
Dimeric and Cyclotrimeric Piano-Stool Vanadium(III)
Dihalides with Unusual Differences in V-V Distance and

Magnetochemistry. Syntheses, Structures, and
Reactivities of (η-C5Me4R)2V2(µ-Br)4 and the Trivanadium

Cluster (η-C5Me4R)3V3(µ-Cl)6, New Mid-Valent
Organovanadium Synthons

Ching Ting, Michael S. Hammer,1 Norman C. Baenziger, and Louis Messerle*

Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242

James Deak, Shi Li, and Michael McElfresh*

Department of Physics, Purdue University, West Lafayette, Indiana 47907

Received January 24, 1997X

Summary: Reductive oligomerization of (C5Me4R)VX3 or
addition of (C5Me4R)SnBu3 to VX3L3 (L ) thf, tht) yields
the (peralkylcyclopentadienyl)vanadium(III) halides (η5-
C5Me4R)2V2(µ-Br)4 and (η5-C5Me4R)3V3(µ-Cl)6 (R ) Me,
Et), which can be halogenated to afford (C5Me4R)VX3.
Paramagnetic (C5Me4Et)2V2(µ-Br)4 is a four-legged piano-
stool dimer in the solid state with a nominal V-V bond
(2.565(1) Å), while the spin-frustrated, antiferromagnetic
(C5Me4Et)3V3(µ-Cl)6 is a piano-stool cyclotrimer with two
µ-chlorines per nonbonded V‚‚‚V edge (3.3732[63] Å).

Mid- and low-valent polynuclear chemistry of the
group 5 transition metals involves two distinct com-
pound classes, inorganic and organometallic. Inorganic
compounds include dinuclear2 and cluster complexes,3a
while organopolymetallics with various ligands or two
cyclopentadienyl groups per metal comprise the second
class. Compounds with metal-metal multiple bonds
are known for both and exhibit interesting chemistry,2,3b
but V-V-bonded divanadium/organodivanadium com-
plexes are rare,2,4 with a tendency for antiferromag-
netism and no V-V bonding.5,6 There is considerable
disagreement on the description of V-V bonding in such
complexes.7,8

We have been developing the chemistry of organodi-
metallic group 5 compounds which are intermediate
between these classes, i.e., mid-valent mono(peralkyl-
cyclopentadienyl)metal halides with potential for M-M
multiple bonding and utility as piano-stool synthons.9

There are no V(C5R5) synthons other than the low
overall yield, V(CO)6-derived Cp*V(CO)4 (Cp* ) C5Me5)
and its derivative Cp*VX3;10 therefore, vanadocenes are
often used with concomitant cyclopentadienyl loss. We
targeted the unknown organodivanadium(III) halides
Cp*2V2X4, analogs of the reactive,11 d2-d2, diamagnetic
(C5Me4R)2Ta2(µ-X)4 (R ) Me (Cp*), Et). The structures
of (C5H5)VX2 compounds9b,12 are unknown. Of particu-
lar interest are the number of µ-halides and V-V bond
order in Cp*2V2X4, because (1) Cp2M2(µ-X)4 complexes
may have a σδ*δ MO ordering from δ destabilization
by a (µ-X)4 lone pair FMO, and (2) d2-d2 complexes may
have bond orders of 0, 1, or 2.13a Structural possibilities
based on analogs9a,11,13c,14-16 would possess four µ-X
groups and a MdM or no M‚‚‚M bond, two µ-X groups
and no M‚‚‚M bond, or no µ-X groups and a MdM bond.
Most studies have involved chlorides, with little recog-
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nition of the structural dependence on halide. We report
here our studies17 on piano-stool oligomers of (C5Me4R)-
VX2.
Reduction of (C5Me4R)VX3 (1: R ) Me, Et; X ) Br,

Cl) with Na/Hg (1 equiv) in toluene yields the organ-
odivanadium(III) bromide complex (C5Me4R)2V2Br4 (2;
90% yield) or the organotrivanadium(III) chloride clus-
ter (C5Me4R)3V3Cl6, (3; 71% yield) (eq 1). Both com-

pounds can be prepared more conveniently and directly,
without carbonyl precursors, by addition of Sn(C5Me4R)-
Bu3 to a CH2Cl2 solution of VX3L3 (L ) tetrahydrofuran,
tetrahydrothiophene; 2, 60% yield; 3, 80% yield; eq 1),
whereas other Cp* sources gave intractable products.18
Compounds 2 and 3 differ surprisingly in spectrometric,
spectroscopic, and magnetic properties and solid-state
structures.
The isolated black bromide 219 is EPR-silent and is

dinuclear, as shown by mass spectrometry. 1H NMR
spectra of 2b (R ) Et) are consistent with a symmetric
species with equivalent C5Me4R ligands bisected by a
mirror plane. Compound 2b was shown to be dinuclear
in the solid state by X-ray diffraction, (Figure 1), with
four µ-Br atoms (average V-Br ) 2.5967[56] Å),20 an

acute V-Br-V angle (average 59.19[3]°), and a V-V
distance of 2.565(1) Å in the nominal single-bond
range.2,21

The paramagnetic red-black chloride 3 is also EPR-
silent but exhibits a trinuclear mass spectral parent
ion.22 The 1H NMR data are consistent with a sym-
metric solution structure, with equivalent C5Me4R
groups bisected by a mirror plane. The solid-state
structure of 3b (R ) Et; Figure 2) consists of a non-
bonded V3 equilateral triangular core with long, non-
bonded V‚‚‚V separations (V(1)‚‚‚V(2), 3.3842(6) Å;
V(2)‚‚‚V(3), 3.3620(6) Å; V(1)‚‚‚V(3), 3.3733(6) Å; average
3.3732[63] Å) and six Cl bridges (average V--Cl, 2.447[28]
Å; average V--Cl--V, 87.29[8]°).
In order to probe the V-V interactions in 2 and 3,

we examined the solution and solid-state susceptibilities
as a function of T and H. We expected that 2 would
possess an antiferromagnetic V-V interaction and 3
would exhibit frustrated paramagnetism23 for an odd
number of S ) 1 (d2) centers. Comparative solid-state
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Figure 1. ORTEP diagram of (C5Me4Et)2V2(µ-Br)4 (2b)
viewed perpendicular to the V-V vector.

Figure 2. ORTEP diagram of (C5Me4Et)3V3(µ-Cl)6 (3b)
viewed perpendicular to the V3 plane, with only one
orientation of the two disordered C5Me4Et ligands on V(1)
shown.
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and solution24 magnetic behavior of both are more
complex, with low moments necessitating considerable
care in SQUID background corrections. Compound 2a
behaved as a simple paramagnet in the solid state, with
no field dependence of øM, a linear øM vs T-1 plot, and
a low µeff value of 0.19 µB per vanadium. These data
are consistent with a diamagnetic ground state (possible
σ2δ*2 configuration with no V-V bond rather than
σ2δ*1δ1 or σ2δ2) for 2 and a small amount (<0.5%) of
paramagnetic V(III) impurity. PE spectra with cross-
sectional analysis of the He I and He II data are needed
to assess the V-V MO ordering and bonding in 2. 1H
NMR spectra of impure 2 exhibit an extra resonance at
δ -6.4 consistent with a trinuclear bromide; thus, a
mononuclear species (e.g., Cp*VBr2(solvate)) may be the
paramagnetic impurity.
The solid-state susceptibility of 3a is consistent with

antiferromagnetic behavior, with a ground-state singlet
and nearby triplet excited state(s) (Figure 3). Ap-
proximate curve fitting of the data with two parameters
to an HDVV model25 for three S ) 1 centers gave J )
-119 cm-1 and g ) 1.87. In solution, the Cp* 1H NMR
shift for 3a is neither concentration nor field dependent,
and the solution øM value parallels the temperature
dependence of the solid-state øM value.
We do not understand the reasons for the nuclearity

dependence on halide. In both structures the vanadi-
ums adopt four-legged piano-stool geometries, with
similar X-V-X angles (X ) Br, 76.0°; X ) Cl, 77.5°
average between chlorides bridging to the same vana-
dium). The isolated compounds may be kinetic prod-
ucts, as suggested by the possibly trinuclear species in

impure 2. Intramolecular van der Waals (VDW) inter-
actions between µ-halides (e.g., Br(1)‚‚‚Br(2) in 2b, 3.90
Å; within the range of twice the VDW radius26 of Br,
1.80-2.00 Å), a maximization of V-X versus V-V
bonding, and/or differences in π-bonding capabilities of
Cl and Br may play a role in determining the nuclearity.
Molecular orbital calculations27 to address this point are
in progress.
Most importantly, both 2 and 3 are useful synthons

for the development of organovanadium and organodi-
vanadium28 chemistry. Halogenation of 2 or 3 gave
(C5Me4R)VX3 (1) in good yield (95%, X ) Br; 70%, X )
Cl), which represents a new, non-carbonyl route11 to
these understudied organovanadium(IV) synthons. Both
2a and 3a polymerize ethylene at room temperature in
toluene to high-molecular-weight polyethylene,29 using
methylalumoxane as cocatalyst.
In conclusion, the piano-stool oligomers (C5Me4R)2V2(µ-

Br)4 (2) and (C5Me4R)3V3(µ-Cl)6 (3) are easily prepared
by two routes, and the nuclearity is surprisingly halide
dependent. Both compounds display interesting and
differing solid-state and solution magnetochemistry and
are new, useful synthons for the elaboration of organo-
vanadium piano-stool chemistry.

Note Added in Proof. Articles by Doherty and co-
workers (see p 1994 of this issue) and Bottomley and
co-workers (see p 1865 of this issue) describe alternate
reaction conditions for the preparation of (C5Me5)3V3(µ-
Cl)6, its use to prepare (C5Me5)VOCl2 and [(C5Me5)VCl(µ-
N)]2, its molecular structure and electrochemistry, and
preliminary details of its magnetochemistry. We thank
these authors for providing preprints.
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Figure 3. Plot of bulk molar susceptibility vs T for 3a.
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