or a highly fluxional molecule. The $^{15}\text{N}\{^1\text{H}\}$ NMR spectra at ambient temperature (δ 27.3 ppm) and at -108 °C both showed no $^{15}\text{N}-^6\text{Li}$ coupling.

The behavior of **2** was found to vary greatly upon dissolution in coordinating solvents. In the ¹H NMR spectrum in THF- d_8 , the ⁻AlMe₄ resonance, a singlet at -0.21 ppm in C₆D₆, becomes a 1:1:1:1:1:1 sextet at -1.36 ppm, which does not change upon ³¹P decoupling. This pattern, due to aluminum-proton coupling $({}^{2}J_{H-Al})$ = 6.1 Hz) is indicative of a very symmetric environment around the Al nucleus and is identical in shift and coupling with that of a THF- d_8 solution of LiAlMe₄. The resonances due to LiN(SiMe₂CH₂PPri₂)₂ are shifted slightly upfield and sharpened considerably. As with LiAlMe₄, these resonances are analogous to those of a simple THF- d_8 solution of LiN(SiMe₂CH₂PPrⁱ₂)₂. From these data, one can conclude that coordinating solvents such as THF break up the adduct, resulting in what is likely three discrete species in solution, as has been observed for other lithium amides.⁴¹ The ⁶Li{¹H} NMR spectrum of **2b** in THF- d_8 was comprised of a singlet at 0.1 ppm, which most likely reflects an averaged signal

from both LiN(SiMe₂CH₂PPrⁱ₂)₂ and [Li(THF)_x]⁺[AlMe₄]⁻. We did not probe the nature of this exchange any further.

Mechanism of Formation of {LiN(SiMe₂CH₂- $\mathbf{PPr}^{i}_{2}_{2}$: LiAlMe₄₂ (2). The formation of a lithium aluminate adduct of LiN(SiMe2CH2PPri2)2 upon reaction of AlCl₂[N(SiMe₂CH₂PPrⁱ₂)₂] with 4 equiv of MeLi may be rationalized if one allows for the insertion/addition of MeLi into/across the aluminum-amide bond. As previously reported, the first 2 equiv of MeLi forms the dimethyl complex AlMe₂[N(SiMe₂CH₂PPrⁱ₂)₂]; the third equivalent of MeLi then either inserts into the aluminum-amide bond to form 3 or adds across the aluminum-amide bond to form 3' (Scheme 4). The fourth equivalent of MeLi then results in the formation of the product **2**. In either case, the final product is the result of an aluminum atom being displaced from the $-N(SiMe_2CH_2PPr_2)_2$ coordination sphere in favor of lithium. To test our hypothesis, we added 3 equiv of MeLi to the starting dichloride. The product obtained showed ¹H NMR resonances for a singlet corresponding to nine protons at -0.30 ppm and a sharp singlet in the ³¹P{¹H} NMR spectrum at -4.0 ppm; these data are best rationalized using structure **3** as the intermediate rather than **3'**, since the latter would be expected to exhibit a methyl resonance with phosphorus-31 coupling in the ¹H NMR spectrum and a broadened ³¹P{¹H} NMR spectrum due to the presence of aluminum-27. We have previously suggested a structure similar to **3** in earlier iridium amido diphosphine chemistry.⁴² Although no resonances indicative of the alternative structure **3'** were evident, the initial formation of this complex and its rapid conversion to **3** cannot be ruled out.

LiAlEt₄, LiBEt₄, and NaBEt₄ Adduct Synthesis. The ease with which we were able to generate a lithium aluminate adduct of LiN(SiMe₂CH₂PPrⁱ₂)₂ by the addition of LiAlMe₄ prompted us to examine the potential of other alkali-metal metalates as complexing agents. Thus, toluene solutions of LiN(SiMe₂CH₂PPrⁱ₂)₂ were added to slurries of LiAlEt₄, LiBEt₄, and NaBEt₄ in toluene to examine the effect of the systematic variation of the cation (Li to Na), the tripositive metal of the anion (Al to B), and the alkyl group present (Me to Et). In all three cases, addition of the ligand system resulted in the slow dissolution of the alkali-metal metalate complex, which we view as being indicative of the formation of a {LiN(SiMe₂CH₂PPrⁱ₂)₂·AER₄}_x (A = Li, Na, E = Al, B, R = Me, Et) type of adduct. In the case of LiAlEt₄ (4) and LiBEt₄ (5), the product could only be isolated as a yellow oil; all attempts to generate the adducts as solids failed.

Interestingly, in analogy to **2**, the addition of 4 equiv of EtLi to $AlCl_2[N(SiMe_2CH_2PPr_2)_2]$ did not form the same product as the reaction of $LiN(SiMe_2CH_2PPr_2)_2$ and $LiAlEt_4$; we only observed the formation of $AlEt_2$ - $[N(SiMe_2CH_2PPr_2)_2]$.³⁹ It is probable that the larger ethyl group is unable to effectively insert into the aluminum-amide bond as we propose is likely for the smaller methyl derivative.

⁽⁴²⁾ Fryzuk, M. D.; Huang, L.; McManus, N. T.; Paglia, P.; Rettig, S. J.; White, G. S. *Organometallics* **1992**, *11*, 2979.

The ¹H NMR spectra of **4** and **5** are as expected, with no coupling to lithium present in any of the resonances, as is the case for **2**. The ethyl resonances in **3** remain a triplet $(-CH_2CH_3)$ and guartet $(-CH_2CH_3)$ even at -90 °C (C₇D₈) and point to the same rapid tumbling behavior on the NMR time scale as was found for the -AlMe₄ group in **2**. The broadened ethyl resonances in **5** are the result of the close proximity of the ethyl groups of the ⁻BEt₄ unit to both the quadrupolar lithium and boron atoms. The singlets in the ${}^{31}P{}^{1}H{}$ and ${}^{7}Li{}^{1}H{}$ NMR spectra, in spite of these broadened ¹H NMR signals, are further evidence of the dynamic nature of these adducts. Even though we could not obtain these compounds as solids, the uptake of LiAlEt₄ and LiBEt₄ by toluene solutions of LiN(SiMe₂CH₂PPrⁱ₂)₂ as well as the donation of the amide lone pair to an additional lithium atom in the structures of both 1 and 2 point toward the existence of the adducts **4** and **5**. However, in the absence of structural confirmation, we did not attempt variable-temperature ${}^{31}P{}^{1}H{}$ or ${}^{7}Li{}^{1}H{}$ NMR spectroscopic studies of these species.

The addition of LiN(SiMe₂CH₂PPrⁱ₂)₂ to a toluene slurry of NaBEt₄ resulted in a yellow oil, the ¹H NMR of which was similar to that of **5** in that many of the alkyl resonances were greatly broadened, even with ¹¹B decoupling (eq 2). As for **2**–**5**, the ³¹P{¹H} NMR was of

no use in establishing the formation of an adduct, although the solvation of NaBEt₄ upon addition of ligand solution was again positive evidence in this regard. In this case, crystals were isolated which allowed us to further probe the extent and nature of this interaction.

Structure of {LiN(SiMe₂CH₂PPrⁱ₂)₂·NaBEt₄}_x (6). Evaporation of a saturated toluene solution of 6 resulted in large colorless plates that were suitable for singlecrystal X-ray diffraction. The molecular structure and numbering scheme are illustrated in Figure 6. The structure is best described as being a loosely associated one-dimensional polymer, the repeating unit of which contains two LiN(SiMe₂CH₂PPrⁱ₂)₂·NaBEt₄ fragments. The first ⁻N(SiMe₂CH₂PPrⁱ₂)₂ ligand coordinates to a lithium in a tridentate fashion, such that the metal center maintains a roughly tetrahedral geometry $(92.5(4)-128.0(4)^\circ)$, its coordination sphere completed by a weak interaction with three hydrogens on a neighboring $[BEt_4]^-$ anion $(Li(2)-H(124^*, 125^*, 126^*) =$ 2.27-2.34 Å). The stereochemical importance of achieving coordinative saturation at an electron-deficient metal center via metal-alkane hydrogen interactions has long been known.43 The bond lengths from the lithium atom to the ⁻N(SiMe₂CH₂PPrⁱ₂)₂ ligand are similar to those determined for 1 and 2. As in the structures previously discussed, the amide nitrogen is more tetrahedral than planar, owing to the donation of

Figure 6. (a, top) Molecular structure of {LiN(SiMe₂CH₂-PPrⁱ₂)₂·NaBEt₄}_x (**6**; 33% probability thermal ellipsoids are shown). Hydrogen atoms are omitted for clarity. (b, bottom) Chem 3D view of the monomer unit of {LiN(SiMe₂CH₂-PPrⁱ₂)₂·NaBEt₄}_x.

electrons to an alkali metal, in this case sodium. The N(2)-Na(2) distance of 2.447 Å is ~0.43 Å longer than the distance from this nitrogen to Li(2). The sodium atom serves to bridge the LiN(SiMe₂CH₂PPrⁱ₂)₂ and [BEt₄]⁻ units via ion-dipole interactions with the four methylene protons of two ethyl groups of the [BEt₄]⁻ group. These bond distances range from 2.44 to 2.59 Å, indicative of the larger atomic radius of Na as compared to Li. Another close contact (2.48 Å) is present between Na(2) and H(120*), which originates from the same [BEt₄]⁻ group as the initial Li-H contacts. An additional interaction with H(124*) (2.69 Å), which coordinates to Li(2), results in an unusual seven-coordinate sodium ion. The central $[BEt_4]^-$ group exhibits local C_{2v} symmetry and is normal in terms of usual borate geometries.⁴⁴ This general scheme is then repeated in reverse to yield a LiN(SiMe₂CH₂PPrⁱ₂)₂-Na-BEt₄-Na-LiN(SiMe₂CH₂PPrⁱ₂)₂ chain. However, the second sodium atom differs from the first in that it is now nine-coordinate. In addition to interactions with

⁽⁴⁴⁾ Fryzuk, M. D.; Lloyd, B. R.; Clentsmith, G. K. B.; Rettig, S. J. J. Am. Chem. Soc. **1994**, *116*, 3804.

Table 4. Selected Bond Lengths (Å) and Angles (deg) for $\{LiN(SiMe_2CH_2PPr^i_2)_2 \cdot NaBEt_4\}_x (\bar{6})^a$

(*** 8 /***(5 5/5	-1)A (-)
Na(1)-H(90)	2.47	Na(1)-H(11)	2.63
Na(1)-H(89)	2.46	Na(1)-H(94)	2.49
Na(1) - H(13)	2.64	Na(1)-H(109)	2.69
Na(1)-H(95)	2.44	Na(1)-H(110)	2.62
Na(1)-N(1)	2.431(5)	Na(2)-H(120)*	2.48
Na(2)-N(2)	2.447(5)	Na(2)-H(105)	2.53
Na(2)-H(59)	2.52	Na(2)-H(99)	2.44
Na(2)-H(104)	2.59	Na(2)-H(100)	2.41
Na(2)-H(119)*	2.73	Na(2)-H(124)*	2.69
Li(1)-H(114)	2.41	Li(1)-H(115)	2.12
Li(1)-H(117)	2.35	Li(2)-H(125)*	2.23
Li(2)-H(126)*	2.27	Li(2)-H(124)*	2.34
Si(1)-N(1)	1.701(5)	Si(2)-N(1)	1.700(5)
Si(3)-N(2)	1.693(5)	Si(4)-N(2)	1.690(5)
P(1)-Li(1)	2.57(1)	P(2)-Li(1)	2.60(1)
P(3)-Li(2)	2.59(1)	P(4)-Li(2)	2.60(1)
N(1)-Li(1)	2.05(1)	N(2)-Li(2)	2.03(1)
P(1) - Li(1) - P(2)	136.1(4)	P(1) - Li(1) - N(1)	94,9(4)
P(2)-Li(1)-N(1)	92.7(4)	P(3)-Li(2)-P(4)	128.0(4)
P(3)-Li(2)-N(2)	96.2(5)	P(4)-Li(2)-N(2)	92.5(4)
Na(1) - N(1) - Li(1)	95.8(3)	Na(2) - N(2) - Li(2)	92.9(3)
N(1) - Si(1) - C(1)	107.6(3)	N(1) - Si(1) - C(3)	116.0(3)
N(1) - Si(1) - C(4)	115.6(3)	N(1) - Si(2) - C(2)	110.2(3)
N(1) - Si(2) - C(5)	112.2(3)	N(1) - Si(2) - C(6)	117.4(3)
N(2) - Si(3) - C(19)	107.8(3)	N(2) - Si(3) - C(21)	116.1(3)
N(2) - Si(3) - C(22)	115.6(3)	N(2) - Si(4) - C(20)	110.1(3)
N(2)-Si(4)-C(23)	116.7(3)	N(2) - Si(4) - C(24)	112.3(3)
Si(1) - N(1) - Li(1)	110.0(4)	Si(1) - N(1) - Si(2)	124.3(3)
Si(2) - N(1) - Na(1)	98.9(2)	Si(2)-N(1)-Li(1)	111.1(4)
Si(3)-N(2)-Si(4)	125.1(3)	Si(3)-N(2)-Na(2)	110.9(3)
Si(3)-N(2)-Li(2)	110.8(4)	Si(4)-N(2)-Na(2)	101.4(2)
Si(4)-N(2)-Li(2)	110.5(4)	H(11) - Na(1) - H(90))) 71.5

 $LiN(SiMe_2CH_2PPr^i_2)_2$ and NaBEt₄, and the decreased ease with which crystals of this compound can be redissolved after isolation are further proof of the polymeric nature of **6** in the solid form, but the simple monomeric form that 6 maintains in solution. We did not probe the nature of this interaction by variabletemperature NMR spectroscopy any further.

Similarity of Ligand Geometry and Trends in Adduct Formation. Although the crystal structure of LiN(SiMe₂CH₂PPrⁱ₂)₂ still remains elusive, we have been able to isolate three adducts of our ligand system in which three different modes of coordination are observed: a three-rung ladder with LiCl, a 2:2 dimer with LiAlMe₄, and an infinite one-dimensional polymer with NaBEt₄. It may be that the degree of aggregation depends upon the size of the anion present: -Cl (threerung ladder) < -AlMe₄ (2:2 dimer) < -BEt₄ (polymer). The presence of the counteranion in these complexes determines the amount of steric crowding around the corresponding alkali metal and undoubtedly the final stoichiometry. What is striking is the remarkable similarity in the geometry of the $LiN(SiMe_2CH_2PPr_2)_2$ unit in the face of varying coordination modes (see Tables 5 and 6). With the exception of the small variations in Li-P bond lengths and the P-Li-P bond angles, the geometric parameters can be said to be identical within experimental error.

Conclusions

Adducts of the lithium salt of the potentially ancillary, potentially tridentate ligand precursor LiN(SiMe₂CH₂- PPr_{2}^{i} were synthesized by the addition of the suitable lithium or sodium "ate" species to LiN(SiMe₂CH₂PPrⁱ₂)₂. The solution structures of these compounds are postulated to be highly fluxional, on the basis of their variable-temperature heteronuclear NMR spectroscopic properties. The solid-state structures of these compounds were found to vary from those found in solution; the exception is the three-rung-ladder lithium chloride adduct 1, for which the solution data indicate a similar structure to that in the solid state.

Experimental Section

Procedures. Unless otherwise stated, all manipulations were performed under an atmosphere of dry, oxygen-free dinitrogen or argon by means of standard Schlenk or glovebox techniques. The glovebox used was a Vacuum Atmospheres HE-553-2 model equipped with a MO-40-2H purification system and a -40 °C freezer. ¹H, ³¹P{¹H}, ²⁹Si{¹H}, ¹⁵N{¹H}, ⁷Li{¹H}, and ⁶Li{¹H} NMR spectroscopy was performed on a Varian XL-300 spectrometer operating at 299.9, 121.4, 59.9, 30.3, 116.7, and 44.1 MHz, respectively. ¹H NMR spectra were referenced to internal C₆D₅H (7.15 ppm) or C₆D₅CD₂H (2.09 ppm). ³¹P{¹H} NMR spectra were referenced to external $P(OMe)_3$ (141.0 ppm with respect to 85% H₃PO₄ at 0.0 ppm). ²⁹Si{¹H} NMR spectra were referenced to external hexamethyldisiloxane in C7D8 (0.00 ppm). ¹⁵N{¹H} NMR spectra were referenced to external ${}^{15}NH_4Cl$ in D₂O (0.00 ppm). The references for the ⁷Li{¹H} and ⁶Li{¹H} NMR spectra were ⁷LiCl and ⁶LiCl, respectively (0.00 ppm), in D_2O . The ⁷Li NOESY spectrum was obtained on a Bruker AMX-500 instrument operating at 194.4 MHz in C7D8 at 223 K; t1 was incremented in 512 steps, and the data were zero-filled to 1024 words before Fourier transformation. Sixteen scans were recorded for each increment with $t_{mix} = 5$ or 50 ms with a relaxation time of 800 ms. Simulations of the variable-temperature 7Li and 6Li

the methylene protons as seen for Na(2), Na(1) now shares not only the electrons of N(1) from the second -N(SiMe₂CH₂PPrⁱ₂)₂ ligand, but also those of two hydrogens from a third [BEt₄]⁻ unit in addition to two silyl methyl protons arising from the ligand system, although the increased bond lengths point to a weaker interaction than for the [BEt₄]⁻ methylene protons. The geometry of the second LiN(SiMe₂CH₂PPrⁱ₂)₂ ligand is similar to that of the first, the most notable exception being the increased P-Li-P angle of 136.1(4)°. As before, the second lithium fulfills its coordination sphere with the three donors of the tridentate ligand and three iondipole interactions with neighboring [BEt₄]⁻ hydrogens. The overall structure of 6 may best be viewed as {LiN-(SiMe₂CH₂PPrⁱ₂)₂-Na-BEt₄-Na-LiN(SiMe₂CH₂- $PPr_{2}^{i}_{2}^{}$ chains bridged perpendicularly by $[BEt_{4}]^{-}$ groups.^{45,46} Notably, the "bridging" [BEt₄]⁻ units differ from the "chain" $[BEt_4]^-$ groups in that the former coordinate to two lithium atoms as well as two sodium atoms, whereas the latter only interact with two sodium atoms. It is clear from examination of the crystal determination that this structure is held together by predominantly ion-dipole interactions and the donation of electrons from the ⁻N(SiMe₂CH₂PPrⁱ₂)₂ ligand amide lone pairs to adjacent sodium ions. A partial list of bond lengths and bond angles for 6 is presented in Table 4.

The polymeric nature of 6 is most likely the result of aggregation upon solvent evaporation; in other words, this structure is not maintained in solution. The solution molecular weight of this compound (Signer method), which corresponds to a simple 1:1 adduct of

^{*a*} Asterisks denote the symmetry operation -1 + x, *y*, *z*.

⁽⁴⁵⁾ Barr, D.; Snaith, R.; Mulvey, R. E.; Perkins, P. G. Polyhedron 1988. 7. 2119.

⁽⁴⁶⁾ Gerteis, R. L.; Dickerson, R. E.; Brown, T. L. Inorg. Chem. 1964, 3. 872.

Table 5. Selected Bond Lengths (Å) in $\{LiN(SiMe_2CH_2PPr^i_2)_2\}_2LiCl (1), \{LiN(SiMe_2CH_2PPr^i_2)_2\cdot LiAlMe_4\}_2 (2), and <math>\{LiN(SiMe_2CH_2PPr^i_2)_2\cdot NaBEt_4\}_x (6)$

A			
ligand bond length	1	2	6
Li-N	2.06(1), 2.10(1)	2.075(8)	2.05(1), 2.03(1)
Li-P	2.59(1), 2.63(1)	2.538(7), 2.675(7)	2.57(1), 2.60(1)
	2.61(1), 2.58(1)		2.59(1), 2.60(1)
N-Si	1.702(4), 1.687(5)	1.698(3), 1.707(3)	1.701(5), 1.700(5)
	1.702(5), 1.694(4)		1.693(5), 1.690(5)

Table 6. Selected Bond Angles (deg) in ${LiN(SiMe_2CH_2PPr^i_2)_2}_2LiCl (1), {LiN(SiMe_2CH_2PPr^i_2)_2 LiAlMe_4}_2 (2), and <math>{LiN(SiMe_2CH_2PPr^i_2)_2 NaBEt_4}_x (6)$

1	2	6
117.9(4), 118.9(4)	124.1(3)	136.1(4), 128.0(4)
97.1(4), 96.5(4)	96.9(3), 96.3(3)	94.9(4), 92.7(4)
97.0(4), 95.5(4)		96.2(5), 92.5(4)
107.2(4), 110.7(4)	109.9(2), 104.8(2)	110.0(4), 111.1(4)
107.3(3), 110.1(3)		110.8(5), 110.5(4)
	1 117.9(4), 118.9(4) 97.1(4), 96.5(4) 97.0(4), 95.5(4) 107.2(4), 110.7(4) 107.3(3), 110.1(3)	1 2 117.9(4), 118.9(4) 124.1(3) 97.1(4), 96.5(4) 96.9(3), 96.3(3) 97.0(4), 95.5(4) 107.2(4), 110.7(4) 107.2(4), 110.7(4) 109.9(2), 104.8(2) 107.3(3), 110.1(3) 109.9(2), 104.8(2)

spectra were performed by DNMR-SIM. Microanalyses (C, H, N) were performed by Mr. P. Borda of this department.

Materials. LiN(SiMe₂CH₂PPrⁱ₂)₂,²⁶ AlCl₂N(SiMe₂CH₂-PPrⁱ₂)₂,³⁹ and LiPPrⁱ₂,²⁶ were prepared by published procedures. Li¹⁵N(SiMe₂CH₂PPrⁱ₂)₂ and AlCl₂¹⁵N(SiMe₂CH₂PPrⁱ₂)₂ were prepared in a fashion analogous to their ¹⁴N congeners from the starting labeled disilazane H¹⁵N(SiMe₂CH₂Cl)₂.⁴⁷ MeLi (1.4 M solution in ether) was purchased from Aldrich and used as received. Me⁶Li was prepared by the addition of CH₃Cl to an ethereal ⁶Li solution.⁴⁸ LiAlMe₄ was prepared by the addition of MeLi to a toluene solution of AlMe₃. LiAlEt₄ and LiBEt₄ were prepared in a similar manner with EtLi and either AlEt₃ or BEt₃.^{46,49} NaBEt₄ was obtained from Strem and used without further purification.

Hexanes, toluene, THF, and Et_2O were refluxed over CaH_2 prior to a final distillation from either sodium metal or sodium benzophenone ketyl under an Ar atmosphere. Deuterated solvents were dried by distillation from sodium benzophenone ketyl; oxygen was removed by three freeze-pump-thaw cycles.

 ${LiN(SiMe_2CH_2PPr^i_2)_2}_2LiCl$ (1). To a solution of HN(SiMe₂CH₂Cl)₂ (1.73 g, 7.51 mmol) in 20 mL of THF was added a 20 mL THF solution of LiPPrⁱ₂ (2.92 g, 23.5 mmol) at -78 °C, dropwise. The solution was stirred and warmed to room temperature overnight. The THF was then removed in *vacuo* and the residue extracted with hexanes (3 \times 20 mL). After filtration through Celite to remove LiCl, the hexanes were removed to yield an orange oil (2.21 g; 70% yield). This was then taken up in a minimum volume of hexanes and cooled to -40 °C. Large blocks formed upon standing for 2 weeks. ¹H NMR (C₆D₆): δ 1.76 (d of sept, 4H, C*H*Me₂, ³J_{H-H} = 6.5 Hz, ${}^{2}J_{H-P} = 3.1$ Hz), 1.11 and 1.06 (dd, 24H, CH*MeMe'*, ${}^{3}J_{H-H}$ = 6.5 Hz, $^3J_{\rm H-P}$ = 5.0 Hz), 0.73 (br d, 4H, CH2P, $^2J_{\rm H-P}$ = 5.5 Hz), 0.45 (s, 12H, Si*Me*₂). ${}^{31}P{}^{1}H$ NMR (C₆D₆, 20 °C): δ -3.8 (s, 490 Hz peak width at half-height). ${}^{31}P{}^{1}H$ NMR (C₇D₈, -27 °C): $\delta -6.2$ (1:1:1:1 q, ${}^{1}J_{P-Li} = 48.5 \text{ Hz}$). ${}^{7}\text{Li}\{{}^{1}\text{H}\}$ NMR (C₆D₆, 20 °C): δ -0.7 (s, 50 Hz peak width at half-height). ⁷Li{¹H} (C₇D₈, -38 °C): δ -0.4 (t, 2Li, ¹J_{Li-P} = 48.5 Hz), -1.4 (br s, 1Li, 110 Hz peak width at half-height). $^{15}\mathrm{N}\{^{1}\mathrm{H}\}$ NMR (C₇D₈): δ 5.1 (s). ²⁹Si{¹H} NMR (C₇D₈): δ –17.2 (s, 40 Hz peak width at half-height). Anal. Calcd for C36H88ClLi3N2P4Si4: C, 51.38; H, 10.54; N, 3.33. Found: C, 51.13; H, 10.41; N, 3.50.

{**LiN(SiMe₂CH₂PPrⁱ₂)₂·LiAlMe₄}₂ (2). Method 1.** To a 10 mL toluene solution of AlCl₂N(SiMe₂CH₂PPrⁱ₂)₂ (204 mg, 0.416 mmol) was added MeLi (1.20 mL of a 1.4 M solution, diluted with 10 mL of ether, 1.68 mmol) dropwise at room temperature. The solution immediately turned cloudy white. The reaction mixture was then stirred for 3 h, after which time it was filtered through a frit lined with Celite to remove LiCl.

The solvent was then removed *in vacuo* to yield **2** as a clear colorless oil. This was then taken up in a minimum amount of toluene. Slow evaporation afforded **2** as colorless plates (94 mg; 46% yield).

Method 2. LiAlMe₄ (23 mg, 0.245 mmol) was slurried in approximately 10 mL of toluene. To this was added a toluene solution (10 mL) of LiN(SiMe₂CH₂PPrⁱ₂)₂ (101 mg, 0.253 mmol). Upon addition, the LiAlMe₄ slowly dissolved until only a clear solution remained. The reaction mixture was then stirred for 2 h, after which time the solvent was removed in vacuo. The resulting clear, colorless oil was taken up in a minimum amount of toluene. Slow evaporation of the solvent resulted in the deposition of colorless plates (96 mg; 71% yield). $\,^1\mathrm{H}$ NMR (C₆D₆): δ 1.54 (d of sept, 4H, C*H*MeMe', ${}^{3}J_{H-H} = 7.3$ Hz, ${}^{2}J_{H-P} = 3.9$ Hz), 0.93 and 0.88 (dd, 24H, CH*MeMe'*, ${}^{3}J_{H-H}$ = 7.3 Hz, ${}^{3}J_{H-P}$ = 6.5 Hz), 0.49 (d, 4H, CH₂P, ${}^{2}J_{H-P}$ = 7.8 Hz), 0.21 (s, 12H, SiMe2), -0.21 (s, 12H, AlMe4). ¹H NMR (THF d_8): δ 1.71 (d of sept, 4H, C*H*Me₂, ${}^{3}J_{H-H} = 7.6$ Hz, ${}^{2}J_{H-P} = 2.5$ Hz), 1.05 (dd, 24H, CH*MeMe'*, ${}^{3}J_{H-H} = 7.6$ Hz, ${}^{3}J_{H-P} = 4.6$ Hz), 0.47 (d, 4H, CH₂P, ${}^{2}J_{H-P} = 5.0$ Hz), -0.05 (s, 12H, SiMe₂), -1.36 (1:1:1:1:1:1 sext, 12H, Al*Me*₄, ${}^{2}J_{H-Al} = 6.1$ Hz). ${}^{31}P{}^{1}H{}$ NMR (C₇D₈, 20 °C): δ -3.5 (s). ³¹P{¹H} NMR (-88 °C): δ -8.6 (s). ³¹P{¹H} NMR (THF- d_8 , 20 °C): $\delta -0.3$ (s). ⁶Li{¹H} NMR (C₇D₈, 20 °C): δ 1.4 (s). ⁶Li{¹H}NMR (C₇D₈/pentane, -48 °C): δ 1.2 (t of d, ${}^{1}J_{^{6}Li-P} = 10.8$ Hz, ${}^{1}J_{^{6}Li-{}^{15}N} = 3.2$ Hz). $^{6}\text{Li}{^{1}\text{H}}\text{NMR}$ (-108 °C): δ 1.9 (t of d, 1Li, $^{1}\mathcal{J}_{^{6}\text{Li-P}}$ = 19.9 Hz, ${}^{1}\mathcal{J}_{Li^{-15}N} = 2.0$ Hz), 0.7 (d, 1Li, ${}^{1}\mathcal{J}_{Li^{-15}N} = 4.0$ Hz). ${}^{6}\text{Li}\{{}^{1}\text{H}\}$ NMR (THF- d_8 , 20 °C): δ 0.1 (s). ¹⁵N{¹H} NMR (C₇D₈): δ 27.3 (s). ²⁹Si{¹H} NMR (C₇D₈): δ –18.5 (s). Mol wt (Signer, isopiestic method, toluene): found, 430 ± 40 ; calcd, 493.67. Anal. Calcd for $C_{22}H_{56}AlLi_2NP_2Si_2$: C, 53.53; H, 11.43; N, 2.84. Found: C, 52.67; H, 11.10; N, 2.90.

LiN(SiMe₂CH₂PPrⁱ₂)₂·AlMe₃ (3). To a 10 mL toluene solution of AlCl₂N(SiMe₂CH₂PPrⁱ₂)₂ (200 mg, 0.408 mmol) was added MeLi (0.87 mL of a 1.4 M solution, diluted with 10 mL of ether, 1.22 mmol) dropwise at room temperature. The solution immediately turned cloudy white. The reaction mixture was then stirred for 3 h, after which time it was filtered through a frit lined with Celite to remove LiCl. The solvent was then removed *in vacuo* to yield **2** as a clear colorless oil (123 mg; 64% yield). This species was only analyzed in solution. ¹H NMR (C₆D₆): δ 1.56 (d of sept, 4H, CHMe₂, ³J_{H-H} = 7.8 Hz, ²J_{H-P} = 3.4 Hz), 0.94 and 0.89 (dd, 24H, CHMeMe', ³J_{H-H} = 7.8 Hz, ³J_{H-P} = 6.4 Hz), 0.51 (d, 4H, CH₂P, ²J_{H-P} = 7.3 Hz), 0.23 (s, 12H, SiMe₂), -0.30 (s, 9H, AlMe₃). ³¹P{¹H} NMR (C₆D₆): δ -4.0 (s). ⁷Li{¹H} NMR (C₆D₆): δ -0.9 (s). Mol wt (Signer, isopiestic method, toluene): found, 450 ± 40; calcd, 471.70.

LiN(SiMe₂CH₂PPrⁱ₂)₂·LiAlEt₄ (4). LiAlEt₄ (113 mg, 0.752 mmol) was slurried in approximately 10 mL of toluene. To this was added a toluene solution (10 mL) of LiN(SiMe₂CH₂-PPrⁱ₂)₂ (300 mg, 0.751 mmol). Upon addition, the LiAlEt₄ slowly dissolved until only a clear solution remained. The reaction mixture was stirred for 2 h, after which time the

⁽⁴⁷⁾ Fryzuk, M. D.; MacNeil, P. A. J. Am. Chem. Soc. **1984**, 106, 6993.

⁽⁴⁸⁾ Schlosser, M. Organometallics in Synthesis; Wiley: West Sussex, U.K., 1994; p 603.

⁽⁴⁹⁾ Honeycutt, J. B.; Riddle, J. M. J. Am. Chem. Soc. 1961, 83, 369.

solvent was removed *in vacuo*, resulting in a yellow oil (384 mg; 84% yield). Purification by recrystallization was not possible either due to the compound's extreme solubility in hydrocarbon solvents or because it was low melting; as a result, characterization by elemental analysis was not possible. ¹H NMR (C₆D₆): δ 1.58 (d of sept, 4H, *CH*Me₂, ³*J*_{H-H} = 8.3 Hz, ²*J*_{H-P} = 3.6 Hz), 1.49 (t, 12H, AlCH₂C*H*₃, ³*J*_{H-H} = 7.9 Hz), 0.96 and 0.90 (dd, 24H, *CHMeMe'*, ³*J*_{H-H} = 8.3 Hz, ³*J*_{H-P} = 4.0 Hz), 0.51 (d, 4H, *CH*₂C*H*₃, ³*J*_{H-H} = 7.9 Hz), 0.19 (s, 12H, Si*Me*₂), 0.03 (q, 8H, AlC*H*₂C*H*₃, ³*J*_{H-H} = 7.9 Hz). ³¹P{¹H} NMR (C₆D₆): δ -3.6 (s). ⁷Li{¹H} NMR (C₆D₆): δ -1.3 (s).

LiN(SiMe₂CH₂PPrⁱ₂)₂·LiBEt₄ (5). LiBEt₄ (100 mg, 0.746 mmol) was slurried in approximately 10 mL of toluene. To this was added a toluene solution (10 mL) of LiN(SiMe₂CH₂-PPrⁱ₂)₂ (300 mg, 0.751 mmol). The reaction mixture was then stirred for 2 h, after which time the solvent was removed in vacuo, resulting in a yellow oil (364 mg; 81% yield). Purification by recrystallization was not possible either due to the compound's extreme solubility in hydrocarbon solvents or because it was low melting; as a result, characterization by elemental analysis was not possible. ¹H NMR (C_6D_6): δ 1.60 (d of sept, 4H, C*H*Me₂, ${}^{3}J_{H-H} = 7.3$ Hz, ${}^{2}J_{H-P} = 2.9$ Hz), 1.39 (br t, 12H, BCH₂CH₃, ${}^{3}J_{H-H} = 7.7$ Hz), 0.98 and 0.91 (mult, 24H, CH*MeMe'*, ${}^{3}J_{H-H} = 7.3$ Hz), 0.64 (d, 4H, C*H*₂P, ${}^{2}J_{H-P} =$ 7.2 Hz), 0.58 (mult, 8H, BCH2CH3), 0.29 (s, 12H, SiMe2). ³¹P{¹H} NMR (C₆D₆): δ -4.0 (s). ⁷Li{¹H} NMR (C₆D₆): δ -1.4 (s)

{LiN(SiMe₂CH₂PPrⁱ₂)₂·NaBEt₄} $_x$ (6). NaBEt₄ (40 mg, 0.274 mmol) was slurried in approximately 10 mL of toluene. To this was added a toluene solution (10 mL) of LiN(SiMe2-CH₂PPrⁱ₂)₂ (105 mg, 0.263 mmol). Upon addition, the NaBEt₄ slowly dissolved until only a clear solution remained. The reaction mixture was then stirred a further 12 h, after which time the solvent was removed *in vacuo*. The resulting yellow oil was taken up in a minimum amount of toluene. Slow evaporation of the solvent resulted in the deposition of colorless plates (91 mg; 60% yield). ¹H NMR (C₆D₆): δ 1.60 (d of sept, 4H, C*H*Me₂, ${}^{3}J_{H-H} = 7.0$ Hz, ${}^{2}J_{H-P} = 2.1$ Hz), 1.38 (br t, 12H, BCH₂CH₃), 1.00 and 0.91 (dd, 24H, CHMeMe', ${}^{3}J_{H-H} = 7.0$ Hz, ${}^{3}J_{H-P} = 5.2$ Hz), 0.56 (d, 4H, CH₂P, ${}^{2}J_{H-P} = 5.0$ Hz), 0.38 (br q, 8H, BCH₂CH₃), 0.19 (s, 12H, SiMe₂). ³¹P{¹H} NMR (C₆D₆): δ –4.2 (s). Mol wt (Signer, isopiestic method, toluene): found, 520 \pm 50; calcd, 549.67. Anal. Calcd for $C_{22}H_{56}BLiNNaP_2\text{-}$ Si₂: C, 56.81; H, 11.74; N, 2.55. Found: C, 57.21; H, 11.74; N. 2.41.

X-ray Crystallographic Analyses of {LiN(SiMe₂-CH₂PPrⁱ₂)₂,LiCl (1), {LiN(SiMe₂CH₂PPrⁱ₂)₂·LiAlMe₄)₂ (2), and {LiN(SiMe₂CH₂PPrⁱ₂)₂·NaBEt₄)_x (6). Crystallographic data appear in Table 1. The final unit-cell parameters were obtained by least squares on the setting angles for 25 reflections with $2\theta = 30.4-41.4^{\circ}$ for 1, 55.1-63.2° for 2, and 25.3-39.2° for 6. The intensities of three standard reflections, measured every 200 reflections throughout the data collections, decayed linearly for 1 (6.5%), 2 (9.3%), and 6 (5.2%). The data were processed⁵⁰ and corrected for Lorentz and polarization effects, decay, and absorption (empirical, based on azimuthal scans).

The structures were solved by direct methods. The structure analysis of 2 was initiated in the centrosymmetric space group $P\overline{1}$, this choice being confirmed by subsequent calculations. There are two formula units in the asymmetric unit of 6, which exists in the solid state as a weakly associated polymer. The low-occupancy carbon atoms C(12a), C(18a), and C(35a) in 1 were refined isotropically, while all remaining nonhydrogen atoms were refined with anisotropic thermal parameters. Three isopropyl groups in 1 and one isopropyl group in 2 had disordered terminal carbon atoms-these were modeled by split-atom refinement. The minor-component H atoms of the C(34-36) isopropyl group in 1, which has a more complex disorder, and the disordered methine H bound to C(31) in **2** were not included in the models. The remaining hydrogen atoms in 1, 2, and 6 were fixed in calculated positions with C-H = 0.98 Å and $B_H = 1.2B_{bonded atom}$. Secondary extinction corrections were applied in each refinement (Zachariasen type 1 isotropic), the final values of the extinction coefficients being [2.12(12)] \times 10^{-6} for 1, [1.03(5)] \times 10^{-6} for **2**, and $[1.67(14)] \times 10^{-7}$ for **6**. Neutral atom scattering factors and anomalous dispersion corrections were taken from the ref 51.

Selected bond lengths and bond angles appear in Tables 2-4. Tables of final atomic coordinates and equivalent isotropic thermal parameters, anisotropic thermal parameters, bond lengths and angles, torsion angles, intermolecular contacts, and least-squares planes are included as Supporting Information.

Acknowledgment. Financial support was generously provided by the NSERC of Canada in the form of grants to M.D.F. and a postgraduate scholarship to G.R.G. We thank Dr. N. E. Burlinson for help in acquiring the ⁷Li NOESY data. We also acknowledge the helpful comments of a reviewer.

Supporting Information Available: Complete tables of bond lengths and bond angles, final atomic coordinates, hydrogen atom parameters, anisotropic thermal parameters, torsion angles, intermolecular contacts, and least-squares planes for **1**, **2**, and **6** (102 pages). Ordering information is given on any current masthead page.

OM960638C

⁽⁵⁰⁾ teXsan: Crystal structure analysis package; Molecular Structure Corp., The Woodlands, TX, 1985 and 1992.

^{(51) (}a) International Tables for X-Ray Crystallography, Kynoch Press: Birmingham, U.K. (present distributor Kluwer Academic: Boston, MA), 1974; Vol. IV, pp 99–102; (b) International Tables for Crystallography, Kluwer Academic: Boston, MA, 1992; Vol. C, pp 200– 206.