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Various structural (C—C bond length equalization, D), energetic (isodesmic stabilization
energies, ISE), and magnetic (diamagnetic susceptibility exaltations, A and nucleus-
independent chemical shifts, NICS) criteria are employed (using B3LYP, CSGT, and GIAO
ab initio methods) to assess the aromaticity and antiaromaticity of a variety of group 14 (E
= C, Si, Ge, Sn, Pb) metalloles: C4H4EH; (C), C4H4sEH™ (Cs and Cyy; C, Dsp), C4H4sEH*
(singlet, Cy), C4H,EHLI (Cs; C, Csy), and C4H4ELI; (Coy). In addition, structural trends are
established for C4H4ELi~ (Cs) and for C4H4E?~ (Cy,) as well as for the singlet and triplet
C4sH4E (Cy,) sets. The increased pyramidality at E down group 14 results in strongly
decreased aromaticity of metallolyl anions C4H,EH™ (Cs). In contrast, all planar C4H,EH™
(C.y) geometries are significantly more aromatic. Although all C4H4EH™ (Cy,) structures
are planar, the antiaromaticity in singlet CsHs™ is much higher than that of the heavier
congeners (E = Si to Pb). The four-z-electron singlets C,H,E exhibit nearly as localized
geometries as the C4H,EH™ ions, but the C,H,E triplets are more delocalized. As in the
free anions, pyramidally coordinated E’s lead in C4H,EHL. (C) to reduced aromaticity, but
stabilizing Li—H interactions are apparent in these structures. The metallole dianions and
their Lit complexes (e.g. C4H4ELiy, Cy,) are the most aromatic among the species studied.
The aromaticity in these dianionic metalloles is remarkably constant in going from E = C
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to E = Pb.

Introduction

The substantial aromaticity of the cyclopentadienyl
anion and of many six-z-electron C4H4E heterocycles?!
(e.g. pyrrole and thiophene)? has inspired a search for
group 14 congeners (E = SiH™ to PbH™).2 The lower
degree of conjugation and aromaticity in C4H4E (Cs, E
= SiH~, PH) relative to their second-period congeners
(Cov, E = CH™, NH) is due to the pyramidal environ-
ments at the heteroatoms.* The pyramidalization prob-
lem does not arise when divalent second-row groups are
involved, e.g. in thiophene and the phospholyl anion.®

The results of early studies on metallole anions were
frustrating; “despite considerable effort no silaaromatic
compounds have yet been isolated”® and “attempts to

® Abstract published in Advance ACS Abstracts, March 15, 1997.
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confirm the aromaticity of germolyl anions by #°-
coordination to transition metals have been unsuccess-
ful”.” However, progress in metallole chemistry now has
improved this situation dramatically.

Freeman et al. first established the 7°-coordination
of germolyl (1)8 and of silolyl (2, 3)° moieties in Ru
complexes by X-ray crystal diffraction and NMR studies.
The analogy to 75-cyclopentadienides in transition-metal
complexes is apparent.

Ru—

T

&Ir\s"‘i
/Z< ~—Si(SiMey);

Based on the upfield 6(*3C,) and downfield 3(?°Si)
chemical shifts, Hong and Boudjouk suggested that 4
was delocalized and aromatic.1°® However, earlier 6(*H)

(6) Apeloig, Y. In The Chemistry of Organic Silicon Compounds;
Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1989; p 151
and references therein.

(7) Colmer, E.; Corriu, R. J. P.; Lheureux, M. Chem. Rev. 1990, 90,
265 and references therein.

© 1997 American Chemical Society



Downloaded by CARLI CONSORTIUM on June 30, 2009
Published on April 15, 1997 on http://pubs.acs.org | doi: 10.1021/om960994v

1544 Organometallics, Vol. 16, No. 8, 1997

(CH3) NMR data on the methyl derivative 5 were
considered to be consistent with a high negative charge
on Si rather than significant charge delocalization.!!
Likewise, Dufour et al. concluded from the deshielded
0(*3Cqp) value in 6 that “the negative charge is localized
on the germanium atom”.12

Ph Ph Ph Ph Me Me
Ph igl)_/i Ph Phﬂ\l’h MC/Z/ \E\Me
S + -
1-Bu L !
4 5 6

In view of such different conclusions, we have under-
taken a comprehensive analysis of metallole aromatic-
ity. We employed structural, energetic, and magnetic
criteria for aromaticity to assess the aromaticity and
antiaromaticity of a large set of five-membered-ring
heterocycles.? Using the same methods, significant
aromatic character was found for the parent silolyl
anion C4H4SiH™ (7, Cu; 8, Cs; MP2/6-314+G**),13 in
contrast to earlier studies at lower theoretical levels.'*
The aromaticity of 8 is enhanced by 75-Li* complexation
in C4H4SiHLI (9).13

Li

H

C2v Cs Cyg
7 8 9

Freeman et al.’s X-ray crystal structure of the coun-
terion-separated germolyl anion 10 showed localized
C—C bonds (Co—Cs = 1.36 A, C4—Cs = 1.46 A) and a
pyramidal Ge (angle sum 281°) environment.’> How-
ever, Ru 7z® coordination to the germolyl anion 10
resulted in a significantly more delocalized germolyl
geometry in 1 (C,—Cs = 1.42 A, Cs—Cs = 1.42 A, angle
sum at Ge 358°).8 Similarly, increased delocalization
due to counterion coordination was found computation-
ally for 75-C4H4SiHLi (9; Co—Cps = 1.420 A, Cs—Cp =
1.424 A, angle sum at Si 340.2°) relative to 8 (C,—Cp =
1.399 A, C4—Cs = 1.433 A, angle sum at Si = 321.6°).13
The germolyl and silolyl moieties of 11 (C,—Cs = 1.34
A, Cs—Cs = 1.47 A, angle sum at Ge 295°), 12 (C,—C;s
=1.33 A, C4—Cs = 1.48 A, angle sum at Ge 291°) and
13 (C—Cp=1.36 A, C4—Cs = 1.45 A, angle sum at Ge
279°) exhibit localized C—C bonds and pyramidal ring
heteroatom environments.®

Hong et al. synthesized and characterized the tris-
germole 1417 and found #! o(Ge) (6("Li) = —0.9) as well
as n*/n® m-bonded Li ions (5("Li) = —5.0).18
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(14) (a) Gordon, M. S.; Boudjouk, P.; Anwari, F. 3. Am. Chem. Soc.
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Decreased conjugation due to pyramidalization at the
heteroatom is not present in metallole dianions (i.e.:
C4H4E?", E = C to Pb). In 1987 Joo, Park, Kang, and
Hong reported the first synthesis of a silole dianion with
sodium (16-Na) and potassium (16-K) counterions.1®
Subsequently, the 13C NMR data of 16-Na were pub-
lished?® and the lithium derivative 16-Li was synthe-
sized in THF solution; the upfield 6(*3C) and the
downfield 6(?°Si) displacements in 16-Li (relative to 15)
were attributed to charge delocalization and aromatic-
ity.2l Indeed, our analysis of structural, energetic and
magnetic criteria of the silole dianion C4H4Si?~ (and its
alkali-metal ion pairs) revealed a high degree of aro-
maticity.??2 The aromatic stabilization energy (ASE) of
n°-C4H4SiLi~ (36.4 kcal/mol) even exceeded that of the
isoelectronic phosphole #°-C4H4PLi~ (ASE = 34.1 kcal/
mol) and thiophene 7%-C4H,SLi* (ASE = 27.1 kcal/mol)
analogues.??2 In contrast, electron-withdrawing chlo-
rines resulted in rather strongly alternating C—C silole
distances (C,—Cs = 1.35 A, Cs—Cs = 1.54 A) in the X-ray
crystal structure of the 1,1-dichlorosilole C4Ph,SiCl,
(15), consistent with some degree of antiaromatic char-
acter.??
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X-ray crystal structures of 16-Li (5 THF)?3 and of 1724
showed 7° alkali-metal coordinations and nearly equal
C—C bond lengths (C,—Cs = 1.44 A, Cs—Cz = 1.43 Ain
16-Li; Co—Cp = 1.39 A, C4—Cs = 1.44 Ain 17).

[K(18-crown-6)]

[K(18-crown-6)]
16-Li (5 THF) 17

West et al. crystallized the polar dilithium germole
18 at —20 °C as a 7°/5® species and at +25 °C as n/5°
complex.?> Freeman et al. characterized a columnar
structure of the dipotassium germole 19.16

0
Oy =
~ Li/

18-nl/ns

(18-crown-6)

K
(18-crown-6)
19

The nearly equal C—C distances in the X-ray crystal
structures of 18-5%/n° (C,—Cps = 1.43 A, C4—Cs = 1.45
A), of 18-y'/n° (Ca—Cp = 1.42 A, C4—Cs = 1.44 A), and
of 19 (C,—Cs = 1.43 A, Cs—Cs = 1.43 A) point to
delocalized m-systems.

(23) West, R.; Sohn, H.; Bankwitz, U.; Calabrese, J.; Apeloig, Y.;
Maller, T. 3. Am. Chem. Soc. 1995, 117, 11608.

(24) Freeman, W. P.; Tilley, T. D.; Yap, G. P. A.; Rheingold, A. L.
Angew. Chem. 1996, 108, 960; Angew. Chem., Int. Ed. Engl. 1996, 35,
882.

(25) West, R.; Sohn, H.; Powell, D. R.; Muller, T.; Apeloig, Y. Angew.
Chem. 1996, 108, 1095; Angew. Chem., Int. Ed. Engl. 1996, 35, 1002.
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Scheme 1. Interrelationships of Metallole
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aE = C (except for 21), Si, Ge, Sn, Pb. 22-C has Dsp
symmetry, 26-C has Cs, symmetry, and 23-C is a singlet.

The increasing number of such metalloles which are
being reported prompts the quantitative, systematic
evaluation of their aromatic character. What trends can
be expected for these metalloles in going down group
14? We now compute structural, energetic and mag-
netic criteria to assess comprehensively the aromatic
(or antiaromatic) degree in a variety of anionic and
cationic group 14 metallole species (Scheme 1).

Results and Discussion

Structures and Energies. Nearly equal C—C bond
lengths indicate delocalized z-systems.?26 The degree
of C—C bond equalization in the metallole rings of 20—
29 (Figures 1—-7, Chart 1, Table 1) is given most simply
by the difference in the Cs—Cg and C,—Cg bond lengths,
D_26

Deprotonation of 1,1-dihydrometalloles 20 decreases
the C—C bond length differences, D, in 21 and in 22
(Figure 8). As one goes from C to Pb, the D’s increase
(the differences in C—C bond lengths are larger) in 20,
in 21 (strongly), and in 22 (slightly; Figure 8). The C—C
bond length alternation in 21 even approaches that of
20 for the heavier metalloles (E = Sn, Pb; Figure 8).
Significant C—C bond length alternations and pyrami-
dal heteroatom environments were found in the X-ray
crystal structures of the anions of 10 (D = 0.10)'® and
of 11 (D = 0.13).16

Pyramidality at the trivalent heteroatoms (measured
by the angle sums at E) in 21-Si to 21-Pb (Figure 2)
results in decreased conjugation and larger differences
in C—C bond lengths.?’” The angle sums at E correlate
linearly with the D values for 21 from C to Pb (Figure
9). The more pyramidal species have the largest inver-

(26) D = (C4Cp—CyCp). Julg's parameter relates the bond length
equalization to benzene; see refs 2, 13, 22, and: (a) Julg, A.; Francois,
P. Theor. Chim. Acta 1967, 7, 249. (b) Kerk, S. M. v. d. J. Organomet.
Chem. 1981, 215, 315.

(27) For a discussion of the high inversion barriers in trivalent heavy
elements, see ref 4.
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Figure 1. Optimized geometries (B3LYP/6-31+G* (C, H),
/LanL2DZdp (E)) of 1,1-dihydrometalloles 20 (C,,). Bond
distances are given in A,

sion barriers: the pyramidality at E and the inversion
barriers (21 — 22) increase from C to Pb (Table 2).%8
Accordingly, inversion barriers were measured by dy-
namic NMR to be higher for germolyl anions than for
silolyl anions: [(C4EtsGeSiMes][Li(12-crown-4),] (10.5(1)
kcal/mol), C4Et;GeSiMesK (9.4(1) kcal/mol), [C4Ets-
SiSiMes][Li(12-crown-4);] (< 8.4 kcal/mol), and C4Et;,-
SiSiMezK (<8.4 kcal/mol).16

Relative to the dimethyl derivatives 30 and 31, the
inversion barriers in the metallolyl anions 21 and 22
are reduced more strongly for Si (by 26.6 kcal/mol) and
for Ge (by 25.9 kcal/mol) than for Sn (by 18.4 kcal/mol)
and Pb (by 20.1 kcal/mol; Tables 2 and 3).

g CH; - .CH;
/ CH; H=E~cH,
H

30 C, 31Cy,

E=C, Si, Ge, Sn, Pb

Both the degree of planarity at E and the EH—Li
distances decrease from C to Pb in the #®-lithium
metallolides 26 (Figure 5). Asin 21, a linear correlation
between the angle sums at E and the C—C bond length
equalization (D, Figure 10) is apparent (Figure 9).
Relative to the free dianions 27, »°-Li* complexation
results in more equalized C—C distances in both 28 and
in 29; this is especially evident for the heavier metalloles
(Figure 10).

The metallolyl cations 23 prefer planar C,, geometries
(Figure 4). The four s-electrons increase the degree of
C—C bond length alternation due to antiaromaticity for
Si to Pb, but this increase is significantly larger in the

(28) The inversion barriers and the pyramidalities of silyl anions
and amine ground states are related: (a) Damewood, J. R., Jr.; Hadad,
C. M. J. Phys. Chem. 1988, 92, 33. (b) Stackhouse, J.; Baechler, R. D.;
Mislow, K. Tetrahedron Lett. 1971, 37, 3437, 3441.
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Figure 2. Optimized geometries (B3LYP/6-31+G* (C, H),
/LanL2DZdp (E)) of metallolyl anions 21 (Cs). Bond dis-
tances are given in A,

Figure 3. Optimized geometries (B3LYP/6-31+G* (C, H),
/LanL2DZdp (E)) of planar metallolyl anions 22 (C,,; 22-
C, Dsh). Bond distances are given in A.

highly antiaromatic singlet 23-C2° (Figure 11). The
singlet metallacyclopentadienylidenes 24-C3° to 24-Pb
show a dependence of D similar to that for 23 (Figure
11), due to a similar four-z-electron structure. The

+
N 0 Q
gy D TDEQD
8 é )
23 (1A, Cyy) 24 (144, Cyy) 25 (3B}, Cyy)

electron configurations in the 3By triplets result in more
equalized C—C lengths (lower D values) in all the 25
species (Figure 11). Triplet 25-C is more stable than

(29) (a) Glukhovtsev, M. N.; Bach, R. D.; Laiter, S. J. Phys. Chem.
1996, 100, 10952. (b) Glukhovtsev, M. N.; Reindl, B.; Schleyer, P. v.
R. Mendeleev Commun. 1993, 100.

(30) For consistency, C,, geometries were employed for all met-
allolylidenes (C to Pb). For earlier computations on cyclopentadi-
enylidene see: (a) Collins, C. L.; Davy, R. D.; Schaefer, H. F., I11. Chem.
Phys. Lett. 1990, 171, 259. (b) Bofill, J. M.; Bru, N.; Farras, J.; Olivella,
S.; Solé, A.; Vilarrasa, J. 3. Am. Chem. Soc. 1988, 110, 3740.
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Figure 4. Optimized geometries (B3LYP/6-31+G* (C, H),
/LanL2DZdp (E)) of metallolyl cations 23 (C,,). Bond
distances are given in A,

singlet 24-C, but the singlet structures 24 are lower in
energy for Si to Pb (Table 4).

The isodesmic stabilization energies (ISE) of 21—-23,
26, and 29 relative to the 1,1-dihydrometalloles 20 and
acyclic reference compounds can be assessed by eq 1
(Tables 5—8).31

Evaluation of isodesmic stabilization energies (ISE):*!

_EMe, E@
H'30 ¢, H arc,
H—EMe, H—E{]

31 Cav 22 Cay

H + = H
H—EM H—E =
= G 5 - L - EMe,

32 C2 e 23 Coy H 35 C2
A
20 Cav H\ Li
EMe H
A 26 C
$
EMe E
L’ c2
L 4 Coy 29 Li C2V (1)

The ISEs of planar 22 are more negative than those
of 21 with pyramidal heteroatoms (Figure 12); this
indication of higher aromaticity is consistent with the
degree of C—C bond length equalization (Figure 8). The
stabilization in the lithium complexes 26 increases from
26-Si to 26-Pb; however, this is not due to a higher
degree of aromaticity but is due to an increase in the

(31) Interactions between lithiums and methyl groups in 33 and 34
can result in more stable minimum structures with planar tetracoor-
dinate E environments. For consistency, all 33 and 34 geometries were
computed with tetrahedrally coordinated E's.
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Figure 5. Optimized geometries (B3LYP/6-31+G* (C, H),
/LanL2DZdp (E)) of lithium metallolides 26 (Cs; 26-C, Cs,).
Bond distances are given in A,

Figure 6. Optimized geometries (B3LYP/6-31+G* (C, H),
/LanL2DZdp (E)) of lithium metallolyl anions 28 (Cs). Bond
distances are given in A.

stabilizing Lit—H~ interactions in 26-Ge to 26-Pb
(apparent from short Li—H distances, Figure 5).32 In
accord with the C—C bond length equalization values
(D) in Figure 11, the destabilization due to antiaroma-
ticity (positive ISE) in 23 is decreased for 23-Si to 23-
Pb relative to 23-C (Figure 12). The ISE's of the
dilithium metalloles 29-C to 29-Pb are the most nega-
tive and are remarkably constant for all group 14
species (Figure 12).

Magnetic Criteria. Diamagnetic susceptibility ex-
altations A provide a measure of the degree of aroma-
ticity.3® The A value is defined as the difference
between the diamagnetic susceptibility of the system

(32) For a discussion of the increase in aromaticity by Li* complex-
ation see refs 13 and 18b.
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Figure 7. Optimized geometries (B3LYP/6-31+G* (C, H),
/LanL2DZdp (E)) of dilithium metalloles 29 (C,,). Bond
distances are given in A,

Chart 1
Cp CB
Ca /F\\ Cy,

E
E=CtoPb

@ The geometrical data for singlet 24 (C,)), triplet 25 (C,)),
and E?~ 27 (Cy) are given in Table 1.

Table 1. Bond Distances (A) and Angles (deg) of
Singlet C/H4E (24, Cy,), Triplet C4,H4E (25, Cy,), and
C4H4E? (27, Cy) (Chart 1)2

E E—Cq Cu—Cs Cs—Cp Co—E—Cq
singlet C 1511 1.343 1.532 102.34
triplet C 1.429 1.377 1.483 112.93
c2- 1.437 1.435 1.423 103.22
singlet Si 1.925 1.348 1.502 87.57
triplet Si 1.835 1.372 1.468 96.49
Si2- 1.880 1.407 1.430 88.03
singlet Ge 2.023 1.348 1.499 84.66
triplet Ge 1.835 1.366 1.470 92.91
Ge?- 1.994 1.394 1.440 84.34
singlet Sn 2.200 1.350 1.495 80.20
triplet Sn 2.125 1.360 1.474 86.52
Sn2- 2.198 1.379 1.453 79.06
singlet Pb 2.268 1.349 1.493 78.44
triplet Pb 2.208 1.353 1.477 84.10
Pb2- 2.281 1.371 1.460 76.93

aB3LYP/6-31+G* (C, H), /LanL2DZdp (E) optimized geom-
etries.

under investigation (ym) and the diamagnetic suscepti-
bility for a hypothetical reference system without cyclic
electron delocalization (ym): A = xm — ym. We em-
ployed Scheme 2 for the calculation of yu (Table 9).
Strongly negative (aromatic) A values are computed
for the planar metallolyl anions 22 (Figure 13) and for
the dilithium metalloles 29 (Figure 14). The increasing
pyramidality at E from C to Pb both in 21 and in 26
gives rise to less negative A’s (Figure 13). The highly
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Figure 8. Bond length differences D of Cs—Cs and C,—Cp
distances in the metallole rings of 20—22.
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Figure 9. Correlation between the angle sums at E and
the C—C bond lengths differences D of metallolyl anions
21 and their lithium complexes 26.

Table 2. Inversion Barriers of Metallolyl Anions

(21, 22)=
total energy ZPE inversion barrier

(au)? (kcal/mol)P (kcal/mol)©
22-C (Dsn) —193.534 78 49.33 (0) 0.0 (—4.93)
21-Si (Cs) —159.306 78 44.39 (0)
22-Si (Cyy) —159.297 06 44.12 (1) 5.83 (—26.58)
21-Ge (Cs) —159.188 44 43.44 (0)
22-Ge (C2y)  —159.166 38 43.32 (1) 13.73 (—25.89)
21-Sn (Cs) —158.788 82 42.45 (0)
22-Sn (Cy)  —158.747 99 42.46 (1) 25.63 (—18.40)
21-Pb (Cs) —158.867 45 41.71 (0)
22-Pb (C2y) —158.807 82 41.98 (1) 37.69 (—20.12)

aB3LYP/6-31+G* (C, H), /LanL2DZdp (E) optimized geom-
etries. P B3LYP zero-point energies; number of imaginary frequen-
cies in parentheses. ¢ Reduced inversion barriers relative to the
corresponding Me;EH™ anions (see Table 3).

positive A value of 23-C points to strong antiaromatic-
ity, while the A’s of the heavier metalloles 23-Sn and
23-Pb approach the lower values of 20 (Figure 14).

(33) (a) Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. 3. Am. Chem.
Soc. 1968, 90, 811. (b) Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J.
Am. Chem. Soc. 1969, 91, 1991. (c) Dauben, H. J., Jr.; Wilson, J. D.;
Laity, J. L. In Nonbenzenoid Aromatics; Snyder, J. P., Ed.; Academic
Press: New York, 1971; Vol. Il, p 187 and references therein. For
further applications of A as a criterion for aromaticity see refs 2, 13,
22 and: Simion, D. V.; Sorensen, T. S. J. Am. Chem. Soc. 1996, 118,
7345. Deviations among A values for identical systems are due to the
use of different increment schemes to estimate yw and different
methods (e.g. IGLO or CSGT) for the susceptibility y computations.
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Table 3. Inversion Barriers of Me,EH~ Series 30
(Cs) and 31 (Czv)?
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Table 4. Singlet—Triplet Splitting in
Metallolylidenes 24 and 252

total energy ZPE inversion barrier total energy ZPE singlet 24 vs
(au)2 (kcal/mol)P (kcal/mol) (au)2 (kcal/mol)® triplet 25 (kcal/mol)
30-C (Cy) —118.468 56 53.96 (0) 24-C (*A1, Cy) —192.746 12 41.55 (1)
31-C (Cw) —118.458 42 52.53 (1) 4.93 25-C (®By1, C2y) —192.784 81 42.09 (0) +23.74
30-Si (Cs) —84.320 00 49.52 (0) 24-Si (*A1, Cp) —158.623 84  40.04 (1)
31-Si (Cy) —84.268 75 49.77 (1) 32.41 25-Si (®B1, C2y) —158.60516 40.53 (0) -12.21
30-Ge (Cs) —84.210 01 48.32 (0) 24-Ge (YA, Cy) —158.52500 39.64 (0)
31-Ge (C) —84.148 23 49.17 (1) 39.62 25-Ge (°By, C2y) —158.49121 39.79 (0) —20.79
30-Sn (Cs) —83.818 27 47.12 (0) 24-Sn (*A1, Cy) —158.13817 39.35 (0)
31-Sn (Cy) —83.749 81 48.19 (1) 44.03 25-Sn (®By, Coy) —158.09499 39.19 (0) —26.94
30-Pb (Cs) —83.899 12 46.25 (0) 24-Pb (*A1, C2y) —158.23035 39.07 (0)
31-Pb (Cu) —83.809 68 47.94 (1) 57.81 25-Pb (°By, C2y) —158.17381 38.04 (0) —34.45

aB3LYP/6-31+G* (C, H), /LanL2DZdp (E) optimized geom-
etries. ® B3LYP zero-point energies; number of imaginary frequen-
cies in parentheses.
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Figure 10. Bond length differences D of Cs—Cg and C,—
Cp distances in the metallole rings of 26—29.
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Figure 11. Bond length differences D of C3—Cg and C,—
Cp distances in the metallole rings of 23—25.

Nucleus-independent chemical shifts (NICS) com-
puted at ring centers (nonweighted mean of the heavy-
atom coordinates)3* are efficient probes for dia- and
paratropic ring currents, associated with aromaticity
and antiaromaticity, respectively.3®> The planar met-
allolyl anions 22 exhibit more negative NICS’s (Table
10) than the anions in the nonplanar geometries 21-Si
to 21-Pb (Figure 15). This is consistent with larger ring

(34) The different NICS positions in planar and nonplanar molecules
give rise to NICS values, which are not comparable directly.

(35) NICS is based on computed absolute magnetic shieldings with
the signs reversed to conform to the experimental NMR conventions:
Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J.
R. v. E. J. Am. Chem. Soc. 1996, 118, 6317.

aB3LYP/6-31+G* (C, H), /LanL2DZdp (E) optimized geom-
etries. P B3LYP zero-point energies and number of imaginary
frequencies in parentheses.

Table 5. Isodesmic Stabilization Energies (ISE; Eq
1) of Nonplanar (21) and Planar (22) Metallolyl
Anions?

total energy ZPE
(au)? (kcal/mol)p ISE (kcal/mol)®

20-C (Czy) —194.11033 58.13(0) —63.16 (for 30—C, pyramidal)
35-C (C,y) —119.148 44 65.07 (0) —68.09 (for 31—C, planar)
20-Si (C») —159.89191 51.59(0) —23.10 (21-Si)

35-Si (Ca) —84.94229 56.94(0) —49.68 (22—Si)

20-Ge (C,y) —159.75940 50.32(0) —18.00 (21—Ge)

35-Ge (Czy) —84.81033 55.62(0) —43.90 (22—Ge)

20-Sn (Cz) —159.34087 48.65(0) —13.80(21—Sn)

35-Sn (C») —84.39285 53.66(0) —32.20(22—Sn)

20-Pb (C,y) —159.396 02 47.95(0) —11.90 (21—Pb)

35-Pb (C,) —84.44757 53.06(0) —32.03(22—Pb)

aB3LYP/6-31+G* (C, H), /LanL2DZdp (E) optimized geom-
etries. P B3LYP zero-point energies; number of imaginary frequen-
cies in parentheses. ¢ Energies of 21, 22, 30, and 31 are given in
Tables 2 and 3.

Table 6. Isodesmic Stabilization Energies (ISE; Eq
1) of Metallolyl Cations 232

total energy ZPE ISE
(au)? (kcal/mol)° (kcal/mol)©

32-C (Cy) —118.212 70 55.61 (0)
23-C (Cav) —193.155 50 50.05 (0) 13.36
32-Si (Cy) —84.036 63 50.77 (0)
23-Si (Cyy) —158.978 27 46.21 (0) 5.80
32-Ge (Cy) —83.918 78 50.14 (0)
23-Ge (C) —158.859 33 45.29 (0) 5.80
32-Sn (Cy) —83.519 58 49.18 (0)
23-Sn (Cyy) —158.459 00 44.28 (0) 5,51
32-Pb (Cy) —83.591 07 48.93 (0)
23-Pb (C) —158.530 40 43.72 (0) 5.62

aB3LYP/6-31+G* (C, H), /LanL2DZdp (E) optimized geom-
etries. P B3LYP zero-point energies; number of imaginary frequen-
cies in parentheses. ¢ Energies of 20 and 35 are given in Table 5.

currents and higher aromaticity in the planar species.
The lithium metallolides 26 and the free anions 21 show
similar trends from C to Pb again, due to the increased
pyramidality at E (Figure 15). The large positive
(antiaromatic) NICS of 23-C (+49.2) is exceptional; the
NICS in 23-Si (+18.6) is much smaller and decreases
down the group to 23-Pb (+5.2, Figure 16). The NICS’s
of 20-C to 20-Pb are displaced to more negative values
in 29-C to 29-Pb, reflecting the higher aromatic degree
of the dilithium species (Figure 16). Consistently, the
Li shielding!® decreases more strongly from C to Pb in
26 than in 29 (Figure 17).

Conclusions

Structural (the degree of C—C bond length equaliza-
tion, D), energetic (ISE), and magnetic (A, NICS)
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Scheme 2. Increment Scheme for the Evaluation of the Diamagnetic Susceptibilities y\' for Metallole
Reference Systems?®
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a The magnetic susceptibility of C,H groups is obtained from y(HsE—CH=CHy,) minus y(HsE), minus /,y(H.C=CH,). The y(HzE)
magnetic susceptibility is obtained from y(HsE—CH3s) minus /,y(HsC—CHs). Similarly, the magnetic susceptibility of CsH groups
is based on the mean values for dimethylethene and butadiene moieties. The magnetic susceptibilities of the element functionalities
(e.g. H2E) are obtained from y(H2E(CHs)2) minus y(HsC—CHs).

Table 7. Isodesmic Stabilization Energies (ISE; Eq
1) of Lithium Metallolides 262 ISE (kcal/mol)
total energy ZPE ISE 104 23
(au)2 (kcal/mol)® (kcal/mol)¢ 1 \
O..
33-C (Cy) —126.019 91 57.16 (0) .
26-C (Cs) —201.085 81 52.77 (0) —62.72 —107
33-Si (Cs) —91.844 96 51.88 (0) —204
26-Si (Cs) —166.842 73 47.23 (0) —29.51 10 1
33-Ge (Cs) —91.725 15 50.78 (0) ™
26-Ge (Cs) —166.720 78 45.87 (0) —28.83 —40-
33-Sn (Cy) —91.321 26 49.45 (0) 5] 21
26-Sn (Cs) —166.320 09 44.95 (0) —31.37 j 26
33-Pb (Cs) —91.388 83 48.90 (0) —60-]
26-Pb (Co) —166.405 62 44.40 (0) —42.27 7] 22\/__//\
aB3LYP/6-31+G* (C, H), /LanL2DZdp (E) optimized geom- _80] 29’] : ' . .
etries.3l P B3LYP zero-point energies; number of imaginary :
frequencies in parentheses. ¢ Energies of 20 and 35 are given in ] C ] Sl_ ] -GC _Sn Pb
Table 5. Figure 12. Isodesmic stabilization energies (ISE) accord-

. . . ing to eq 1.
Table 8. Isodesmic Stabilization Energies (ISE; Eq

1) of Dilithium Metalloles 292

Table 9. Magnetic Susceptibilities y and
Exaltations A (ppm cgs)?

total energy ZPE ISE

(au)2 (kcal/mol)® (kcal/mol)© 20 21 22 23 26 29
34-C (Ca) ~132.88812  49.46 (1) C 7w -4238 —5445 -5445 011 -5505 —54.79
29-C (Cav) ~207.97638  46.25 (0) ~75.57 Wy —3821 —36.43 —36.43 —28.32 —38.12 —30.09
34-Si (Cav) —98.74252  47.33(0) A —417 -1802 -1802 +2821 -16.93 -23.89
\?,}Z'g'e((%;)) lisgor2e 438 Eg; —r0.37 Si 4y —4142 -5548 —62.88 -22.79 —57.56 —66.70
) . , , - - - - - -
9ce(Cy) ATt 8BO o704 N ik iaer _szor ioar ieds 2s6r
Py oty _ . . . . . .
29-Sn (Ca)  —173.29703 4258 (0) —65.86 Ge i —4214 —5233 —6359 -2526 -54.82 —65.92
34-Pb (Ca) ~9831771 4537 (0) e —38.65 —4150 —4150 —28.65 —42.29 —4521
20-Pb (C»)  —173.38342 4224 (0) ~71.60 A —349 -10.83 -22.09 +339 -1253 -20.71

aB3LYP/6-31+G* (C, H), /LanL2DZdp (E) optimized geom-
etries.31 P B3LYP zero point energies; number of imaginary
frequencies in parentheses. ¢ Energies of 20 and 35 are given in
Table 5.

assessments of the aromaticity and antiaromaticity in
various group 14 metalloles result in the following
general conclusions.

(1) The aromaticity of the metallolyl anions C4H,EH™
(21, Cy) increases with decreasing pyramidality at the
heteroatom E (i.e. from Pb to C) and is significantly
higher for the planar C, geometries 22. Except for
CsHs™, the planar species are transition structures for
inversion. The barriers decrease from Pb to C.

Sn %y —43.05 -5156 -65.22 -29.34 -53.10 -69.00
I —39.78 —43.94 —43.94 -—28.82 —44.54 —49.89
L —-3.27 -7.62 -—-21.28 —-052 —856 —19.11

Pb zy —4411 -—-49.05 -6450 -—31.19 -50.23 -—65.26
o —40.37 —43.60 —-43.60 —-27.40 —-44.83 -50.30
L —3.74 —-545 -2090 —-3.79 540 -14.96

a CSGT-SCF/6-311++G** (C, H), /6-31G* (Li), /LanL2DZdp (E)
NMR computations; //B3LYP/6-31+G* (C, H), /6-31G* (Lli),
/LanL2DZdp (E) optimized geometries.

(2) The antiaromaticity in the singlet cyclopentadienyl
cation 23-C is strongly reduced in the heavier metalloles
and is about constant (D) or decreases only slightly (ISE,
A, NICS) from 23-Si to 23-Pb.

(3) Increased pyramidality at E decreases the aroma-
ticity in lithium metallolides C4H4,EHL.I (26, C;) to a



Downloaded by CARLI CONSORTIUM on June 30, 2009
Published on April 15, 1997 on http://pubs.acs.org | doi: 10.1021/om960994v

Aromaticity in Group 14 Metalloles

A4(ppm cgs)
o]
o]
1ol
1o
—14—- 21\
N
e
—20~_ 22/
92
—~24 ] T T

T T 1
C Si Ge Sn Pb
Figure 13. Magnetic susceptibility exaltations A of met-
allolyl anions 21 and 22 and their Li* complexes 26.
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Figure 14. Magnetic susceptibility exaltations A of 1,1-

dihydrometalloles 20, of metallolyl cations 23, and of
dilithium metalloles 29.

Table 10. Nucleus-Independent Chemical Shifts
(NICS’s; ppm)2 and (in Parentheses) é("Li) Values?

20 21 22 23 26 29
C —3.22 —-1432 —-1432 +49.22 —17.20(—9.0) —16.21(—9.2)

Si +6.15 —3.76 —10.60 +18.62 —0.96(-5.3) —0.53(—9.0)
Ge +412 —271 -11.78 +13.70 +0.46(-3.1) —5.41(-8.1)
Sn +352 -165 —10.76 +9.27 +1.49(-18) —6.88(—6.7)

Pb +052 —222 —1297 +523 +0.08(—1.6) —10.04 (—6.0)

a GIAO-SCF/6-31+G* (C, H), /6-31G* (L.i) [/6-311+G™ for (6(Li))],
/LanL2DZdp (E) NMR computations on B3LYP/6-31+G* (C, H),
/6-31G* (Li), /LanL2DZdp (E) optimized geometries. The reversed
signs of the absolute magnetic shieldings (computed at ring
centers, i.e. the nonweighted mean of the heavy-atom coordinates)
were used as the NICS values. ° Lit(H20)4, o(Li) = 91.9.

similar degree as in 21. However, Li—H interactions
between the 7%-bound Li's and the hydrogens of the
E—H bonds stabilize significantly the heavier metalloles
26-Sn and 26-Pb.

(4) The dilithium metalloles 29 are the most aromatic
among all these species, even more than the dianions.
This degree of aromaticity is remarkably constant for
the metallole dianions (or the Lit complexes) down
group 14.

Generally, both the aromaticity and the antiaroma-
ticity of heavier group 14 metalloles are less than those
of their carbon congeners. The increasing tendency
toward pyramidalization at heteroatoms in the trivalent
anionic species, and not an inherent 2p—3p overlap
problem,? results in decreased aromaticity of the heavier
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Figure 15. Nucleus-independent chemical shifts (NICS’s)

at ring centers of metallolyl anions 21 and 22 and their
LiT complexes 26.
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Figure 16. Nucleus-independent chemical shifts (NICS’s)

at ring centers of 1,1-dihydrometalloles 20, of metallolyl
cations 23, and of dilithium metalloles 29.
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Figure 17. The o("Li) values (vs Li*(H20)4, o(Li) = 91.9)
of lithium metallolides 26 and of dilithium metalloles 29.

metallolyl anions 21. However, this pyramidalization
bias is not present in the metallole dianions and their
lithiated derivatives, and highly delocalized aromatic
structures result.

Computational Details

All geometries were optimized in the symmetries given
using the gradient techniques implemented in GAUSSIAN 9436
with Becke’'s three-parameter hybrid exchange functional
incorporating the Lee—Yang—Parr correlation functional
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(Becke3LYP).%" The 6-31+G* and 6-311++G** basis sets were
used for C and H. For Si, Ge, Sn, and Pb four-valence-
electrons effective core potentials of Wadt and Hay (relativistic
for Pb) and the LanL2DZ basis sets,® augmented with s- and
p- diffuse basis functions®® and with d-polarization functions*°
(LanL2DZdp), were employed. The character of the stationary
points and the zero-point energy corrections were obtained
from analytical and, for the pseudopotential computations of
the Si to Pb systems, from numerical frequency calculations.
The magnetic susceptibility exaltations were computed with

(36) Gaussian 94, Revision C.3: Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman,
J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari,
K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.;
Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.;
Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L;
Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S;
Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez,
C.; Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1995.

(37) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang,
W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

(38) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.

(39) Clark, T.; Chadrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v.
R. J. Comput. Chem. 1983, 4, 294. The diffuse s and p function
exponents were obtained by multiplying the outermost functions of
the LanL2DZ basis by 0.25.

(40) Huzinaga, S. Gaussian Basis Sets for Molecular Calculations;
Elsevier: Amsterdam, 1984.

Goldfuss and Schleyer

the CSGT (continuous set of gauge transformations) method.*
Absolute chemical shieldings (the reversed signs give NICS
values)®® were computed with the GIAO (gauge-including
atomic orbitals) method.*?
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