Transient Photochemistry, Matrix Isolation, and Molecular Structure of *cis*-Ru(dmpm)₂H₂ (dmpm = Me₂PCH₂PMe₂)

M. Carmen Nicasio, Robin N. Perutz,* and Paul H. Walton

Department of Chemistry, University of York, Heslington, York YO1 5DD, U.K.

Received December 4, 1996[®]

Photolysis of cis-Ru(dmpm)₂H₂ (dmpm = Me₂PCH₂PMe₂) generates the four-coordinate species Ru(dmpm)₂, which has been studied by laser flash photolysis and matrix isolation techniques. $Ru(dmpm)_2$ displays weak bands in the visible region of the spectrum. Comparison with analogues containing diphosphines with a CH₂CH₂ bridge demonstrates the sensitivity of the spectrum to variation of the bite angle, P-Ru-P, of the ring formed by the metal and the diphosphine ligands. The rate constants for the reaction of Ru(dmpm)₂ with H_2 , CO, C_2H_4 , and Et_3SiH have been measured. All of the rate constants lie in the range from 2.8 \times 10⁸ to 4.9 \times 10⁸ dm³ mol⁻¹ s⁻¹ at 295 K, showing that Ru(dmpm)₂ is very unselective. $Ru(dmpm)_2$ reacts with benzene with complex kinetics, which can be interpreted in terms of a rapid equilibrium between Ru(dmpm)₂ and the benzene complex Ru(dmpm)₂- $(\eta^2 - C_6 H_6)$. The latter forms the phenyl hydride complex Ru(dmpm)₂(Ph)H relatively slowly (rate constant $3.5 \times 10^3 \text{ s}^{-1}$, kinetic isotope effect $k(C_6H_6)/k(C_6D_6) = 1.8$). A single-crystal X-ray structure of cis-Ru(dmpm)₂H₂ shows that the Ru–P bonds *trans* to hydrogen (mean length 2.304(2) Å) are longer than the remaining two Ru–P bonds (mean length 2.282(2)Å). The mean bite angle P-Ru-P of the bridged phosphorus atoms is 72.0°. The unbridged, P-Ru-P angles are 108.0° and 179.2°.

Introduction

The importance of transition metal dihydride complexes lies in the wide variety of catalytic and stoichiometric processes which depend on them.¹ We have concentrated our recent investigations on the photochemistry of dihydride complexes of composition $M(dmpe)_2H_2$ (M = Fe, Ru; dmpe = Me_2PCH_2CH_2PMe_2).² On photolysis, these complexes eliminate hydrogen leading to the formation of 16-electron intermediates M(dmpe)₂. By means of laser flash photolysis and matrix isolation techniques we have demonstrated that Ru(dmpe)₂ has a square-planar geometry, whereas Fe(dmpe)₂ is postulated to have a butterfly structure.

Recently, we have examined the influence of the chelating phosphine ligand on the structure and reactivity of the Ru center in the complexes Ru(R₂PCH₂CH₂- PR_2 ₂ (R = C₂H₅ (depe), C₆H₅ (dppe), C₂F₅ (dfepe); we refer to this group of ligands collectively as drpe).³ Variation of the steric and electronic properties of the phosphine ligands in this series seems to have no significant effect on the structure of the unsaturated species Ru(drpe)₂, except for that of dfepe. However, the reactivity of these intermediates depends remarkably on the nature of substituents on the P atoms, increasing in the order $Ru(dfepe)_2 < Ru(dppe)_2 <$ $Ru(depe)_2 < Ru(dmpe)_2$. We have also found that the rate constants for the oxidative addition of H₂ are much more sensitive to variation of the phosphine than those of the more stable d⁸ square-planar iridium complexes IrCl(CO)(PR₃)₂ studied previously.⁴

In this paper, we turn our interest to the size of the ring formed by the metal and the chelating phosphine ligand. For this purpose, we have selected a system that contains dmpm, Me₂PCH₂PMe₂, a diphosphine with only one methylene group between the two phosphorus atoms. The compound under study *cis*-Ru(dmpm)₂H₂ was prepared by Hartwig et al., together with several dialkyl and alkyl hydride complexes of Ru of the general formula $Ru(dmpm)_2(X)(Y)$.⁵ In this paper, the authors reported that irradiation of cis-Ru(dmpm)₂H₂ in benzene gave the phenyl hydride complex Ru(dmpm)₂(Ph)H. They also postulated the formation of the 16-electron intermediate Ru(dmpm)₂ in order to explain arene ring exchanges in the complex Ru(dmpm)₂(Ph)(H).

Here, we report the photochemistry of cis-Ru-(dmpm)₂H₂, in solution and in low-temperature matrices. Photochemical expulsion of H₂ from the dihydride precursor generates Ru(dmpm)₂. These studies demonstrate that the UV-vis spectrum of the unsaturated fragment is altered substantially by the size of the ring of the metal-ligand system, although its reactivity toward H₂, CO, C₂H₄, and Et₃SiH remains similar to that found for the dmpe analogue. On the other hand,

[®] Abstract published in *Advance ACS Abstracts*, March 1, 1997. (1) (a) Pearson, R. G. *Chem. Rev.* **1985**, *85*, 41. (b) *Transition Metal Hydrides*, Dedieu A., Ed; VCH: New York, 1992.

^{(2) (}a) Whittlesey, M. K.; Mawby, R. J.; Osman, R.; Perutz, R. N.; Field, L. D.; Wilkinson, M.; George, M. W. *J. Am. Chem. Soc.* **1993**, *115*, 8627. (b) Hall, C.; Jones, W. D.; Mawby, R. J.; Osman, R.; Perutz, R. N.; Whittlesey, M. K. *J. Am. Chem. Soc.* **1992**, *114*, 7427.

⁽³⁾ Cronin, L.; Nicasio, M. C.; Perutz, R. N.; Peters, R. G.; Roddick, D. M.; Whittlesey, M. K. J. Am. Chem. Soc. 1995, 117, 10047.

^{(4) (}a) Chock, P. B.; Halpern, J. J. Am. Chem. Soc. 1966, 88, 3511.
(b) Brady, R.; De Camp, W. H.; Flynn, B. R.; Schneider, M. L.; Scott, J. D.; Vaska, L.; Werneke, M. F. Inorg. Chem. 1975, 14, 2669. (c) Ugo, R.; Pasini, A.; Fusi, A.; Cenini, S. J. Am. Chem. Soc. 1972, 94, 7364.
(d) Strohmeier, W.; Onoda, T. Z. Naturforsch. 1969, B24, 515. (e) Strohmeier, W.; Onoda, T. Z. Naturforsch. 1968, B23, 1527. (f) Wilson, M. R.; Liu, H.; Prock, A.; Giering, W. P. Organometallics 1993, 12, 2044. (g) Wilson, M. R.; Woska, D. C.; Prock, A.; Giering, W. P. Organometallics 1993, 12, 1742.
(5) Hartwig, J. F. Anderson, P. A.; Bargman, P. C. Campan, M.

⁽⁵⁾ Hartwig, J. F.; Andersen, R. A; Bergman, R. G. Organometallics 1991. 10, 1710

it proves to be considerably more reactive toward benzene, exhibiting complex kinetics. We have also carried out a single-crystal determination of the structure of the dihydride cis-Ru(dmpm)₂H₂ in order to quantify the geometry of the metal-ligand ring. A search reveals only two examples of crystallographic studies of dihydride complexes of Ru containing chelating diphosphines: cis-Ru(dppe)₂H₂ (dppe = Ph₂PCH₂- $CH_2PPh_2)^6$ and *cis*-Ru(dfepe)₂H₂ (dfepe = $(C_2F_5)_2PCH_2$ - $CH_2P(C_2F_5)_2$).⁷ Both compounds contain a five-membered metal-phosphine ring. We have found only two Rudmpm derivatives characterized by X-ray diffraction: the cationic species *trans*-[Ru(dmpm)₂(η^1 -dmpm)H]PF₆ and the trinuclear complex $[Ru_3(\mu-dmpm)_3(dmpm)_3Cl_6]$ - $C_7H_8 \cdot C_2H_5OH.^{8,9}$

Results

Matrix Photochemistry of cis-Ru(dmpm)₂H₂. cis- $Ru(dmpm)_2H_2$ is a white solid which sublimes at 60 °C. The UV-vis spectrum of *cis*-Ru(dmpm)₂H₂ isolated in argon matrices at 12 K was broad and featureless. The IR spectrum showed a group of sharp bands centered at 1769 cm⁻¹, corresponding to Ru–H stretching modes. Vibrations due to the dmpm ligands appeared at lower frequencies.¹⁰

Broad band UV–vis photolysis (λ > 200 nm) for 15 min caused a 50% depletion of the hydride bands of the starting material. No new ν (Ru–H) absorptions were observed in the region 1700–1900 cm⁻¹. The UV–vis spectrum recorded after photolysis (Figure 1a) showed the presence of weak bands at 330, 440, and 570 nm superimposed on a curve rising steeply toward shorter wavelength. Long wavelength photolysis ($\lambda > 435$ nm, ca. 15 h) reduced the intensity of those weak UV-vis absorptions and regenerated the IR bands of the starting dihydride.

The UV-vis spectrum obtained after photolysis of Ru(dmpm)₂H₂ in methane matrices was the same as in argon matrices, implying that there is no significant interaction between the photoproduct and the matrix.

Laser Flash Photolysis of cis-Ru(dmpm)₂H₂. (a) In Alkane Solvents. The UV-vis spectrum of cis-Ru(dmpm)₂H₂ in heptane solutions is featureless, showing a rise in the absorbance in the UV part of the spectrum. cis-Ru(dmpm)₂H₂ has an extinction coefficient at 308 nm (the laser wavelength) of 1650 dm³ $mol^{-1} cm^{-1}$.

Laser flash photolysis ($\lambda_{exc} = 308$ nm, pulse width ca. 30 ns, pulse energy ca. 30 mJ) of cis-Ru(dmpm)₂H₂ in heptane (ca. 4×10^{-4} mol dm⁻³) under argon resulted in the rapid formation of a transient (<300 ns) monitored at 400 nm. The transient decayed over 50 μ s without returning to the base line, following pseudofirst-order kinetics ($k_{obs} = 1.4 \times 10^5 \text{ s}^{-1}$, Figure 2). In cyclohexane solutions under argon, the pseudo-firstorder rate constant for the decay of the transient species

Figure 1. (a) UV-vis spectrum obtained following a 15 min broad-band UV-vis photolysis of cis-Ru(dmpm)₂H₂ in an argon matrix at 12 K. (b) Transient spectrum obtained 300 ns after laser flash photolysis of *cis*-Ru(dmpm)₂H₂ in heptane solutions under 100 Torr of hydrogen at 295 K.

Figure 2. Transient decay following laser flash photolysis (308 nm) of solutions of Ru(dmpm)₂H₂ in heptane (4 \times 10⁻⁴ mol dm⁻³) under 1 atm of argon. The inset shows the firstorder plot.

was found to be $4.7 \times 10^4 \text{ s}^{-1}$, about three times smaller than that in heptane.

The spectrum of the transient formed upon photolysis (Figure 1b) was recorded in heptane under a partial pressure of 100 Torr of H₂ to ensure the maximum reversibility. Comparison to Figure 1a shows that the spectrum in solution resembles that obtained in an argon matrix, with no strong absorptions in the visible part of the spectrum. The long-wavelength band maximum lies at ca. 530 nm, but is poorly defined. There is also a pronounced shoulder at ca. 380 nm.

(b) Quenching by Hydrogen. When laser flash photolysis of *cis*-Ru(dmpm)₂H₂ in heptane was carried out under partial pressures of H₂ varying from 34 to 175 Torr (made up to a total 760 Torr with argon), an increase in the rate of decay of the transient was observed (monitored at 400 nm). As the partial pressure of H₂ increased, the residual absorbance remaining after decay of the transient grew smaller. A plot of k_{obs} vs $[H_2]^{11}$ was linear (Figure 3a) and gave a value for the second-order rate constant for the reaction with H₂ of (4.9 \pm 0.6) \times 10^8 dm^3 mol^{-1} s^{-1} (Table 1).

⁽⁶⁾ Pertici, P.; Vitulli, G.; Porzio, W.; Zocchi, M. Inorg. Chim. Acta 1979, 37, L521.

^{1979, 37,} L521.
(7) Koola, J. D.; Roddick, D. M. J. Am. Chem. Soc. 1991, 113, 1450.
(8) Wong, W. K.; Chiu, K. W.; Wilkinson, G.; Howes, A. J.; Motevalli, M.; Hursthouse, M. B. Polyhedron 1985, 4, 603.
(9) Van Rooyen, P. H.; Ashworth, T. V.; Hietkamp, S.; Sparrow, N. Acta Crystallogr., Sect. C. Cryst. Struct. Commun. 1992, 48, 545.
(10) IR bands for Ru(dmpm)₂H₂ in an argon matrix at 12 K (ν, cm⁻¹): 2970 (m), 2898 (m), 1875 (m), 1777 (m), 1758 (m), 1429 (m), 1420 (m), 1416 (m), 1285 (m), 1275 (s), 1075 (m), 932 (s), 920 (s), 864 (m), 838 (m), 835 (m), 704 (s), 698 (s). 692 (s), 689 (s). 838 (m), 835 (m), 704 (s), 698 (s), 692 (s), 689 (s).

Figure 3. Plots of the pseudo-first-order rate constants for the decay of the transient obtained after laser flash photolysis of Ru(dmpm)₂H₂ vs the concentration of added quenching ligands (a) H_2 (\bullet), CO (\blacksquare) and Et₃SiH (\Box) and (b) C₂H₄. The best straight lines are shown as full lines through the experimental points.

(c) Quenching by CO, C₂H₄, and Et₃SiH. Laser flash photolysis in heptane under different pressures of CO (11–145 Torr, made up to 760 Torr with argon) again led to the quenching of the transient, but a complete return to the base line was no longer observed. A plot of k_{obs} vs [CO]¹¹ was linear (Figure 3a) and yielded a second-order rate constant of (2.8 \pm 0.4) \times 10 $^8~dm^3$ $mol^{-1} s^{-1}$ (Table 1). Similar results were obtained when ethene and Et₃SiH were added to heptane solutions of cis-Ru(dmpm)₂H₂ (Figure 3b and 3a, Table 1). The temperature dependence for the pseudo-first-order rate constant was measured over the range 294-325 K, with the concentration of Et₃SiH = 1.1×10^{-3} mol dm⁻³.¹² The activation parameters obtained were as follows: E_{a} = (14 ± 2) kJ mol⁻¹, $\Delta H^{\ddagger} = (11 \pm 2)$ kJ mol⁻¹, $\Delta S^{\ddagger} =$ $-(40 \pm 5)$ J mol⁻¹ K⁻¹ (Figure 4).

(d) Quenching by C₆H₆. Laser flash photolysis of cis-Ru(dmpm)₂H₂ in neat benzene under argon produced a transient which decayed following pseudo-first-order kinetics ($k_{obs} = 3.6 \times 10^3 \text{ s}^{-1}$) over 1.5 ms (Figure 5). Contrary to what was expected, the decay observed in benzene is ca. 40 times *slower* than that recorded in heptane (Figure 2). The maximum change in absorbance on flash photolysis of a benzene solution of $Ru(dmpm)_2H_2$ is ca. 50% of that recorded in heptane. Addition of benzene $(10^{-4}-11.6 \text{ mol } \text{dm}^{-3})$ to heptane solutions of the dihydride resulted in a decrease of the

Table 1. Second-Order Rate Constants^a for Reactions of Ru(dmpm)₂, Ru(dmpe)₂, and Ru(depe)₂ at 295 K

	$k_2/{ m dm^3mol^{-1}s^{-1}}$			
quencher	Ru(dmpm) ₂ ^b	Ru(dmpe) ₂ ^c	Ru(depe) ₂ ^b	
H ₂	$(4.9\pm0.6) imes10^8$	$(6.2\pm0.3) imes10^9$	$(4.4 \pm 0.4) \times 10^{8}$	
CO	$(2.8\pm0.4) imes10^8$	$(4.6\pm0.3) imes10^9$	$(9.1 \pm 0.7) \times 10^{7}$	
C_2H_4	$(4.3\pm0.6) imes10^8$	$(2.2\pm0.4) imes10^8$	$(2.0\pm0.7) imes10^5$	
Et₃SiH	$(2.9\pm0.5) imes10^8$	(2.1 \pm 0.2) $ imes$ 10 ⁸	$(1.1\pm0.2) imes10^5$	

^a Errors are shown at 95% confidence limits. ^b Data recorded in heptane. ^c Data recorded in cyclohexane.

Figure 4. Eyring plot for the temperature dependence of the second-order rate constant for the reaction of the transient following laser flash photolysis of Ru(dmpm)₂H₂ in heptane in the presence of 1.1×10^{-3} mol dm⁻³ Et₃SiH. $\Delta H^{\ddagger} = (11 \pm 2) \text{ kJ mol}^{-1}; \Delta S^{\ddagger} = -(40 \pm 5) \text{ J mol}^{-1} \text{ K}^{-1}.$

Figure 5. Transient decay following laser flash photolysis (308 nm) of Ru(dmpm)₂H₂ in benzene solution under 1 atm of argon, with the corresponding first-order plot as the inset.

observed rate constant of the transient compared to that of neat heptane, reaching a limiting value of ca. 3.5 imes 10^3 s^{-1} when concentrations of C_6H_6 were higher than 0.1 mol dm⁻³ (Figure 6). An inverse plot of $1/k_{obs}$ vs $[C_6H_6]$ gave a straight line over the range from 10^{-4} to 10^{-1} mol dm⁻³ (Figure 7). In order to test for C–H insertion in this reaction, the kinetic isotope effect was measured with neat benzene- d_6 as the solvent. Photolysis of cis-Ru(dmpm)₂H₂ in benzene-d₆ yielded a transient species that decayed following pseudo-firstorder kinetics, and the observed reaction rate constant $(k_{\rm obs} = 1.9 \times 10^3 \text{ s}^{-1})$ was found to be 1.8 times slower than that in neat C_6H_6 . The transient UV-vis spectrum recorded in benzene under 100 Torr of H_2 was similar in form to that obtained in heptane, although the lowest energy band was shifted to 480 nm.

Steady-State Photolysis. The photochemistry of cis-Ru(dmpm)₂H₂ was also studied in solution with

⁽¹¹⁾ Wilhelm, E.; Battino, R. Chem. Rev. 1973, 73, 1. Gas solubilities

⁽¹¹⁾ Wilhelm, E.; Battino, R. *Chem. Rev.* **1973**, *73*, 1. Gas solubilities were taken as follows: H₂ (heptane 4.7 × 10⁻³ mol dm⁻³ atm⁻¹, benzene 2.9 × 10⁻³ mol dm⁻³ atm⁻¹); CO (heptane 1.2 × 10⁻² mol dm⁻³ atm⁻¹); ethene (heptane 1.2 × 10⁻¹ mol dm⁻³ atm⁻¹). (12) Temperature dependence of the rate constants for the reaction of Ru(dmpe)₂ with Et₃SiH (1.1 × 10⁻³ mol dm⁻³) in heptane, temperature *T*(K), rate constant k_2 (10⁸ dm³ mol⁻¹ s⁻¹): *T* = 294, k_2 = 5.32; *T* = 301, k_2 = 5.77; *T* = 306, k_2 = 6.56; *T* = 311, k_2 = 7.06; *T* = 316, k_2 = 7.60; *T* = 321, k_2 = 8.10; *T* = 325, k_2 = 9.09.

Figure 6. Plots of the pseudo-first-order rate constants for the decay of the transient obtained upon laser flash photolysis of Ru(dmpm)₂H₂ in hexane/benzene mixtures: (a) $[C_6H_6] = 2 \times 10^{-4} - 10^{-1} \text{ mol dm}^{-3}$ and (b) $[C_6H_6] = 0.6 - 11.6 \text{ mol dm}^{-3}$.

Figure 7. Inverse plot of the pseudo-first-order rate constant for the decay of the transient $\text{Ru}(\text{dmpm})_2$ in benzene/hexane mixtures ($[C_6H_6] = 2 \times 10^{-4}-10^{-1}$ mol dm⁻³).

NMR and IR detection. When a hexane solution of the dihydride was irradiated under 1 atm of CO for ca. 5 min, a new band was observed at 1864 cm⁻¹ in the IR spectrum, which was assigned as $Ru(dmpm)_2(CO)$ by comparison with those of $Ru(dmpe)_2CO$ and $Ru(depe)_2CO$.^{2,3}

cis-Ru(dmpm)₂H₂ was irradiated ($\lambda > 285$ nm, ca. 5 h) in a mixture of hexane:Et₃SiH (3:1). The mixture was pumped down, and the residue was dissolved in C₆D₆. A ¹H NMR spectrum showed 80% conversion to a product with dmpm and Et₃Si resonances and a hydride resonance at δ -8.81, which appeared as a doublet of quartets ($J_{PH} = 68.2$ and 20.4 Hz). ³¹P{¹H} NMR spectroscopy revealed the presence of an ABMQ spin system (δ_A -19.3, δ_B -25.5, δ_M -33.8, δ_Q -35.1). These NMR data suggest the formation of *cis*-Ru(dmpm)₂(H)-(SiEt₃). Isomerization to a *trans* isomer is not observed, in contrast to the depe analogue.³

Figure 8. ORTEP diagram of cis-Ru(dmpm)₂H₂ showing the asymmetric unit. Thermal ellipsoids are shown at the 50% level. Hydrogen atoms, except hydrides, are omitted for clarity.

Table 2.	Selected Bond Distances (Å) and Angles
(deg)	for <i>cis</i> -Ru(dmpm) ₂ H ₂ (Enantiomer 1)

. 0.	· •		-
Ru(1)-P(1)	2.282(2)	P(2)-C(3)	1.849(6)
Ru(1)-P(2)	2.303(2)	P(2)-C(4)	1.836(6)
Ru(1)-P(3)	2.280(2)	P(2)-C(5)	1.830(6)
Ru(1)-P(4)	2.303(2)	P(3)-C(6)	1.828(7)
Ru(1)-H(1)	1.60(4)	P(3)-C(7)	1.827(6)
Ru(1)-H(2)	1.53(5)	P(3)-C(10)	1.849(6)
P(1) - C(1)	1.829(7)	P(4)-C(8)	1.835(6)
P(1) - C(2)	1.835(6)	P(4)-C(9)	1.831(6)
P(1)-C(3)	1.854(6)	P(4) - C(10)	1.847(6)
$P(1) - R_{11}(1) - P(2)$	72 34(7)	H(1) - Ru(1) - P(1)	97(2)
P(1)-Ru(1)-P(3)	179.06(6)	H(1) - Ru(1) - P(2)	164(2)
P(1)-Ru(1)-P(4)	108.90(7)	H(1) - Ru(1) - P(3)	83(2)
P(2) - Ru(1) - P(3)	108.16(7)	H(1) - Ru(1) - P(4)	86(2)
P(2)-Ru(1)-P(4)	107.91(7)	H(2)-Ru(1)-P(1)	87(2)
P(3)-Ru(1)-P(4)	71.75(7)	H(2)-Ru(1)-P(2)	88(2)
P(2)-C(3)-P(1)	93.9(3)	H(2)-Ru(1)-P(3)	92(2)
P(4)-C(10)-P(3)	93.3(3)	H(2)-Ru(1)-P(4)	160(2)

Hartwig *et al.*⁵ reported the photochemical reaction of Ru(dmpm)₂H₂ with benzene-*d*₆. The reaction led to the formation of *cis*-Ru(dmpm)₂(D)(C₆D₅) after 4 days photolysis at room temperature in a 48% yield. We irradiated a sample of Ru(dmpm)₂H₂ in C₆H₆ for 20 h. ¹H and ³¹P{¹H} NMR spectra of the residue resulting after the removal of the solvent were consistent with the data reported in the literature for the formation of *cis*-Ru(dmpm)₂(H)(Ph) in ca. 50% yield.⁵ This result contrasts remarkably with attempts to study the photochemical reaction of Ru(depe)₂H₂ with benzene.³ In that case, no evidence of the phenyl hydride complex was observed, even on prolonged photolysis.

X-ray Determination of the Structure of *cis*-**Ru(dmpm)**₂**H**₂. An X-ray quality crystal of *cis*-Ru(dmpm)₂H₂ was obtained from a concentrated hexane solution at -20 °C. The compound crystallized in the space group P2₁/*c*. An ORTEP drawing of the dihydride is shown in Figure 8. Selected bond lengths and angles are listed in Tables 2 and 3. The molecular structure of *cis*-Ru(dmpm)₂H₂ is approximately octahedral with the two hydride ligands located in mutually *cis*-posi-

Table 3. Selected Bond Distances (Å) and Angles (deg) for *cis*-Ru(dmpm)₂H₂ (Enantiomer 2)

Ru(2)-P(5)	2.284(2)	P(6)-C(13)	1.845(6)
Ru(2)-P(6)	2.299(2)	P(6)-C(14)	1.846(6)
Ru(2) - P(7)	2.283(2)	P(6) - C(15)	1.834(6)
Ru(2)-P(8)	2.312(2)	P(7)-C(16)	1.828(7)
Ru(2)-H(3)	1.60(5)	P(7)-C(17)	1.839(6)
Ru(2)-H(4)	1.52(6)	P(7)-C(18)	1.823(6)
P(5) - C(11)	1.824(7)	P(8)-C(17)	1.857(6)
P(5)-C(12)	1.835(7)	P(8)-C(19)	1.832(6)
P(5)-C(13)	1.854(6)	P(8)-C(20)	1.833(6)
	70.04(7)		00(0)
P(5) - Ru(2) - P(6)	72.04(7)	H(3) - Ru(2) - P(5)	92(2)
P(5) - Ru(2) - P(7)	179.39(6)	H(3)-Ru(2)-P(6)	160(2)
P(5) - Ru(2) - P(8)	107.56(8)	H(3)-Ru(2)-P(7)	88(2)
P(6) - Ru(2) - P(7)	107.64(7)	H(3)-Ru(2)-P(8)	88(2)
P(6) - Ru(2) - P(8)	108.10(7)	H(4) - Ru(2) - P(5)	87(2)
P(7) - Ru(2) - P(8)	72.01(7)	H(4) - Ru(2) - P(6)	86(2)
P(6) - C(13) - P(5)	93.5(2)	H(4) - Ru(2) - P(7)	93(2)
P(7) - C(17) - P(8)	93.9(3)	H(4) - Ru(2) - P(8)	162(2)

tions. The average Ru–H distance is 1.56 Å. The average length of the Ru–P bonds *trans* to the hydrogen atoms (2.304(2) Å) exceeds the average for the two other Ru–P bonds (2.282(2) Å), in accordance with the *trans*-influence of the hydride ligands. The average P–Ru–P angle is 72.03(7)° within the four-membered ring. The mutually *trans* phosphorus atoms are almost colinear, with average P–Ru–P angles of 179.23(6)°. The remaining P–Ru–P angle averages 108.04(7)°.

Discussion

The photochemistry of *cis*-Ru(dmpm)₂H₂ follows the same pattern as the related compound Ru(dmpe)₂H₂. Hydrogen is eliminated on photolysis, and the four-coordinate species Ru(dmpm)₂ is formed. The unsaturated fragment reacts readily to reform the dihydride in the presence of added H₂. The 16-electron complex can also be trapped by other substrates.

Spectrum and Structure. The UV-vis spectrum of Ru(dmpm)₂ obtained in argon matrices (Figure 1a) shows weak bands at 240, 340, 440, and 570 nm. We have recently demonstrated that $Ru(dmpe)_2$, $Ru(depe)_2$, and $Ru(dppe)_2$ have square-planar structures, which are associated with the three prominent bands between 400 and 800 nm in their UV-vis spectra.³ This conclusion is based on comparison with the isoelectronic ion [Rh-(dppe)₂]⁺, which has been shown to adopt a structure close to square-planar by X-ray crystallography.¹³ The UV-vis spectrum of the Rh cation¹⁴ also contains three bands, although their position are shifted 10000-12000 cm⁻¹ to higher energy compared to those of Ru⁰ analogues. The UV-vis spectra of Ru(dmpe)₂, Ru(depe)₂, and Ru(dppe)₂ are very similar, in spite of the changes in the donor properties of the phosphines. In contrast to these complexes, Ru(dmpm)₂ does not display a clear multiband pattern characteristic of Ru(drpe)₂, although weak absorbances are still observed in the visible part of the spectrum. The low-energy band for Ru(dmpm)₂ lies at 570 nm and is blue-shifted ca. 4150 cm^{-1} compared to that of Ru(dmpe)₂.¹⁵ The medium- and high-energy bands are also shifted to higher energy by 4850 and 7800 cm⁻¹, respectively. Since the difference

in donor properties between dmpe and dmpm must be smaller than that between dmpe and depe, it is likely to be the strain induced by the four-membered ring of the metal-ligand system which causes the alteration in the spectrum. The bite angle P-Ru-P for the dmpm ligand in the dihydride *cis*-Ru(dmpm)₂H₂ is ca. 72°. This value agrees with those found in the literature the complexes $[Ru_3(\mu-dmpm)_3(dmpm)_3Cl_6]$ for $C_7H_8 \cdot C_2H_5OH (71.1(1)^\circ)^9$ and trans-[Ru(dmpm)₂(η^{1-} dmpm)H]PF₆ (72(2)°).⁸ A mean bite angle of 84° for the dmpe ligand has been derived from the crystallographic data of several Ru-dmpe complexes reported by Burn et al.¹⁶ The dramatic change observed in the UV-vis spectrum of $Ru(dmpm)_2$ compared to that of $Ru(dmpe)_2$ may be explained by the compression of 12° in the P-Ru-P angles while maintaining a planar RuP_4 skeleton. In contrast, $Ru(dppe)_2$ has a low-energy absorption band similar to Ru(dmpe)₂, and the bite angle of dppe⁶ is only about 1° different from that of dmpe.

The transient UV-vis spectrum of Ru(dmpm)₂ recorded in heptane solutions after flash photolysis is similar in pattern to that obtained in low-temperature matrices, although the bands appear to be shifted. The long-wavelength band maximum lies at 530 nm in solution but at 570 nm in the matrix. The matrix spectrum shows bands at 330 and 430 nm in addition, whereas the solution spectrum just shows a shoulder at 380 nm. A change in the solvent from heptane to benzene causes a more pronounced blue shift in the spectrum observed on flash photolysis of Ru(dmpm)₂H₂ with the λ_{max} of the low-energy band appearing at 480 nm. This shift is attributed to the formation of the arene complex Ru(dmpm)₂(η^2 -C₆H₆) in neat benzene (see below).

Reactivity. The difference found in the structure for $Ru(dmpm)_2$ compared to that of $Ru(dmpe)_2$ contrasts with the similarity in reactivity toward most of the reagents. The rate constant for the oxidative addition of H₂ to Ru(dmpm)₂ is found to be 4.9×10^8 dm³ mol⁻¹ s⁻¹. This value is close to that of $4.0 \times 10^8 \text{ dm}^3 \text{ mol}^{-1}$ s^{-1} found for Ru(depe)₂, although it is more than an order of magnitude smaller than that obtained for $Ru(dmpe)_2$ ($k_2 = 6.8 \times 10^9 dm^3 mol^{-1} s^{-1}$). $Ru(dmpm)_2$ also reacts with CO, C₂H₄, and Et₃SiH with rate constants (Table 1) similar to that for the H₂ reaction, showing no preference for any particular ligand. This result differs from the trend observed for $Ru(dmpe)_2$, $Ru(depe)_2$, and $Ru(dppe)_2$ for which the reactivity increases with substrate in the order $C_2H_4 < CO < H_2$. A complete set of values for Ru(dmpm)₂, Ru(dmpe)₂, and $Ru(depe)_2$ appears in Table 1.

In the absence of H_2 or other added ligands, the decay of Ru(dmpm)₂ in alkane solutions follows pseudo-firstorder kinetics, suggesting reaction with the precursor or the solvent or an intramolecular process. The latter is very unlikely as the four-membered ring of the metal-ligand system would prevent intramolecular C-H additions. The pseudo-first-order rate constant for the decay of Ru(dmpm)₂ in heptane, $k_{obs} = 1.4 \times 10^5$ s⁻¹, is three times greater than that in cyclohexane (k_{obs} = 4.7×10^4 s⁻¹), but this difference lies within the range of general solvent effects. It is most likely that the

⁽¹³⁾ Hall, M. C.; Kilbourn, B. T.; Taylor, K. A. J. Chem. Soc. A, **1970**, 2539.

⁽¹⁴⁾ Geoffroy, G. L.; Isci, H.; Litrenti, J.; Mason, W. R. *Inorg. Chem.* **1977**, *16*, 1950.

⁽¹⁵⁾ UV–vis band maxima for $Ru(dmpe)_2$ in cyclohexane solution (nm): 467, 555, 745.^2 $\,$

⁽¹⁶⁾ Burn, M. J.; Fickes, M. G.; Hollander, F. J.; Bergman, R. G. Organometallics 1995, 14, 137.

kinetic behavior observed in alkane solvents results from a composite effect of the reaction of $Ru(dmpm)_2$ with the dihydride precursor and competing recombination with H₂.

The reaction in benzene appears to be complex. The addition of C₆H₆ to heptane solutions of *cis*-Ru(dmpm)₂H₂ causes a decrease in the rate constant for the decay of the transient species with respect to that in neat heptane. Saturation behavior is observed when the concentration of benzene exceeds 0.1 mol dm⁻³. Under these conditions, the observed decay of the transient is at its *slowest*. The kinetic isotope effect $(k_{\rm H}/k_{\rm D})$ for the reaction of Ru(dmpm)₂ with neat benzene and benzene d_6 is found to be 1.8, suggesting that the slow reaction involves C-H bond breaking in its transition state leading to formation of the phenyl hydride complex. The observed kinetics can be explained in terms of a rapid pre-equilibrium step between Ru(dmpm)₂ and the arene complex $Ru(dmpm)_2(\eta^2-C_6H_6)$. The latter undergoes oxidative addition of benzene relatively slowly, leading to the phenyl hydride species (Scheme 1). We define two rate constants in Scheme 1. The pseudo-first-order rate constant k_1 corresponds to the composite reaction observed in pure heptane. The benzene complex, Ru- $(dmpm)_2(\eta^2-C_6H_6)$, is formed with an equilibrium constant *K* and is converted to phenyl hydride complex with a first-order rate constant k_2 .

The kinetic analysis of Scheme 1 can be simplified. The rate constant for the C–H activation reaction, k_2 , can be obtained from the measurements at high benzene concentrations as ca. 3.5×10^3 s⁻¹. Since this value is far less than k_1 (ca. 10^5 s⁻¹), k_2 has not been included in the analysis shown below for low [C₆H₆], where M = Ru(dmpm)₂.

$$K = [M(C_6H_6)]/[M][C_6H_6]$$
(1)

We define [M_{tot}] as

$$[M_{tot}] = [M] + [M(C_6H_6)]$$
(2)

so $[M(C_6H_6)] = [M_{tot}] - [M]$, and substituting into eq 1 and rearranging

$$[M] = [M_{tot}] / \{ K[C_6H_6] + 1 \}$$
(3)

the rate of depletion of [M] is k_1 [M]

$$rate = k_1 [M_{tot}] / \{ K[C_6 H_6] + 1 \}$$
(4)

hence

$$k_{\rm obs} = k_1 / \{ K[C_6 H_6] + 1 \}$$
(5)

$$1/k_{obs} = \{K[C_6H_6] + 1\}/k_1 \tag{6}$$

Thus, a plot of $1/k_{obs}$ against [C₆H₆] should give a straight line (Figure 7) with a slope of K/k_1 and an intercept of $1/k_1$. The equilibrium constant K can be determined from the ratio of the slope to intercept and is found to be 290 ± 70.¹⁷ A k_1 value of (1.0 ± 0.3) ×

Scheme 1. Kinetic Scheme for the Reaction of $Ru(dmpm)_2H_2$ in Heptane/Benzene Mixtures

$$Ru(dmpm)_{2} + C_{6}H_{6} \xrightarrow{K} Ru(dmpm)_{2}(C_{6}H_{6})$$

$$k_{1} \downarrow H_{2}, Ru(dmpm)_{2}H_{2} \downarrow k_{2}$$

$$Ru(dmpm)_{2}H_{2} + dimer Ru(dmpm)_{2}(Ph)H$$

$$K = 290 \pm 70$$

$$k_{1} = (1.0 \pm 0.3) \times 10^{5} \text{ s}^{-1}$$

Scheme 2. Transient Photochemistry of Ru(dmpm)₂H₂ in Solution at Ambient Temperature

 $k_2 = (3.5 \pm 0.3) \times 10^3 \text{ s}^{-1}$

 10^5 s^{-1} is obtained from the analysis. This is consistent with the k_{obs} value measured in pure heptane of $1.5 \times 10^5 \text{ s}^{-1}$.

It is interesting to compare $Ru(dmpm)_2$ to $Ru(dmpe)_2$, which shows no reaction with benzene in flash photolysis experiments. Care is needed with this comparison because $Ru(dmpe)_2$ decays in benzene by recombination with expelled H₂ following second-order kinetics, whereas Ru(dmpm)₂ decays by first-order kinetics. We therefore consider the value of $k_2/\epsilon l$ for Ru(dmpe)₂ (i.e., the slope of the second-order plot), where k_2 is the second order rate constant for reaction with H_2 , ϵ the extinction coefficient, and I the path length. The measured value of k_2/ϵ l is 2.8 × 10⁶ s⁻¹, 30 times greater than the firstorder rate constant obtained for Ru(dmpm)₂ (1 \times 10⁵ s^{-1}). As a result of this factor, the reaction of Ru(dmpe)₂ in C_6H_6 proceeds almost exclusively via the route of recombination with H_2 . If the conversion of $Ru(dmpe)_2$ - (C_6H_6) to Ru(dmpe)₂(Ph)H is relatively slow, as for the dmpm complex, we can deduce that the value of the corresponding equilibrium constant, K, for $Ru(dmpe)_2$ (as in Scheme 1) is less than 0.1.¹⁸

In contrast, Fe(dmpe)₂ is observed to react with arenes by flash photolysis.^{2a} Although the mechanism proposed for the arene activation is very similar to that represented in Scheme 1, for Fe(dmpe)₂, $k_1 \ll k_2$ whereas for Ru(dmpm)₂, $k_2 \ll k_1$. The equilibrium constant, *K*, is much smaller for Fe(dmpe)₂ than for Ru(dmpm)₂.

Conclusions

The transient photochemistry of cis-Ru(dmpm)₂H₂ is summarized in Schemes 1 and 2. Ru(dmpm)₂ is gener-

⁽¹⁷⁾ The requirements of a fast equilibrium would be satisfied if the rate constant for formation of Ru(dmpm)_2(C_6H_6) from Ru(dmpm)_2 + C_6H_6 is ca 3 \times 10⁸ dm³ mol⁻¹ s⁻¹ and the reverse rate constant is ca. 10⁶ s⁻¹, when [C_6H_6] \geq 10⁻² mol dm⁻³. This limitation includes all of the points of Figure 7, except those close to the origin.

⁽¹⁸⁾ The kinetic behavior of $\operatorname{Ru}(\operatorname{dmpe})_2$ is not affected measurably by the addition of 1 mol dm⁻³ C₆H₆ to a cyclohexane solution. If we assume that k_{obs} is changed by less than 10%, inspection of the denominator of eq 5 indicates a limiting value of $K \leq 0.1$.

	empirical formula	$C_{20}H_{60}P_8Ru_2$
	fw	750.58
	cryst syst	monoclinic
	habit, color, dimensions	colorless block. $0.80 imes 0.40 imes 0.40 ext{ mm}^3$
	temp	293(2) K
	lattice params	a = 12.110(10) Å
	· · · · · I · · · · ·	b = 18.653(7) Å
		c = 17.509(10) Å
		$\beta = 109.66(6)^{\circ}$
		$V = 3724(4) Å^3$
	space group	$P2_{1}/c$ (No. 14)
	Z	4
	 Dcalcd	1.339 g cm^{-3}
		1552
	diffractometer	Rigaku AFC6S
	radiation	Mo K α ($\lambda = 0.7107$ Å), graphite-monochromated
	transmission coefficients	0.89 (min). 1.00 (max), determined from average of
		10 azimuthal scans
	linear attenuation coefficient. μ (Mo K α)	1.163 mm^{-1}
	scan type	$\omega - 2\theta$
	θ range	2.51-25.01°
	index ranges	$0 \le h \le 14, 0 \le k \le 22, -20 \le l \le 19$
	no. of rflns meas	7129
	no. of indep rflns	$6791 \ (R_{\rm int} = 0.051)^a$
	data/restraints/param	6514/0/303
	refln/param ratio	21.5
	goodness of fit indicator on F^2	1.068
	residuals. R^b	
	$[I_0 > 2\sigma(I_0)]$ 4950 data	R1 = 0.0375, $wR2 = 0.0908$
	all data	R1 = 0.0688, $wR2 = 0.2342$
	max peak in final diff map	$0.49 e Å^{-3}$
	min peak in final diff map	−0.50 e Å ⁻³
- D/I		
^a R(in	$t) = \sum F_0^{\alpha} - F_0^{\alpha} (\text{mean}) / \sum (F_0^{\alpha}). \ ^{D} RI = \sum F_0 - F_0 / \sum F_0 , \ \text{wR2}$	$\zeta = \{ \sum [W(F_0^{2} - F_c^{2})^{2}] / \sum [W(F_0^{2})^{2}] \}^{1/2}.$

ated upon photolysis of the dihydride complex cis-Ru(dmpm)₂H₂. The UV-vis spectra of Ru(dmpm)₂ obtained in solution at 295 K and in matrices at 12 K do not exhibit the three-band pattern characteristic for $Ru(drpe)_2$ (drpe = dmpe, depe, dppe) but do retain an absorption band between 500 and 600 nm. We postulate that $Ru(dmpm)_2$ has a planar RuP_4 skeleton of D_{2h} symmetry and that the UV-vis spectra are sensitive to variation in the bite angle P-Ru-P, which is reduced from ca. 84° in Ru(dmpe)₂ to ca. 72° in Ru(dmpm)₂. Reaction with benzene is observed by laser flash photolysis. The kinetics are explained by assuming a fast equilibrium between Ru(dmpm)₂ and the arene complex $Ru(dmpm)_2(\eta^2-C_6H_6)$ and a much slower conversion to the phenyl hydride complex Ru(dmpm)₂(Ph)H. Ru-(dmpm)₂ reacts with H₂, CO, C₂H₄, and Et₃SiH with similar rate constants to those of Ru(dmpe)₂ but proves to be less selective.

Experimental Section

General Methods and Materials. Ruthenium trichloride was obtained as a loan from Johnson Matthey, and dmpm was obtained from Strem. Triethylsilane was purchased from Aldrich and stored over activated 3 Å molecular sieves. Ru(dmpm)₂H₂ was prepared by literature procedures.⁵ The hydride region of the ¹H NMR spectrum showed resonances for the *cis*-isomer at δ -8.11 and for the *trans*-isomer at δ -6.15 in a ratio of at least 80:1. Compounds were synthesized and handled using standard Schlenk, high-vacuum, and glovebox techniques. Solvents for synthesis (AR grade) were dried by refluxing over sodium/benzophenone (hexane, benzene, toluene, THF, Et₂O) or P₂O₅ (CH₂Cl₂) and then distilled under an argon atmosphere, while solvents for flash photolysis (Aldrich, HPLC grade) were refluxed over calcium hydride under argon. Benzene- d_6 and THF- d_8 (Goss Scientific Instrument, Ltd.) were dried by stirring over potassium/benzophenone and then vacuum transferred. Gases used for the matrix experiments (Ar, CH₄) and for the flash experiments (Ar, H_2 , CO, C_2H_4) were BOC research grade (99.999% purity).

Matrix Isolation Experiments. The matrix isolation apparatus is described in detail elsewhere.¹⁹ Samples for IR spectroscopy alone were deposited onto a CsI window cooled by an Air Products CS202 closed-cycle refrigerator to 12-25 K. A BaF₂ window was used for combined IR and UV-vis spectroscopy. The outer windows of the vacuum shroud were chosen to match. Ru(dmpm)₂H₂ was sublimed from rightangled glass tubes (at 333 K) at the same time as a gas stream entered the vacuum shroud. Temperatures and rates of deposition were 20 K for Ar (2 mmol h^{-1}) and 25 K for CH₄ (2 mmol h⁻¹). The samples were cooled to 12 K before recording the IR spectra on a Mattson Unicam Research Series FTIR spectrophotometer fitted with a TGS detector and a CsI beam splitter, which was continuously purged with dry CO₂-free air. Spectra were recorded at 1 cm⁻¹ resolution with 128 scans coaveraged (25 K data points with two-times zero filling). UV-vis spectra were recorded on the same sample at the same temperature on a Perkin-Elmer Lambda 7G spectrophotometer. Matrices were photolyzed through a quartz window with an ILC 302UV 300 W Xe arc equipped with either UVreflecting (200-400 nm) or visible-reflecting (400-800 nm) mirrors and a water filter. Photolysis wavelengths were selected with cutoff or interference filters.

Laser Flash Photolysis. The apparatus for flash photolysis experiments has been described in detail elsewhere.² Briefly, a XeCl excimer laser (308 nm) is used as the excitation source, and a Xe arc lamp is used as a monitoring source. The Xe arc is pulsed for measurements on short time scales (<250 μ s), and otherwise the Xe arc is used in a continuous mode. The spectrometer is linked to a digital oscilloscope (Tektronix TDS 520), and the system is controlled by a PC. Transient signals are usually collected as 12- or 16-shot averages.

Samples of $Ru(dmpm)_2H_2$ for flash experiments were sublimed immediately before use and handled in the glovebox

⁽¹⁹⁾ Haddleton, D. M.; McCamley, A.; Perutz, R. N. J. Am. Chem. Soc. 1988, 110, 1810.

cis-Ru(dmpm)₂H₂

exclusively. The samples were loaded into a quartz cuvette (10-mm path length) fitted with a Young's PTFE stopcock and degassing bulb. Solvent was added via cannula under argon on a Schlenk line fitted with a diffusion pump. The sample was degassed three times by freeze-pump-thaw cycles before being back-filled to 760 Torr with the appropriate gas. Gas mixtures were made up manometrically in 1-L bulbs such that the total pressure in the cell was typically 760 Torr. Liquid quenchers were added with a microliter syringe. The absorbances of the sample were typically 0.5-1.0 at 308 nm. Variable temperature measurements were made by replacing the standard cell holder by an insulated holder mounted on a block through which thermostated water was passed. Decays have been analyzed by linear least-squares regression methods after conversion to absorbance using inhouse software or by fitting the decays using Microcal Origin software. The error bars on the second-order rate constants are quoted as 95% confidence limits.

NMR Spectroscopy. The NMR spectra were recorded with either a Bruker MSL 300, Bruker AMX 500, or JEOL 270 spectrometer. The ¹H NMR chemical shifts were referenced to residual C₆D₅H at δ 7.13. The ³¹P{¹H} NMR chemical shifts were referenced externally to H_3PO_4 at $\delta = 0$.

Photolysis of Ru(dmpm)₂H₂ in Et₃SiH. cis-Ru(dmpm)₂H₂ (20 mg, 0.05 mmol) was dissolved in a mixture of hexane: Et₃SiH (1.5:0.5 mL) and photolyzed in an ampule with a Philips HPK 125-W medium-pressure mercury arc and water filter for ca. 5 h. Removal of the solvent and analysis of the residue by NMR spectroscopy showed the formation of cis-Ru(dmpm)₂(SiEt₃)H in 85% yield.

cis-Ru(dmpm)₂(Et₃Si)H: ¹H NMR (benzene- d_6 , 270 MHz) δ -8.81 (dq, RuH, $J_{\text{trans}} = 68.2$ Hz, $J_{\text{cis}} = 20.4$ Hz), 0.52 (q, RuSiC H_2 CH₃, $J_{HH} = 7.9$ Hz), 1.54 (t, RuSiCH₂C H_3 , $J_{HH} = 7.9$ Hz), 1.0-1.5 (m, PCH₃), 3.0-3.4 (m, PCH₂P). ³¹P{¹H} NMR (benzene- d_6 , 109.3 MHz) δ -19.3 (P_A), -25.5 (P_B), -33.8 (P_M), -5.1 (P_Q) ($J_{AB} = 255.3$, $J_{AM} = 56.3$ Hz, $J_{AQ} = 37.6$ Hz, $J_{BM} =$ 32.9 Hz, $J_{BQ} = 61.0$ Hz).

X-ray Structure of cis-Ru(dmpm)₂H₂. Crystals of the dihydride suitable for single-crystal X-ray diffraction were obtained by recrystallization from hexane at 253 K. A brief summary of crystallographic details is given in Table 4. Selected bond lengths and angles are given in Tables 2 and 3. The structure was solved using Patterson methods with SAPI9²⁰ and expanded using Fourier techniques with DIRDIF.²¹ The structure was refined using full-matrix least-squares on

F² with SHELXL93.²² All non-hydrogen atoms were refined anisotropically. The hydrides H(1), H(2), H(3), and H(4) were located in a Fourier difference map and were refined isotropically. All other hydrogen atoms were refined using a rigid model: $C_{sp^3}(CH_3) - H = 0.96$ Å, $C_{sp^3}(CH_2) - H = 0.97$ Å with $U_{iso}\{H[C_{sp^3}(CH_3)-H]\} = 1.5 U_{eq}(C_{sp^3}), U_{iso}\{H[C_{sp^3}(CH_2)-H]\} =$ 1.2 $U_{eq}(C_{sp^3})$. The asymmetric unit contains the two enantiomers related by an apparent center of symmetry. Accordingly, the lattice was checked carefully for higher symmetry, revealing a near C-centered orthorhombic cell ($\gamma = 90.57^{\circ}$). However, a precession-photograph simulation of the data did not have the appropriate Laue symmetry, and this higher symmetry cell was rejected. The monoclinic cell, based on the near C-centered orthorhombic cell, was also tested for possible twinning by applying the appropriate twin-law matrix to the data. Refinement of the BASF parameter in SHELXL93 indicated that no twinning was present. The structure is displayed in Figure 8 with the ORTEP routine.²³ Structure searches were carried out on the Cambridge structural database.24

Acknowledgment. We acknowledge the European Commission for financial support. We are extremely grateful to Dr D. Dukic for his help in interfacing and development of the software for the flash photolysis apparatus and to Mr. D. Pattison for helpful discussions. We also acknowledge the help of Mr L. Cronin with the X-ray crystallography.

Supporting Information Available: X-ray crystallographic data on cis-Ru(dmpm)₂H₂, including tables of atomic coordinates, bond lengths and angles, anisotropic displacement parameters, hydrogen coordinates and U_{eq} , and packing diagram (10 pages). Ordering information available on any current masthead page.

OM961018E

⁽²⁰⁾ Hai-Fu, F. Structure Analysis Programs with Intelligent Control;

⁽²⁰⁾ Hai-Fu, F. Structure Analysis Programs with Intelligent Control;
Rigaku Corporation: Tokyo, Japan, 1993.
(21) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, G.;
Garcia-Granda W. P.; Gould, R. O.; Smiths, J. M. M.; Smykall, C. The DIRDIF Program System. Technical Report of the Crystallography Laboratory; University of Nijmegen: The Netherlands, 1992.
(22) Sheldrick, G. M. SHELXL93. Program for crystal structure refinement. University of Göttingen: Germany, 1993.
(23) Johnson C. K. ORTEP Report ORNL 5138 Oak Bidge National

⁽²³⁾ Johnson, C. K. ORTEP Report ORNL-5138, Oak Ridge National Laboratory: Oak Ridge, TN, 1976.
(24) Fletcher, D. A.; McMeeking, R. F.; Parkin, D. J. J. Chem. Inf.

Comput. Sci. 1996, 36, 746.