ORGANOMETALLICS

Volume 16, Number 7, April 1, ¹⁹⁹⁷ © Copyright ¹⁹⁹⁷

American Chemical Society

Communications

Synthesis, Structure, and Reactivity of a Novel Hafnium Carboranyl Hydride Complex

Masayasu Yoshida, Donna J. Crowther, and Richard F. Jordan*

Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242

Received January 28, 1997^X

Summary: The reaction of $Cp_{2}(C_{2}B_{9}H_{11})_{2}Hf_{2}Me_{2}$ *(1b;* $Cp^* = C_5Me_5$) with H_2 yields the novel hafnium carbo*ranyl hydride complex (Cp*)(η5-C2B9H11)Hf(µ-η5:η1- C2B9H10)Hf(Cp*)(H) (4), in which the two metal centers are linked by a C-metalated µ-η5:η1-C2B9H10 ligand and Hf*-*H*-*Hf and B*-*H*-*Hf bridges. Complex 4 catalyzes the hydrogenation of internal alkynes to cis-alkenes. It is proposed that the active species in this reaction is the mononuclear hydride Cp*(C2B9H11)Hf(H) (5), which is formed by hydrogenolysis of 4 and undergoes rapid alkyne or alkene insertion and Hf-C hydrogenolysis steps.*

Group 4 metal dicarbollide complexes of the general type Cp($η$ ⁵-C₂B₉H₁₁)M-R are neutral, isoelectric analogues of the $Cp_2M(R)^+$ cations which play a key role in metallocene-based olefin polymerization catalysis. $1-3$ The methyl complexes $Cp_{2}(C_{2}B_{9}H_{11})_{2}M_{2}Me_{2}$ (**1a**, M = Zr; **1b**, $M = Hf$; $Cp^* = C_5Me_5$) undergo 2-butyne insertion and thermolysis reactions leading to the bentmetallocene species $Cp^*(C_2B_9H_{11})MC(Me)=CMe_2$ (2a,b) and $\{Cp^*(C_2B_9H_{11})M\}_2(\mu\text{-}CH_2)$ (3a,b) and also polymerize ethylene and oligomerize propylene. Recently we reported that the parent compound **1b** adopts an unsymmetrical dinuclear structure composed of [Cp*- $(C_2B_9H_{11})Hf$ ⁺ and $[Cp*HfMe_2]$ ⁺ fragments linked by an unusual bridging $C_2B_9H_{11}^2$ group (Scheme 1). To probe the role of dinuclear species in the chemistry of Cp- $(C_2B_9H_{11})M(R)$ compounds, we are investigating the reactivity of **1b** with other substrates. Here we describe the structure and reactivity of a unique hafnium carboranyl hydride complex formed by hydrogenolysis of **1b**.

The reaction of **1b** with H₂ (4 atm) in benzene (23 °C, 45 min) yields a mixture of the dinuclear hydride complex $(Cp^*)(\eta^5-C_2B_9H_{11})Hf(\mu-\eta^5;\eta^1-C_2B_9H_{10})Hf(Cp^*)-$ (H) (**4**) and **3b** (Scheme 1). Analytically pure **4** precipitates from the reaction mixture as a bright yellow powder and was isolated by simple filtration. The solubility of **4** in benzene is very poor, while that of **3b** is relatively high, which facilitates the isolation of **4**. The $4/3b$ product ratio is $83/17$, as determined by ¹H NMR just before the onset of the precipitation of **4**.

The molecular structure of **4** was determined by X-ray crystallography (Figure 1).4 Complex **4** has a dinuclear structure in which a $Cp^*(\eta^5-C_2B_9H_{10})Hf-H$ metallocene unit (Hf(1)) is bonded via a dicarbollide carbon to a second $Cp^*(\eta^5-C_2B_9H_{11})Hf$ fragment (Hf(2)), resulting in a $η⁵:η¹-C₂B₉H₁₀$ -bridged structure. The centroid-Hfcentroid angles at Hf(1) (137.6°) and Hf(2) (132.8°) and the Hf-Cp^{*} centroid distances $(2.20, 2.22 \text{ Å})$ are normal.

[®] Abstract published in *Advance ACS Abstracts*, March 15, 1997. (1) (a) Crowther, D. J.; Baenziger, N. C.; Jordan, R. F. *J. Am. Chem.*

Soc. **1991**, *113*, 1455. (b) Crowther, D. J.; Jordan, R. F. *Makromol. Chem., Macromol. Symp.* **1993**, *66*, 121. (c) Jordan, R. F. New Organometallic Models for Ziegler-Natta Catalysts. In *Proceedings of the World Metallocene Conference*; Catalyst Consultants Inc.: Spring House, PA, 1993; pp 89-96. (2) Analogous Ti chemistry: Kreuder, C.; Jordan, R. F.; Zhang, H.

Organometallics **1995**, *14*, 2993.

⁽³⁾ Crowther, D. J.; Swenson, D. C.; Jordan, R. F. *J. Am. Chem. Soc.* **1995**, *117*, 10403.

⁽⁴⁾ Crystals of 4 ²CH₂Cl₂ were obtained by slow cooling of a concentrated CH2Cl2 solution. Crystal data: yellow prism, triclinic, *a* $= 10.5809(2)$ Å, $b = 13.6836(2)$ Å, *c* = 15.1096(2) Å, α = 101.818(1)°, β = 91.517(1)°, *γ* = 99.036(1)°, *V* = 2110.80(6) Å³, space group *P*1, *Z* = 2, fw = 1062.07, calcd density 1.671 Mg/m³, goodness of fit on F^2 1.033. Final $R = 0.0493$; final wR2 = 0.1029 for 5305 reflections with $I >$ $2\sigma(\Lambda)$.

Figure 1. Molecular structure of $(Cp^*)(\eta^{5} - C_2B_9H_{11})Hf(\mu \eta^5$: η^1 -C₂B₉H₁₀)Hf(Cp^{*})(H) (4).

The $C(3)-B(12)$ dicarbollide ligand binds to Hf(2) in a symmetrical η^5 manner; the Hf(2)-B(10,11,12) and Hf- $(2)-C(3,4)$ distances $(2.48-2.54 \text{ Å})$ and the Hf(2)-{C- $(3)-B(12)$ centroid} distance (2.07 Å) are similar to those observed for **1b**, **2a**, and **3a**.^{1,3} In contrast, the C(1)-B(3) dicarbollide ligand binds to Hf(1) in an unsymmetrical fashion. The $Hf(1)-C(1,2)$ and the $Hf(1)-B(3)$ distances $(2.36-2.46 \text{ Å})$ are significantly shorter than the (normal) Hf(1)-B(1,2) distances (2.51-2.55 Å), and the Hf-centroid distance (1.96 Å) is also short. These effects result from the presence of the electropositive $Hf(2)$ at $C(1)$, which renders $C(1)$ and the adjacent $C(2)$ and B(3) atoms electron-rich. The twist angle between the two centroid-Hf-centroid planes is 74°, which minimizes steric interactions between the two metallocene units and also allows for three-center, twoelectron Hf(1)-H(1)- - -Hf(2) and B(11)-H(11A)- - -Hf(1) bridges.⁵ Both Hf centers are four-coordinate due to the *µ*-H interactions.

NMR data establish that the dinuclear structure of **4** is maintained in solution and provide insight into the dynamic properties of this species. The 1H NMR spectrum of **4** contains two Cp* resonances (*δ* 2.36, 2.16), three η^5 -dicarbollide C-H resonances (δ 3.16, 3.04, 2.53), and a single Hf-H resonance at *δ* 8.81 (1H). The presence of a hydride ligand is confirmed by the 2H NMR spectrum of the corresponding deuterio complex (**4-***d*, *vide infra*), which contains a Hf-D resonance at δ 8.78 (1D). The ¹³C NMR spectrum of **4** contains two sets of Cp* resonances, three *η*5-dicarbollide C-H resonances (δ 74.4, 52.8, 51.6), and a dicarbollide C-Hf resonance (δ 119.6) which does not split in the ¹Hcoupled spectrum. This pattern of dicarbollide 13C resonances is characteristic of the μ - η ⁵: η ¹-C₂B₉H₁₀ unit observed in the solid state. The ¹¹B NMR spectrum of **4** is complex, as expected due to the low symmetry.6 However, two low-field resonances at *δ* 16.2 and 6.2, which are assigned to $B(11)$ and $B(10)$, $B(12)$ (see Figure 1 for numbering scheme), exhibit low J_{BH} values (95 and 78 Hz, respectively) indicative of bridging B-H-Hf interactions. The remaining resonances exhibit normal $J_{\rm BH}$ values (140–170 Hz) characteristic of terminal B-H units.7 These observations are consistent with rapid rotation about the $Hf(2)-(C(3)-B(12))$ centroid) axis and concomitant exchange of $B(10)-H$, $B(11)-H$, and $B(12)$ -H between terminal and Hf(1)-H-B positions in solution.

The IR spectrum of **4** (KBr) contains *ν*(Hf-H) and *δ*- (Hf-H) bands at 1428 and 680 cm⁻¹, which shift to 1010 and 471 cm⁻¹ in the spectrum of **4-***d*. The low ν (Hf-H) value is consistent with a bridging Hf-H species. $8-10$

Complex **4** catalyzes the hydrogenation of internal alkynes to alkenes.¹¹ For example, 4 catalyzes the hydrogenation (1 atm of H2) of 3-hexyne to *cis*-3-hexene (0.41 turnovers/min, 23 °C, CH_2Cl_2) and subsequent slower hydrogenation of *cis*-3-hexene to *n*-hexane (ca. 0.2 turnovers/min). Several observations provide insight into the mechanism of this reaction (Scheme 1).

(8) *ν*(Hf-H) for terminal Hf-H: (a) Cp*2HfH2, 1590 cm-1; Cp*2Hf- (H)Ph, 1630 cm-1; Cp*2Hf(H)Et, 1630 cm-1: Roddick, D. M.; Fryzuk, M. D.; Seidler, P. F.; Hillhouse, G. L.; Bercaw, J. E. *Organometallics* **1985**, *4*, 97. (b) Cp*2Hf(H)(PHPh), 1643 cm-1; Cp*2Hf(H)(PPh2), 1630 cm-1: Vaughan, G. A.; Hillhouse, G. L.; Rheingold, A. L. *Organometallics* **1989**, *8*, 1760. (c) Cp*₂Hf(H)(CH₂₎₆Hf(H)Cp*₂, 1612 cm⁻¹; Cp*₂-
Hf(H)(crotyl), 1578 cm⁻¹: Bercaw, J. E.; Moss, J. R. *Organometallics* **1992**, *11*, 639.

(9) ν (Hf-H) for bridging Hf-H: (a) $[Cp^*Hf(H)Me{P^tBu}_2]_2$, 1510 cm⁻¹: Roddick, D. M.; Santarsiero, B. D.; Bercaw, J. E. *J. Am. Chem. Soc.* **1985**, *107*, 4670. (b) $[Cp^*Hf(H)_2Cl]_4$, 1575 cm⁻¹: Booij, M.; Blenkers, J. H. *Organometallics* **1988**, *7*, 1029.

(10) The IR spectrum of **4** contains a *ν*(B-H_{terminal}) absorbance at 2560 cm⁻¹ which shifts to 1920 cm⁻¹ in the spectrum of **4-***d*. Distinct *ν*(B-H_{bridging}) absorbances could not be identified.

⁽⁵⁾ Distances (Å): $Hf(1) - H(1)$, 1.86; $Hf(2) - H(1)$, 1.97; $Hf(1) - H(11)$, 2.03; Angles (deg): Hf(1)-H(1)-Hf(2), 117.9; Hf(1)-H(11A)-B(11), 134.1.

⁽⁶⁾ All B-H resonances split in the 1H-coupled 11B spectrum.

^{(7) (}a) Young, D. A. T.; Wiersema, R. J.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1971**, *93*, 5687. (b) Fontaine, X. L. R.; Greenwood, M. N.; Kennedy, J. D.; Nestor, K.; Thornton-Pett, M*. J. Chem. Soc., Dalton Trans.* **1990**, 681.

(i) **4** is the only organometallic species detectable by NMR during the reaction. (ii) **4** does not react detectably with alkynes in the absence of H_2 or with H_2 in the absence of alkynes. (iii) Exposure of 4 to D_2 (4 atm) results in rapid (<5 min, 23 °C, CD_2Cl_2) and complete exchange of deuterium into the Hf-H and carborane C-H sites (as well as extensive exchange into the B-H sites) to yield **4-***d*. These observations indicate that **4** undergoes rapid reversible Hf-C hydrogenolysis, presumably to yield $[Cp^*(C_2B_9H_{11})HfH]$ _{*n*} (*n* = 1 or 2), but the equilibrium between these species strongly favors **4** at low H_2 pressure.¹² (iv) An induction period (ca. 1 h) is observed before significant alkyne hydrogenation occurs. (v) Hydrogenolysis of **2b** yields **4** and 2-methyl-2-butene (4 atm, $23 °C$, <10 min), which indicates that the presumed initial product $Cp^*(C_2B_9H_{11})HfH$ (5) rapidly condenses with H2 loss to yield **4**. (vi) Complex **2b** catalyzes the hydrogenation (1 atm) of 3-hexyne to *cis*-3-hexene (5.9 turnovers/min) without an induction period.

Observations i-vi are consistent with the mechanism in Scheme 1. The reaction of **4** or **2b** with H_2 yields the unobserved mononuclear hydride **5**, which undergoes conventional alkyne insertion and Hf-C hydrogenolysis steps. The lower activity observed when **4** rather than **2b** is used as the catalyst precursor and the induction period in the former case are believed to be due to slow conversion of **4** to **5**. Note that the rapid H/D exchange of **4** does not require rapid formation of **5** but rather may involve reversible formation of a [Cp*- (*η*5-C2B9H11)HfH]2 species which must dissociate to form **5**. Kinetic studies may help to clarify this point.

The mechanism of the reaction of $1b$ with H_2 to yield **4** is obscure. The intermediate hydride species Cp*2- $(C_2B_9H_{11})_2Hf_2(H)$ Me (6), which has an unsymmetrical dinuclear structure analogous to that of **1b**, is observed in 1 H NMR monitoring experiments.¹³ It is possible that **6** reacts further with H_2 to yield 5, which condenses to **4**. The regioselectivity of dicarbollide metalation in the formation of **4** (from **5** or other precursors) reflects the fact that the dicarbollide C-H bonds are more acidic than the B-H bonds and thus are more reactive in σ -bond metathesis with Hf–R bonds.¹⁴

This work shows that dinuclear compounds play a key role in the chemistry of d^0 Cp(η^5 -C₂B₉H₁₁)MR systems but suggests that mononuclear complexes may be critical for catalysis. Further reactivity studies of **4** will be reported in due course.

Acknowledgment. This work was supported by NSF Grant No. CHE-9413022 and Mitsui Petrochemical Industries, Ltd. We are grateful to Dr. Victor G. Young, Jr., and the University of Minnesota X-ray Crystallographic Laboratory for the X-ray analysis.

Supporting Information Available: Text and tables giving synthetic procedures and characterization data for new compounds and details of the X-ray structure determination of **4** (34 pages). Ordering information is given on any current masthead page.

OM970058V

⁽¹¹⁾ Homogeneous alkyne hydrogenation catalysts: (a) Frolov, V.
M. *Platinum Met. Rev.* **1996**, *40*, 8. (b) Adams, R. D.; Barnard, T. S.;
Li, Z.; Wu, W.; Yamamoto, J. H. *J. Am. Chem. Soc.* **1994**, *116*, 9103.
(c) Cabez P. A.; Wayda, A. L*. J. Chem. Soc., Chem. Commun.* **1979**, 1007. (12) The 2H NMR spectrum of **4-***d* contains one Hf-D resonance (*δ*

^{8.78, 1}H), three dicarbollide C-D resonances (*δ* 3.13, 3.04, 2.57), and

dicarbollide B-D resonances (δ 4 to -1, broad).
(13) ¹H NMR (C₆D₆) of **6**: δ 7.96 (s, 1H, Hf-H), 2.45 (s, 1H, dicarbollide CH), 1.93 (s, 15H, Cp^{*}), 1.73 (s, 15H, Cp^{*}), 1.47 (s, 1H, dicarbollide CH), 0.48 (resonances are obscured by resonances of **1b** or **4**.

⁽¹⁴⁾ Similarly, the reaction of *o*-carborane with *n*-BuLi results in C-lithiation: (a) Zakharkin, L. I.; Grebenikov, A. V.; Kazantsev, A. V. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1967**, 2077. (b) Gomez, F. A.; Hawthorne, M. F. *J. Org. Chem.* **1992**, *57*, 1384.