Thermal Ring-Opening Polymerization of [2.2]Paracyclophanes Having Two Disilanylene Bridges

Mitsuo Kira* and Satoshi Tokura

Photodynamics Research Center, The Institute of Physical and Chemical Research (RIKEN), Koeji, Nagamachi, Aoba-ku, Sendai 980, Japan

Received August 5, 1996[®]

Summary: Novel disilarlylene-bridged paracyclophanes, $(SiR_2SiR_2-C_6F_4)_2$, were prepared by the reactions of the corresponding 1,2-dichlorodisilanes with 1,4-dilithiotetrafluorobenzene. Thermolysis of the paracyclophanes at 300 °C gave the corresponding poly(disilarlylene-1,4phenylene) species, $(SiR_2SiR_2-C_6F_4)_n$, via homolytic Si-Si bond cleavage.

Much attention has been focused on silicon-based polymers because of their potential application to photoconductors, photoresists, and nonlinear optical materials.¹ Recently, a number of studies of polymers having a regular alternating arrangement of a silicon–silicon unit and a π -conjugated system such as ethynylene, arylene, and oligoarylene in the polymer backbone have been reported.^{2–5} We report here a novel thermal ringopening polymerization of disilanylene-bridged paracyclophanes, giving the corresponding poly(disilanylene-1,4-phenylene) compounds.

Sakurai *et al.* have first reported the synthesis and the interesting molecular structure of cyclophanes hav-

(2) (a) Kunai, A.; Ueda, T.; Horata, K.; Toyoda, E.; Nagamoto, I.; Ohshita, J.; Ishikawa, M.; Tanaka, K. *Organometallics* **1996**, *15*, 2000. (b) Kunai, A.; Toyoda, E.; Horata, K.; Ishikawa, M. Organometallics 1995, 14, 714. (c) Ohshita, J.; Watanabe, T.; Kanaya, D.; Ohsaki, H.; Ishikawa, M.; Ago, H.; Tanaka, K.; Yamabe, T. Organometallics 1994, 13, 5002. (d) Kunai, A.; Toyoda, E.; Kawakami, T.; Ishikawa, M. Electrochim. Acta 1994, 39, 2089. (e) Ohshita, J.; Kanaya, D.; Ishikawa, M. J. Organomet. Chem. 1994, 468, 55. (f) Ohshita, J.; Kanaya, D.; Ishikawa, M. Appl. Organomet. Chem. 1993, 7, 269. (g) Ishikawa, M.; Horio, T.; Hatano, T.; Kunai, A. Organometallics **1993**, *12*, 2078. (h) Ishikawa, M.; Sakamoto, H.; Ishii, M.; Ohshita, J. J. Polym. Sci., A: Polym. Chem. 1993, 31, 3281. (i) Ohshita, J.; Ohsaki, H.; Ishikawa, M. Bull. Chem. Soc. Jpn. **1993**, 66, 1795. (j) Ohshita, J.; Matsuguchi, A.; Furumori, K.; Hon, R. F.; Ishikawa, M.; Yamanaka, T.; Koike, T.; Shioya, J. Macromolecules 1992, 25, 2134. (k) Ishikawa, M.; Hatano, T.; Hasegawa, Y.; Horio, T.; Kunai, A.; Miyai, A.; Ishida, T.; Tsukihara, T.; Yamanaka, T.; Koike, T.; Shioya, J. Organometallics 1992, 11, 1604. (I) Ishikawa, M.; Hatano, T.; Horio, T.; Kunai, A. J. Organomet. Chem. (i) January M., January M., January T., January T., January M., Songaronic Chem. 1991, 412, C31. (m) Ishikawa, M. *Pure Appl. Chem.* 1991, 63, 851. (n) Ohshita, J.; Kanaya, D.; Ishikawa, M.; Koike, T.; Yamanaka, T. *Macromolecules* 1991, 24, 2106. (o) Ohshita, J.; Kanaya, D.; Ishikawa, M.; Yamanaka, T. Chem. Express 1990, 5, 489. (p) Ishikawa, M.; Hasegawa, Y.; Hatano, T.; Kunai, A.; Yamanaka, T. Organometallics 1989, 8, 2741. (q) Ohshita, J.; Kanaya, D.; Ishikawa, M.; Yamanaka, T. J. Organomet. Chem. 1989, 369, C18. (r) Ohshita, J.; Furumori, K.; Ishikawa, M.; Yamanaka, T. Organometallics 1989, 8, 2084. (s) Nate, K.; Ishikawa, M.; Ni, H.; Watanabe, H.; Saheki, Y. Organometallics 1987, 6, 1673

(3) Imori, T.; Woo, H.-G.; Walzer, J. F.; Tilley, T. D. *Chem. Mater.* **1993**, *5*, 1487.

(4) (a) Fang, M.-C.; Watanabe, A.; Matsuda, M. *J. Organomet. Chem.* **1995**, *489*, 15. (b) Fang, M.-C.; Watanabe, A.; Matsuda, M. *Chem. Lett.* **1994**, 13.

(5) Chicart, P.; Corriu, R. J. P.; Moreau, J. J. E. *Chem. Mater.* **1991**, *3*, **8**.

3, 8. (6) (a) Sekiguchi, A.; Yatabe, T.; Kabuto, C.; Sakurai, H. Angew. Chem., Int. Ed. Engl. **1989**, 28, 757. (b) Sakurai, H. Pure Appl. Chem. **1987**, 59, 1637. (c) Sakurai, H.; Hoshi, S.; Kamiya, A.; Hosomi, A.; Kabuto, C. Chem. Lett. **1986**, 1781. (d) Sakurai, H.; Nakadaira, Y.; Hosomi, A.; Eriyama, Y. Chem. Lett. **1982**, 1971. (e) Gleiter, R.; Schaefer, W.; Krennrich, G.; Sakurai, H. J. Am. Chem. Soc. **1988**, 110, 4117. (f) Elschenbroich, C.; Hurley, J.; Massa, W.; Baum, G. Angew. Chem., Int. Ed. Engl. **1988**, 27, 684. ing two disilanylene bridges, but their reactions have received little attention to date.^{6,7} We have synthesized novel disilanylene-bridged paracyclophanes, 1,1,2,2,9,9,-10,10-octaalkyl-4,5,7,8,12,13,15,16-octafluoro-1,2,9,10-tetrasila[2.2]paracyclophanes **1a**⁸ and **1b**⁹ in 28% and 4% yield, respectively, by a simple coupling reaction of the corresponding 1,2-dichlorodisilanes with 1,4-dilithiotetrafluorobenzene, which was prepared from 1,4-dibromotetrafluorobenzene and *n*-butyllithium in THF at -78 °C.¹⁰

When the paracyclophane **1a** was heated for 20 h in an evacuated sealed Pyrex tube at 300 °C, poly(tetrapropyldisilanylene-1,4-tetrafluorophenylene) (**2a**) was obtained in 91% yield.¹¹ The molecular weight (M_w) of **2a** was determined to be 54 000 with $M_w/M_n = 2.2$ by GPC.¹² The polymer **2a** was highly soluble in chloro-

(7) Because of the very low yield synthesis of the disilarly enbridged paracyclophanes reported by Sakurai et al.,^{6c} we have not investigated the thermal reactivity.

(8) Synthesis of **1a**: To a THF (10 mL) solution of 1,4-dibromotetrafluorobenzene (2.04 g, 6.63 mmol) was added *n*-BuLi (9.5 mL of a 1.4 M hexane solution, 13 mmol) with a syringe at -78 °C. After the suspension of 1,4-dilithiotetrafluorobenzene thus formed in the temperature range of -70 to -80 °C was stirred for 60 min, 1,2dichlorotetrapropyldisilane (1.99 g, 6.65 mmol) in THF (5 mL) was added at -78 °C. The mixture was stirred for 15 min at -78 °C and then at 0 °C for 1.5 h. After hydrolysis with aqueous HCl, the organic layer was separated and dried over magnesium sulfate. Evaporation of the solvent gave a bright yellow solid (2.54 g). Recrystallization of the crude product with *n*-hexane yielded a white solid of **1a** in 28% yield. **1a**: mp 180–181 °C; ¹H NMR (CDCl₃, δ) 0.95 (m, 8H), 0.96 (t, J = 7.3 Hz, 24H), 1.12 (m, 8H), 1.35 (m, 16H); ¹³C NMR (CDCl₃, δ) -12.0; MS (13 eV) m/z 752 (M⁺, 20), 231 (17), 154 (15), 57 (21), 44 (100); UV-vis (*n*-hexane) λ_{max} (ϵ), 222 nm (22 700), 269 nm (28 600). Anal. Calcd for C₃₆H₅₆F₈Si₄: C, 57.41; H, 7.49. Found: C, 57.63; H, 7.37.

(9) **1b**: 4% yield; ¹H NMR (CDCl₃, δ) 1.00–1.10 (m, 32H), 1.23– 1.32 (m, 8H); ¹³C NMR (CDCl₃, δ) 3.3, 8.3, 115.9–117.3 (m), 146.6– 150.2 (dm, ¹J_{CF} = 243.8 Hz); ¹⁹F NMR (CDCl₃, δ) –127.3; ²⁹Si NMR (CDCl₃, δ) –7.9; MS *m*/*z* (relative intensity) 640 (M⁺, 6), 217 (24), 145 (30), 142 (35), 98 (26), 77 (100); UV–vis (*n*-hexane) λ_{max} (ϵ) 222 nm (18 300), 268 nm (23 900). Anal. Calcd for C₂₈H₄₀F₈Si₄: C, 52.47; H, 6.29. Found: C, 52.22; H, 6.56.

(10 300), 205 min (23 300). Anal. Calculo C₂₈H₄₀F₈54. C, 52.47, 11,
6.29. Found: C, 52.22; H, 6.56.
(10) McDonald, R.; Sturge, K. C.; Hunter, A. D.; Shilliday, L. Organometallics 1992, 11, 893 and references cited therein.

(11) The starting **1a** was recovered in 20% yield. Since **1a** is quite insoluble in methanol, simple precipitation could not be used for purification; **1a** was separated from the product mixture by preparative GPC.¹² The yield of **2a** is based on the consumed amount of **1a**. Polymer **2a**: ¹H NMR (CDCl₃, δ) 0.92–1.36 (m); ¹³C NMR (CDCl₃, δ) 14.8, 18.1, 18.3, 115.6–116.8 (m), 146.5–150.6 (dm, ¹J_{CF} = 262.4 Hz); ¹⁹F NMR (CDCl₃, δ) –127.4; ²⁹Si NMR (CDCl₃, δ) –16.7; UV-vis (*n*-hexane) λ_{max} (ϵ) 264 nm (15 100 per disilarylenephenylene unit).

 [®] Abstract published in *Advance ACS Abstracts*, February 1, 1997.
(1) Miller, R. D.; Michl, J. *Chem. Rev.* 1989, *89*, 1359.

form, benzene, and THF, suggesting that no appreciable cross-linking took place during the thermolysis. The UV–vis spectrum of **2a** in hexane showed an absorption maximum at 264 nm (ϵ 15 100 per disilanylenephenylene unit), which is slightly longer than that of *p*-bis-(pentamethyldisilanyl)tetrafluorobenzene (λ_{max} 250 nm, ϵ 18 600).¹³ The IR spectrum of **1a** showed no absorption bands at around 1050 cm⁻¹, indicating the absence of Si–O bonds in the polymer chain. A relatively sharp singlet ²⁹Si NMR signal observed at –16.7 ppm (Figure 1a) as well as the ¹³C and ¹⁹F NMR spectra are indicative of the regular repetition of a disilanylene-1,4-phenylene unit in **2a**.

Thermal copolymerization of a 1:1 mixture of the cyclophanes **1a** and **1b** was performed in an evacuated sealed Pyrex tube at 300 °C. A random copolymer of **1a** and **1b** (the polymer **3**) was isolated by GPC in 92% yield;^{12,14} $M_{\rm w} = 14\ 000\ (M_{\rm w}/M_{\rm n} = 1.6)$, with the ratio l/m = 0.72.

The structure of **3** was determined by comparing the ${}^{13}C$, ${}^{19}F$, and ${}^{29}Si$ NMR spectra. As shown in Figure 1b, the ${}^{29}Si$ NMR spectrum of **3** showed two resonances at -12.6 and -12.9 ppm due to $SiEt_2$ silicons and two resonances at -16.7 and -16.9 ppm due to $SiPr_2$ silicons.

In order to characterize the detailed structure of **3**, **2a** and related polymers (2b-d) were prepared by the usual coupling of the corresponding 1,2-dichlorodisilanes with 1,4-dilithiotetrafluorobenzene in THF at -78 °C,

Figure 1. ²⁹Si NMR spectra in CDCl₃ of (a) polymer **2a** and (b) **3** obtained by thermal ring opening of disilarlylenebridged paracyclophanes.

using high concentrations of the substrates.¹⁵ Although the molecular weight of **2a** ($M_w = 13\ 000, M_w/M_n = 1.6$) obtained in the coupling reaction was lower than that of **2a** derived from the ring opening of **1a**, all the spectral features were the same between these polymers. The copolymer **4** was obtained by a similar coupling reaction (eq 5).¹⁶ The ²⁹Si resonances for SiPr₂

$$\underset{F}{\overset{F}{\longrightarrow}} \underset{F}{\overset{F}{\longrightarrow}} \underset{F}{\overset{F}{\overset{F}{\longrightarrow}}} \underset{F}{\overset{F}{\longrightarrow}} \underset{F}{\overset{F}{\overset{F}{\longrightarrow}} \underset{F}{\overset{F}{\longrightarrow}} \underset{F}{\overset{F}{\overset{F}{\longrightarrow}} \underset{F}{\overset{F}{\longrightarrow}} \underset{F}{\overset{F}{\overset{F}{\longrightarrow}} \underset{F}{\overset{F}{\overset{F}{\longrightarrow}} \underset{F}{\overset{F}{\overset{F}{\longrightarrow}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\longrightarrow}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}} \underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset}}}$$

2a, $R^1 = R^2 = Pr$; **2b**, $R^1 = R^2 = Et$; **2c**, $R^1 = R^2 = Me$; **2d**, $R^1 = Pr$, $R^2 = Et$.

in **2a**, **2d**, and **4** were found at -16.7, -16.9, and -16.7 ppm, respectively, while the resonances for SiEt₂ in **2b**, **2d**, and **4** were at -12.8, -12.6, and -12.9 ppm, respectively. By comparison of the ²⁹Si resonances among these polymers, the resonances at -12.6 and -16.9 ppm in **3** are assigned to SiEt₂ and SiPr₂ of SiEt₂-SiPr₂ segments, respectively, while the resonances at -12.9 and -16.7 ppm in **3** are to those of SiEt₂SiEt₂ and SiPr₂SiPr₂ segments, respectively. Thus, the polymer **3** should have three types of disilanylene segments, SiEt₂SiEt₂, SiPr₂SiPr₂, and SiEt₂SiPr₂, in a molecule.

The thermal ring-opening polymerization of 1,2,5,6tetrasilacycloocta-3,7-diynes has been reported by Ishikawa et al.^{2g} to involve homolytic scission of an ethynyl carbon–silicon bond as the initial step. In contrast, the ring-opening polymerization of **1a** should involve the scission of at least one Si–Si bond, because the copolymerization of **1a** and **1b** gives a polymer having three

⁽¹²⁾ Preparative GPC was conducted using a JAI (Japan Analytical Instruments, Co. Ltd.) Model LC908 instrument with a series of JAIGEL 1H and 2H columns (2 cm \times 60 cm each). Chloroform was used as an eluent. Molecular weight distribution was determined relative to polystyrene standards by the chromatograph with a JAIGEL MH-A column.

⁽¹³⁾ Kira, M.; Tokura, S. Chem. Lett. 1994, 1459.

⁽¹⁴⁾ The yield was based on the consumed amount of a mixture of **1a** and **1b** (65%). Polymer **3**: ¹H NMR (CDCl₃, ∂) 0.60–1.42 (m); ¹³C NMR (CDCl₃, ∂) 3.8 (m), 7.9 (m), 14.8 (m), 18.1, 18.3, 115.9 (m), 146.6–150.4 (dm, ¹_{J_{CF}} = 249.0 Hz); ¹⁹F NMR (CDCl₃, ∂) –127.4 (m); ²⁹Si NMR (CDCl₃, ∂) –16.9, –16.7, –12.9, –12.6.

⁽¹⁵⁾ The physical properties of polymers obtained by the coupling reactions are as follows. **2a**: 39% yield; $M_w = 13\ 000\ (M_w/M_n = 1.6)$; mp 80–81 °C. The spectral data are the same as **2a** prepared by thermolysis of **1a**. Anal. Calcd for C₃₆H₅₆F₈Si₄: C, 57.41; H, 7.49. Found: C, 57.69; H, 7.62. **2b**: 34% yield; $M_w = 2600\ (M_w/M_n = 1.3)$; ¹H NMR (CDCl₃, δ) 0.89–1.14 (m); ¹³C NMR (CDCl₃, δ) 3.7, 7.9, 115.1–116.4 (m), 146.6–150.4 (dm, ¹ $J_{CF} = 247.9\ Hz$); ¹⁹F NMR (CDCl₃, δ) -127.6; ²⁹Si NMR (CDCl₃, δ) -12.8; UV–vis (*n*-hexane) λ_{max} (ϵ) 260 m (13 100 per disilanylenephenylene unit). **2c**: 53% yield; $M_w = 37\ 000\ (M_w/M_n = 2.8)$; ¹¹H NMR (CDCl₃, δ) 0.48 (s); ¹³C NMR (CDCl₃, δ) -3.0, 116.8–117.6 (m), 146.5–150.2 (dm, ¹ $J_{CF} = 248.9\ Hz$); ¹⁹F NMR (CDCl₃, δ) -127.5; ²⁹Si NMR (CDCl₃, δ) -19.5; UV–vis (*n*-hexane) λ_{max} (ϵ) 253 nm (12 700 per disilanylenephenylene unit). **2d**: 25% yield; $M_w = 3000\ (M_w/M_n = 1.3)$; ¹H NMR (CDCl₃, δ) 0.82–1.11 (m, 20H); 1.21–1.42 (m, 4H); ¹³C NMR (CDCl₃, δ) 3.7, 8.0, 14.7, 18.1, 18.3, 115.9 (m), 146.6–150.4 (dm, ¹ $J_{CF} = 240.0\ Hz$); ¹⁹F NMR (CDCl₃, δ) –127.5; ²⁹Si NMR (CDCl₃, δ) -16.9, -12.6.

⁽¹⁶⁾ **4**: 62% yield; $M_w = 14\ 000\ (M_w/M_n = 1.4)$; ¹H NMR (CDCl₃, δ) 0.92–1.39 (m); ¹²C NMR (CDCl₃, δ) 3.7, 7.9, 14.8, 18.1, 18.3, 115.8–117.5 (m), 146.6–150.5 (dm, ¹J_{CF} = 247.3 Hz); ¹⁹F NMR (CDCl₃, δ) –127.4; ²⁹Si NMR (CDCl₃, δ) –16.7, –12.9. Anal. Calcd for C₃₂H₄₈F₈-Si₄: C, 55.14; H, 6.94. Found: C, 55.91; H, 6.93.

types of disilarlyene segments. Since thermolysis of [2.2]paracyclophane at 600 °C has been known to give a polymer via 1,4-quinodimethane,¹⁷ the thermolysis of **1a** may give the corresponding 1,4-disila-1,4-quinodimethane as the key intermediates in the polymerization. However, the relative amount of SiEt₂SiPr₂ segments in 3 is much smaller than that expected from the random recombination of the two 1,4-disila-1,4quinodimethane fragments.¹⁸ The thermal polymerization of 1a would occur via only one Si-Si bond cleavage of the cyclophane to give an α, ω -disilyl diradical followed by the S_H2 attack of a silyl radical center at the disilarlylene bridge. Since 1a is intact when heated to 150-200 °C in the presence of di-tert-butyl peroxide (10 mol %) and triethylsilane (20 mol %), the Si–Si bond cleavage via the S_H2 attack would proceed only at high temperatures such as 300 °C.

Irradiation of the polymer **2a** (12 mg, $M_w = 13000$, $M_w/M_n = 1.6$) in cyclohexane (1 mL) with a 110 W lowpressure Hg arc lamp for 20 min showed significant degradation of the polymer chain to give a polymer with a monomodal distribution of the molecular weight (M_w = 7000, $M_w/M_n = 1.8$). The ¹H NMR spectrum of the product showed resonances at 4.46 (m) and 0.85–1.60

(m) ppm due to Si–H and Si–Pr protons, respectively, with the intensity ratio of 1.2:100. The IR analysis revealed a signal at 2154 cm⁻¹ due to Si–H stretching but no signals due to Si–OH or SiOSi. Similar photolysis of a mixture of **2a** (12 mg), ethanol (0.1 mL), and cyclohexane (1 mL) for 20 min afforded a product with an M_w value of 1400 ($M_w/M_n = 1.3$). The NMR and IR analysis of the product showed the existence of Si–H and SiOCH₂CH₃ groups. As shown by Ishikawa et al.,^{2s} homolytic scission of Si–Si bonds followed by disproportionation of the generated silyl radical pair would cause photochemical degradation of the polymer **2a**. The polymer **2a** ($M_w = 13000$) exhibited a 5% weight loss (TG5) at 400 °C with a ceramic yield of 16.7% at >650 °C.

Attempted anionic polymerization of **1a** failed. When **1a** in THF was treated with a catalytic amount (5 mol %) of *n*-butyllithium in hexane at 0 °C, no polymerization took place, while the reaction of **1a** in THF with *n*-butyllithium (1.2 equiv) at 0 °C followed by addition of excess methyl iodide gave **5**¹⁹ in 45% yield. The

results indicate that the ring opening by nucleophilic attack of *n*-butyllithium occurs to give the corresponding phenyl anion, which is not sufficiently reactive to open the ring of **1a**.

Related work is in progress.

OM960656U

⁽¹⁷⁾ Pyrolysis of [2.2]paracyclophane at 400 °C leads to the formation of 4,4'-dimethylenebibenzyl radical. For reviews, see: (a) Cram, D. J.; Cram, J. M. Acc. Chem. Res. **1971**, 4, 204. (b) Vögtle, F. Cyclophane Chemistry: Synthesis, Structures, and Reactions; translated in English by Jones, P. R., Wiley: Chichester, U.K., 1993; Chapter 2, and references cited therein.

⁽¹⁸⁾ The ratio of Et₂SiSiPr₂ to Et₂SiSiEt₂ to Pr₂SiSiPr₂ in **3** is expected to be 2:1:1 for the 1,4-dislaquinodimethane mechanism, while the ratio should be 1:2:2 for one Si–Si bond cleavage mechanism. As seen in Figure 1b, a rough estimation of the ratio based on the ²⁹Si NMR favors the latter mechanism.

^{(19) 5:} a colorless oil; ¹H NMR (CDCl₃, δ) 0.58–0.64 (m, 8H), 0.81– 1.44 (m, 57H), 2.25 (t, ⁴J_{HF} = 2.0 Hz, 3H); ¹³C NMR (CDCl₃, δ) 7.9 (t, ³J_{CF} = 2.1 Hz), 12.0, 13.6, 14.8 (t, ⁴J_{CF} = 2.5 Hz), 14.9 (t, ⁴J_{CF} = 3.3 Hz), 15.1, 15.5 (t, ⁴J_{CF} = 3.3 Hz), 18.1, 18.16, 18.20, 18.36, 18.39, 18.41, 18.6, 18.7, 26.7, 26.8, 111.1 (t, ²J_{CF} = 32.7 Hz), 115.5 (t, ²J_{CF} = 31.7 Hz), 117.5 (t, ²J_{CF} = 19.4 Hz), 117.9 (t, ²J_{CF} = 33.3 Hz), 142.8–143.2 (m), 146.7–146.5 (m), 146.6–147.1 (m), 149.7–150.2 (m); ¹⁹F NMR (CDCl₃, δ) –144.2 to –144.0 (m, 4F), –128.8 to –127.8 (m, 2F), –127.6 to –127.5 (m, 2F); ²⁹Si NMR (CDCl₃, δ) –16.7, –16.6, –16.5, –13.6; MS *m*/*z* (relative intensity) 822 (17, M⁺), 376 (37), 242 (68), 208 (78), 169 (80), 106 (100), 71 (91), 63 (91). Anal. Calcd for C₄₁H₆₈F₈Si₄: C, 59.67; H, 8.30.