Downloaded by CARLI CONSORTIUM on June 30, 2009 Published on April 29, 1997 on http://pubs.acs.org | doi: 10.1021/om970045h

Dimeric and Cyclotrimeric Piano-Stool Vanadium(III) **Dihalides with Unusual Differences in V-V Distance and** Magnetochemistry. Syntheses, Structures, and Reactivities of $(\eta - C_5 Me_4 R)_2 V_2 (\mu - Br)_4$ and the Trivanadium Cluster $(\eta$ -C₅Me₄R)₃V₃(μ -Cl)₆, New Mid-Valent **Organovanadium Synthons**

Ching Ting, Michael S. Hammer,¹ Norman C. Baenziger, and Louis Messerle*

Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242

James Deak, Shi Li, and Michael McElfresh*

Department of Physics, Purdue University, West Lafayette, Indiana 47907

Received January 24, 1997[®]

Summary: Reductive oligomerization of (C₅Me₄R)VX₃ or addition of $(C_5Me_4R)SnBu_3$ to VX_3L_3 (L = thf, tht) yields the (peralkylcyclopentadienyl)vanadium(III) halides (η^5 - $C_5 Me_4 R)_2 V_2 (\mu - Br)_4$ and $(\eta^5 - C_5 Me_4 R)_3 V_3 (\mu - Cl)_6$ $(R = Me_7)_4 N_2 V_2 (\mu - Br)_4$ Et), which can be halogenated to afford $(C_5Me_4R)VX_3$. Paramagnetic $(C_5Me_4Et)_2V_2(\mu-Br)_4$ is a four-legged pianostool dimer in the solid state with a nominal V–V bond (2.565(1) Å), while the spin-frustrated, antiferromagnetic $(C_5Me_4Et)_3V_3(\mu-Cl)_6$ is a piano-stool cyclotrimer with two μ-chlorines per nonbonded V···V edge (3.3732[63] Å).

Mid- and low-valent polynuclear chemistry of the group 5 transition metals involves two distinct compound classes, inorganic and organometallic. Inorganic compounds include dinuclear² and cluster complexes,^{3a} while organopolymetallics with various ligands or two cyclopentadienyl groups per metal comprise the second class. Compounds with metal-metal multiple bonds are known for both and exhibit interesting chemistry,^{2,3b} but V-V-bonded divanadium/organodivanadium complexes are rare,^{2,4} with a tendency for antiferromagnetism and no V-V bonding.^{5,6} There is considerable disagreement on the description of V-V bonding in such complexes.7,8

We have been developing the chemistry of organodimetallic group 5 compounds which are intermediate between these classes, i.e., mid-valent mono(peralkylcyclopentadienyl)metal halides with potential for M-M multiple bonding and utility as piano-stool synthons.⁹ There are no $V(C_5R_5)$ synthons other than the low overall yield, $V(CO)_6$ -derived $Cp^*V(CO)_4$ ($Cp^* = C_5Me_5$) and its derivative Cp*VX₃;¹⁰ therefore, vanadocenes are often used with concomitant cyclopentadienyl loss. We targeted the unknown organodivanadium(III) halides $Cp_{2}V_{2}X_{4}$, analogs of the reactive, ¹¹ d²-d², diamagnetic $(C_5Me_4R)_2Ta_2(\mu-X)_4$ (R = Me (Cp*), Et). The structures of (C₅H₅)VX₂ compounds^{9b,12} are unknown. Of particular interest are the number of μ -halides and V–V bond order in $Cp_{2}V_{2}X_{4}$, because (1) $Cp_{2}M_{2}(\mu-X)_{4}$ complexes may have a $\sigma \delta^* \delta$ MO ordering from δ destabilization by a $(\mu$ -X)₄ lone pair FMO, and (2) d²-d² complexes may have bond orders of 0, 1, or 2.13a Structural possibilities based on analogs^{9a,11,13c,14-16} would possess four μ -X groups and a M=M or no M····M bond, two μ -X groups and no M···M bond, or no μ -X groups and a M=M bond. Most studies have involved chlorides, with little recog-

[®] Abstract published in Advance ACS Abstracts, March 15, 1997. (1) Undergraduate Scholar Assistant, University of Iowa, 1986-1989; Participant, NSF REU Program, 1988.

⁽²⁾ Messerle, L. Chem. Rev. 1988, 88, 1229.

^{(3) (}a) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; Wiley-Interscience: New York, 1988; p 802. (b) Cotton, F. A. Walton, R. A. Multiple Bonds Between Metal Atoms, 2nd ed.; Oxford University Press: Óxford, U.K., 1993.

⁽⁴⁾ Selected examples: (a) Duraj, S. A.; Andras, M. T.; Kibala, P. A. *Inorg. Chem.* **1990**, *29*, 1232. (b) Cotton, F. A.; Daniels, L. M.; Murillo, C. A. *Angew. Chem., Int. Ed. Engl.* **1992**, *31*, 737 and references therein. (c) Janik, T. S.; Lake, C. H.; Churchill, M. R. *Organometallics* **1993**, *12*, 1682 and references therein. (d) Cotton, F. A.; Daniels, L. M.; Murillo, C. A. *Inorg. Chem.* **1993**, *32*, 2881. (e) Solan, G. A.; Cozzi, P. G.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics 1994, 13, 2572.

⁽⁵⁾ Selected examples: (a) Cotton, F. A.; Duraj, S. A.; Extine, M. W.; Lewis, G. E.; Roth, W. J.; Schmulbach, C. D.; Schwotzer, W. J. Chem. Soc., Chem. Commun. **1983**, 1377. (b) Cotton, F. A.; Duraj, S. Chem. Soc., Chem. Commun. 1965, 1377. (b) Cotton, F. A.; Duraj, S. A.; Manzer, L. E.; Roth, W. J. J. Am. Chem. Soc. 1985, 107, 3850 and references therein. (c) Hessen, B.; van Bolhuis, F.; Teuben, J. H.; Petersen, J. L. J. Am. Chem. Soc. 1988, 110, 295. (d) Larin, G. M.; Kalinnikov, V. T.; Aleksandrov, G. G.; Struchkov, Yu. T.; Pasynskii, A. A.; Kolobova, N. E. J. Organomet. Chem. **1971**, 27, 53. (e) Cotton, F. A.; Duraj, S. A.; Roth, W. J. Organometallics **1985**, 4, 1174. (f) Rambo, J. R.; Bartley, S. L.; Streib, W. E.; Christou, G. J. Chem. Soc., Dalton Trans. 1994, 1813.

⁽⁶⁾ Jonas, K.; Rüsseler, W.; Krüger, C.; Raabe, E. Angew. Chem., Int. Ed. Engl. 1986, 25, 925.

^{(7) (}a) Lüthi, H. P.; Bauschlicher, C. W., Jr. J. Am. Chem. Soc. 1987, 109, 2046. (b) Poumbga, C.; Daniel, C.; Bénard, M. J. Am. Chem. Soc. 1991, 113, 1090. (c) Edema, J. J. H.; Meetsma, A.; van Bolhuis, F.; Gambarotta, S. Inorg. Chem. **1991**, 30, 2056. (8) Cotton, F. A.; Diebold, M. P.; Shim, I. Inorg. Chem. **1985**, 24,

¹⁵¹⁰

^{(9) (}a) Green, M. L. H.; Hubert, J. D.; Mountford, P. J. Chem. Soc., Dalton Trans. 1990, 3793. (b) Poli, R. Chem. Rev. 1991, 91, 509.

^{(10) (}a) Herberhold, M.; Kremnitz, W.; Kuhnlein, M.; Ziegler, M. L.; Brunn, K. Z. Naturforsch. 1987, 42 b, 1520. (b) Hammer, M. S.;

Messerle, L. *Inorg. Chem.* **1990**, *29*, 1780. (11) Ting, C.; Messerle, L. *J. Am. Chem. Soc.* **1989**, *111*, 3449 and references therein.

^{(12) (}a) Thiele, K.-H.; Oswald, L. Z. Anorg. Allg. Chem. 1976, 423,
231. (b) King, R. B.; Hoff, C. D. J. Organomet. Chem. 1982, 225, 245.
(c) Bachmann, B.; Hahn, F.; Heck, J.; Wünsch, M. Organometallics 1989, 8, 2523. (d) Morse, D.; Rauchfuss, T. B.; Wilson, S. Inorg. Chem. 1991, 30, 775.

^{(13) (}a) Green, J. C.; Green, M. L. H.; Mountford, P.; Parkington, M. J. *J. Chem. Soc., Dalton Trans.* **1990**, 3407. (b) Green, M. L. H.; M. J. S. Chem. Soc., Dation Trans. 1930, 9407. (b) Green, M. L. Pin,
 Mountford, P. Chem. Soc. Rev. 1992, 29. (c) Grebenik, P. D.; Green,
 M. L. H.; Izquierdo, A.; Mtetwa, V. S. B.; Prout, K. J. Chem. Soc.,
 Dalton Trans. 1987, 9.
 (14) Harlan, C. J.; Jones, R. A.; Koschmieder, S. U.; Nunn, C. M.

Polyhedron 1990, 9, 669.

⁽¹⁵⁾ Poli, R.; Gordon, J. C.; Desai, J. U.; Rheingold, A. L. J. Chem. Soc., Chem. Commun. 1991, 1518.

^{(16) (}a) Köhler, F. H.; de Cao, R.; Ackermann, K.; Sedlmair, J. Z. Naturforsch. 1983, 38B, 1406. (b) Morse, D. B.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 1988, 110, 8234.

nition of the structural dependence on halide. We report here our studies 17 on piano-stool oligomers of $(C_5 Me_4 R)-VX_2.$

Reduction of $(C_5Me_4R)VX_3$ (1: R = Me, Et; X = Br, Cl) with Na/Hg (1 equiv) in toluene yields the organodivanadium(III) bromide complex $(C_5Me_4R)_2V_2Br_4$ (2; 90% yield) or the organo*tri*vanadium(III) chloride cluster $(C_5Me_4R)_3V_3Cl_6$, (3; 71% yield) (eq 1). Both com-

pounds can be prepared more conveniently and directly, without carbonyl precursors, by addition of Sn(C₅Me₄R)-Bu₃ to a CH₂Cl₂ solution of VX₃L₃ (L = tetrahydrofuran, tetrahydrothiophene; **2**, 60% yield; **3**, 80% yield; eq 1), whereas other Cp* sources gave intractable products.¹⁸ Compounds **2** and **3** differ surprisingly in spectrometric, spectroscopic, and magnetic properties and solid-state structures.

The isolated black bromide 2^{19} is EPR-silent and is dinuclear, as shown by mass spectrometry. ¹H NMR spectra of **2b** (R = Et) are consistent with a symmetric species with equivalent C₅Me₄R ligands bisected by a mirror plane. Compound **2b** was shown to be dinuclear in the solid state by X-ray diffraction, (Figure 1), with four μ -Br atoms (average V–Br = 2.5967[56] Å),²⁰ an

Figure 1. ORTEP diagram of $(C_5Me_4Et)_2V_2(\mu-Br)_4$ (**2b**) viewed perpendicular to the V–V vector.

Figure 2. ORTEP diagram of $(C_5Me_4Et)_3V_3(\mu-Cl)_6$ (**3b**) viewed perpendicular to the V₃ plane, with only one orientation of the two disordered C_5Me_4Et ligands on V(1) shown.

acute V–Br–V angle (average 59.19[3]°), and a V–V distance of 2.565(1) Å in the nominal single-bond range.^{2,21}

The paramagnetic red-black chloride **3** is also EPRsilent but exhibits a *trinuclear* mass spectral parent ion.²² The ¹H NMR data are consistent with a symmetric solution structure, with equivalent C₅Me₄R groups bisected by a mirror plane. The solid-state structure of **3b** (R = Et; Figure 2) consists of a nonbonded V₃ equilateral triangular core with long, nonbonded V····V separations (V(1)····V(2), 3.3842(6) Å; V(2)····V(3), 3.3620(6) Å; V(1)····V(3), 3.3733(6) Å; average 3.3732[63] Å) and six Cl bridges (average V--Cl, 2.447[28] Å; average V--Cl--V, 87.29[8]°).

In order to probe the V–V interactions in **2** and **3**, we examined the solution and solid-state susceptibilities as a function of T and H. We expected that **2** would possess an antiferromagnetic V–V interaction and **3** would exhibit frustrated paramagnetism²³ for an odd number of S = 1 (d²) centers. Comparative solid-state

⁽¹⁷⁾ Messerle, L. Presented at the 201st National Meeting of the American Chemical Society, Atlanta, GA, April 19, 1991; INOR 467 (synthetic, and preliminary structural details for **2** and **3**). (18) (a) Synthesis of **2a**: VBr₃(tht)₃ (3.00 g, 5.40 mmol) was dissolved

^{(18) (}a) Synthesis of **2a**: VBr₃(tht)₃ (3.00 g, 5.40 mmol) was dissolved in CH₂Cl₂ (200 mL) in a 250 mL round-bottom flask under an inert atmosphere. (C₅Me₅)SnBu₃ (2.30 g, 5.40 mmol) was added with stirring and the mixture stirred for 7 h. The mixture was rotavapped to dryness, redissolved in toluene (150 mL), and filtered to remove insoluble byproducts. After concentration *in vacuo* followed by cooling to -40 °C, three crops were collected by filtration and recrystallized from toluene: total = 1.12 g (60% yield). (b) Synthesis of **3a**: VCl₃(thf)₃ (4.00 g, 10.7 mmol) and (C₅Me₅)SnBu₃ (4.55 g, 10.7 mmol) were reacted in CH₂Cl₂ as described above, and the mixture was stirred for 12 h. Upon concentration of the reaction mixture filtrate to 30 mL, a large first crop of reasonably pure **3a** was recovered by filtration, provided filtration was performed quickly. The mother liquor was rotavapped to dryness, redissolved in toluene (150 mL), and filtered. After concentration *in vacuo* and cooling, three crops were collected: total 2.19 g (80% yield). Recrystallization from toluene is necessary to obtain **3a** in high purity. (c) For the corresponding chemistry with Cp sources, see: Niemann, J.; Teuben, J. H.; Huffmann, J. C.; Caulton, K. G. *J. Organomet. Chem.* **1983**, *255*, 193.

⁽¹⁹⁾ **2a**: Anal. Calcd for $C_{10}H_{15}Br_2V$: C, 34.72; H, 4.37; Br, 46.19. Found: C, 34.85; H, 4.46; Br, 43.72. ¹H NMR (δ , 25 °C, 360 MHz, C₆D₆): 1.68; 1.54 at 90 MHz. EPR (C₆H₅Me, 77 K): silent. MS (EI): m/e 688, ⁷⁹Br₄ isotopomer, M⁺. Crystal data for **2b**: monoclinic, $P2_1/n$, a = 14.807(4) Å, b = 8.301(4) Å, c = 10.623(4) Å, $\beta = 99.55(2)^\circ$, Z = 2, R = 0.023, $R_w = 0.028$.

⁽²⁰⁾ The value in brackets, the standard deviation of the mean, equals $[(\Sigma_m \Delta_t^2)/m(m-1)]^{1/2}$ with Δ_i defined as the deviation from the mean of the *i*th value in a set of *m* values.

⁽²¹⁾ Dean, N.; Bartley, S.; Streib, W. E.; Lobkovsky, E.; Christou, G. Inorg. Chem. 1995, 34, 1608.

G. *morg. chem.* **1993**, *34*, 1008. (22) **3a**: Anal. Calcd for $C_{10}H_{15}Cl_2V$: C, 46.72; H, 5.88; Cl, 27.58. Found: C, 46.60; H, 6.04; Cl, 27.09. ¹H NMR (δ , 25 °C, 360 MHz, C_6D_6): -7.9. EPR (C_6H_5 Me, 77 K): silent. MS (EI): *m/e* 810, ³⁵Cl₆ isotopomer, M⁺. Crystal data for **3b**: triclinic, *P*I, *a* = 11.865(4) Å, *b* = 12.046(4) Å, *c* = 15.992(4) Å, α = 76.95(2)°, β = 71.95(2)°, γ = 60.34(2)°, *Z* = 2, *R* = 0.040, *R*_w = 0.062.

Figure 3. Plot of bulk molar susceptibility vs *T* for 3a.

and solution²⁴ magnetic behavior of both are more complex, with low moments necessitating considerable care in SQUID background corrections. Compound 2a behaved as a simple *paramagnet* in the solid state, with no field dependence of χ_M , a linear χ_M vs T^{-1} plot, and a low μ_{eff} value of 0.19 μ_{B} per vanadium. These data are consistent with a diamagnetic ground state (possible $\sigma^2 \delta^{*2}$ configuration with no V–V bond rather than $\sigma^2 \delta^{*1} \delta^1$ or $\sigma^2 \delta^2$) for **2** and a small amount (<0.5%) of paramagnetic V(III) impurity. PE spectra with crosssectional analysis of the He I and He II data are needed to assess the V–V MO ordering and bonding in 2. ¹H NMR spectra of impure 2 exhibit an extra resonance at δ –6.4 consistent with a trinuclear bromide; thus, a mononuclear species (e.g., Cp*VBr₂(solvate)) may be the paramagnetic impurity.

The solid-state susceptibility of **3a** is consistent with antiferromagnetic behavior, with a ground-state singlet and nearby triplet excited state(s) (Figure 3). Approximate curve fitting of the data with two parameters to an HDVV model²⁵ for three S = 1 centers gave $J = -119 \text{ cm}^{-1}$ and g = 1.87. In solution, the Cp* ¹H NMR shift for **3a** is neither concentration nor field dependent, and the solution $\chi_{\rm M}$ value parallels the temperature dependence of the solid-state $\chi_{\rm M}$ value.

We do not understand the reasons for the nuclearity dependence on halide. In both structures the vanadiums adopt four-legged piano-stool geometries, with similar X–V–X angles (X = Br, 76.0°; X = Cl, 77.5° average between chlorides bridging to the same vanadium). The isolated compounds may be kinetic products, as suggested by the possibly trinuclear species in

impure **2**. Intramolecular van der Waals (VDW) interactions between μ -halides (e.g., Br(1)···Br(2) in **2b**, 3.90 Å; within the range of twice the VDW radius²⁶ of Br, 1.80–2.00 Å), a maximization of V–X versus V–V bonding, and/or differences in π -bonding capabilities of Cl and Br may play a role in determining the nuclearity. Molecular orbital calculations²⁷ to address this point are in progress.

Most importantly, both **2** and **3** are useful synthons for the development of organovanadium and organodivanadium²⁸ chemistry. Halogenation of **2** or **3** gave (C_5Me_4R)VX₃ (**1**) in good yield (95%, X = Br; 70%, X = Cl), which represents a new, non-carbonyl route¹¹ to these understudied organovanadium(IV) synthons. Both **2a** and **3a** polymerize ethylene at room temperature in toluene to high-molecular-weight polyethylene,²⁹ using methylalumoxane as cocatalyst.

In conclusion, the piano-stool oligomers $(C_5Me_4R)_2V_2(\mu-Br)_4$ (2) and $(C_5Me_4R)_3V_3(\mu-Cl)_6$ (3) are easily prepared by two routes, and the nuclearity is surprisingly halide dependent. Both compounds display interesting and differing solid-state and solution magnetochemistry and are new, useful synthons for the elaboration of organovanadium piano-stool chemistry.

Note Added in Proof. Articles by Doherty and coworkers (see p 1994 of this issue) and Bottomley and co-workers (see p 1865 of this issue) describe alternate reaction conditions for the preparation of $(C_5Me_5)_3V_3(\mu$ - $Cl)_6$, its use to prepare $(C_5Me_5)VOCl_2$ and $[(C_5Me_5)VCl(\mu$ - $N)]_2$, its molecular structure and electrochemistry, and preliminary details of its magnetochemistry. We thank these authors for providing preprints.

Acknowledgment. We thank H. Goff and G. Yee for helpful discussions and Z. Li for EPR spectra. This research was supported in part by a National Science Foundation grant (No. CHE88-22252). M.S.H. acknowledges support as a UI Undergraduate Scholar Assistant. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support. The AMX-360 (Grant No. DE-FG05-89ER75503) NMR and CAD-4 diffractometer (Grant No. CHE85-07623) were purchased with DOE, UI, and NSF funds.

Supporting Information Available: Text and figures giving magnetochemistry experimental details and data for **2a** and **3a** and tables giving crystal data, diffractometry conditions, refinement details, fractional coordinates, thermal parameters, bond lengths, and bond angles for **2b** and **3b** (23 pages). Ordering information is given on any current masthead page.

OM970045H

⁽²³⁾ Castro, S. L.; Sun, Z.; Bollinger, J. C.; Hendrickson, D. N.; Christou, G. *J. Chem. Soc., Chem. Commun.* **1995**, 2517 and references therein.

^{(24) (}a) The Evans method^{24b} susceptibility, chemical shift, and line width data vs temperature for **2a** shows a nonlinear dependence of $\chi_{\rm M}$ and δ on T⁻¹ for the Cp^{*} ¹H resonance at higher *T* (linewidth and δ approach diamagnetic values at low *T*) and a field-dependent δ consistent with a paramagnetic V(III) component in an equilibrium mixture with a diamagnetic component, a concentration-independent δ value consistent with a rapid equilibrium between oligomers, a $\mu_{\rm eff}$ value of 1.31 $\mu_{\rm B}$ (333 K), and a spin-only value at 297 K of 0.5 e⁻ per **2a**. (b) Bartle, K. D.; Dale, B. J.; Jones, D. W.; Maricic, S. *J. Magn. Reson.* **1973**, *12*, 286.

⁽²⁵⁾ Machin, F. E.; Mabbs, D. J. *Magnetism and Transition Metal Complexes*; Chapman and Hall: London 1973; Chapter 7.

⁽²⁶⁾ Bondi, A. J. Phys. Chem. 1964, 68, 441.

⁽²⁷⁾ For MO treatments of the related $Cp^*{}_3Re_3(\mu-0)_6{}^{2+}$ and $(arene)_3M_{3^-}(\mu-X)_6{}^{n+}$, see: Hofmann, P.; Rösch, N.; Schmidt, H. R. *Inorg. Chem.* **1986**, *25*, 4470 and references therein.

^{(28) (}a) Ting, C.; Hammer, M. S.; Baenziger, N. C.; Messerle, L.; Deak, J.; Li, S.; McElfresh, M. Manuscript in preparation on $Cp^*_2V_2$ -(μ -CH₃)₄. (b) Haddad, T. S.; Aistars, A.; Ziller, J. W.; Doherty, N. M. *Organometallics* **1993**, *12*, 2420.

⁽²⁹⁾ Crowther, D. Personal communication of GPC results on polyethylene, Exxon Corp.