Colin D. Abernethy, Frank Bottomley,* and Andreas Decken

Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3

Robert C. Thompson

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Y6

Received June 17, 1996[®]

The cluster $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$ was synthesized from VCl₃(thf)₃ and Buⁿ₃SnC₅Me₅. It was oxidized by O₂ to give $(\eta$ -C₅Me₅)VCl₂(O), and by NaN₃ to give $[(\eta$ -C₅Me₅)VCl(μ -N)]₂. X-ray diffraction showed that $[(\eta-C_5Me_5)V(\mu-Cl)_2]_3$ had an equilateral triangle of vanadium atoms (mean V-V 3.367 (2) A), with each edge of the triangle symmetrically bridged by two chlorine atoms. The cluster contains six core electrons. The cluster $[(\eta-C_5Me_5)V(\mu-Cl_2]_3$ had a magnetic moment of 2.92 $\mu_{\rm B}$ at room temperature and showed antiferromagnetic behavior.

Introduction

(Cyclopentadienyl)metal halides are of current interest.¹ They often possess unpaired electrons and associate into clusters showing nondilute magnetic behavior. They also serve as convenient starting materials for the preparation of (cyclopentadienyl)metal chalcogenides and pnictinides. We have prepared a number of (pentamethylcyclopentadienyl)vanadium nitrides² and oxides^{3,4} and were therefore interested in (pentamethylcyclopentadienyl)vanadium dichloride. The preparation of this compound from Bun₃SnC₅Me₅ and VCl₃(thf)₃, and its trimeric nature, have been briefly reported,^{1,5} and it has been used to prepare $[(\eta - C_5 Me_5)VCl(\mu - N)]_2$,⁶ but no details are available. We report here the preparation, structure, and chemical and physical properties of $[(\eta$ - C_5Me_5 V(μ -Cl)₂]₃. After submission of this paper we learned of the related work by Doherty and co-workers⁵⁵ and by Messerle and co-workers.⁶¹

Results and Discussion

Synthesis of $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$. The reaction between Bun₃SnC₅Me₅ and VCl₃(thf)₃ provides a convenient preparation of $[(\eta - C_5Me_5)VCl_2]_3$ in good (70%) yield (eqs 1 and 2). Excellent syntheses of the starting

$$Bu_{3}^{n}SnCl + LiC_{5}Me_{5} \rightarrow Bu_{3}^{n}SnC_{5}Me_{5} + LiCl \quad (1)$$

$$3Bu_{3}^{n}SnC_{5}Me_{5} + 3VCl_{3}(thf)_{3} \rightarrow [(\eta - C_{\epsilon}Me_{\epsilon})V(u - Cl)_{2}]_{2} + 9thf + 3Bu_{2}^{n}SnCl (2)$$

materials Bun₃SnC₅Me₅⁷ and VCl₃(thf)₃,⁸ which begin with commercially available compounds, are available in the literature. Attempts to replace the toxic Buⁿ₃-SnC₅Me₅ with Me₃SiC₅Me₅ were not successful; the reaction between VCl₃(thf)₃ and Me₃SiC₅Me₅ yielded a purple solid which was insoluble in all common solvents.

Chemical Properties of $[(\eta - C_5Me_5)V(\mu - Cl)_2]_3$. Purple-black $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$ is sensitive to both water and dioxygen. The water sensitivity is presumably similar to that of $\{[(\eta - C_5Me_5)Nb(\mu - Cl)(\mu - O)]_3\}^+$, in which a chloride ligand can be replaced by hydroxide.^{9,10} The trimer $[(\eta$ -C₅Me₅)V(μ -Cl)₂]₃ reacted readily and cleanly with dioxygen to give $(\eta$ -C₅Me₅)VCl₂(O) (equation 3).^{4,11–13} Green (η -C₅Me₅)VCl₂(O) is obtained in

$$2[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3 + 3O_2 \rightarrow 6(\eta - C_5 Me_5)VCl_2(O)$$
(3)

65% yield by reaction 3, which therefore represents the most convenient and efficient synthesis of this compound (see also refs 55 and 61). Previous preparations involved the oxidation and subsequent chlorination of either $(\eta - C_5 Me_5)_2 V^{4,11}$ or $(\eta - C_5 Me_5) V(CO)_4$.^{12,13} Oxidation of the former involves loss of an expensive C₅Me₅ ligand; the latter is difficult to prepare. In turn, (η -C₅-

[®] Abstract published in Advance ACS Abstracts, March 15, 1997. Poli, R. *Chem. Rev.* **1991**, *91*, 509.
 Abernethy, C. D.; Bottomley, F.; Decken, A.; Cameron, T. S.

Organometallics **1996**, *15*, 1758. (3) Bottomley, F.; Magill, C. P.; Zhao, B. Organometallics **1990**, *9*,

¹²⁰⁰

⁽⁴⁾ Bottomley, F.; Magill, C. P.; Zhao, B. Organometallics 1991, 10, 1946.

⁽⁵⁾ Messerle, L. Footnote 85 of ref 1.

⁽⁶⁾ Haddad, T. S.; Aistars, A.; Ziller, J. W.; Doherty, N. M. Organometallics 1993, 12, 2420.

⁽⁷⁾ Herrmann, W. A.; Alcher, W. K.; Biersack, H.; Bernal, I.; Creswick, M. Chem. Ber. 1981, 114, 3558.

⁽⁸⁾ Manzer, L. E. Inorg. Synth. 1982, 21, 138.
(9) Bottomley, F.; Karslioglu, S. Organometallics 1992, 11, 327.
(10) Bottomley, F.; Karslioglu, S. J. Chem. Soc., Chem. Commun. 1991, 222.

⁽¹¹⁾ Bottomley, F.; Darkwa, J.; Sutin, L.; White, P. S. Organometallics 1986, 5, 2165

⁽¹²⁾ Herberhold, M.; Kremnitz, W.; Kuhnlein, M.; Ziegler, M. L.; Brun, K. Z. Naturforsch. **1987**, 42B, 1520.

⁽¹³⁾ Herrmann, W. A.; Weichselbaumer, G.; Kneuper, H.-J. J. Organomet. Chem. 1987, 319, C21.

Figure 1. Structure of $[(\eta$ -C₅Me₅)V(μ -Cl)₂]₃.

Table 1. Selected Mean Distances (Å) and Angles
(deg) in $[(\eta-C_5Me_5)V(\mu-Cl)_2]_3^a$

V–V	3.367 (2, 6)	V-Cl-V	86.93 (5, 28)
V-Cl	2.447 (1, 15)	Cla-V-Cla	82.80 (3, 80)
V-Cp	1.980 (4, 4)	Cl _a -V-Cl _b	77.60 (3, 34)
V ₃ –Čl	1.533 (1, 16)	Cp-V-Cl	114.4 (1, 6)

^a The symbols Cp, V₃, Cl_a, and Cl_b are defined in the text.

Me₅)VCl₂(O) may be converted into a variety of alkyl,¹³ alkoxide,¹³ and sulfide derivatives,^{14,15} as well as oxobridged compounds such as $[(\eta$ -C₅Me₅)V(O)(μ -O)]₃¹⁶ and $[(\eta$ -C₅Me₅)VCl(μ -O)]₄.¹¹

The trimer $[(\eta$ -C₅Me₅)V(μ -Cl)₂]₃ reacted cleanly with azides to form $[(\eta$ -C₅Me₅)VCl(μ -N)]₂ (eq 4). Doherty and

$$2[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3 + 6RN_3 \rightarrow 3[(\eta - C_5 Me_5)VCl(\mu - N)]_2 + 6N_2 + 6RCl (4)$$

co-workers used Me₃SiN₃,⁶ but we found that NaN₃ is more convenient and gives a good yield (73%). The dimer $[(\eta$ -C₅Me₅)VCl(μ -N)]₂ can be reduced to the cubane $[(\eta$ -C₅Me₅)V(μ ₃-N)]₄.²

The trimer $[(\eta$ -C₅Me₅)V(μ -Cl)₂]₃ could be reversibly oxidized electrochemically (in tetrahydrofuran solution, with But₄NBF₄ as supporting electrolyte), with the oxidation wave centered at 0.5 V. Although the process was reversible, the wave was extremely broad (0.4 V) and may represent several processes, with similar voltages. It was shown previously that {[η -C₆Me₆)Nb-(μ -Cl)₂]₃⁺ could be quasi-reversibly electrochemically oxidized with sequential removal of three electrons.¹⁷

Structure of $[(\eta$ -C₅Me₅)V(μ -Cl)₂]₃. The structure of $[(\eta$ -C₅Me₅)V(μ -Cl)₂]₃, as determined by X-ray diffraction, is shown in Figure 1, and the important distances and angles are given in Table 1. Within experimental error, the trimer contains an equilateral triangle of vanadium atoms (mean V–V distance 3.367 (2, 6¹⁸) Å with each edge symmetrically bridged by two chlorine atoms (mean V–Cl distance 2.447 (1,15) Å, mean

Figure 2. Energy levels and contours of the cluster orbitals of $[(\eta$ -C₅Me₅)V(μ -Cl)₂]₃.

V–Cl–V angle 86.93 (5, 28)°). The mean Cl_a-V-Cl_a angle between Cl atoms on the same side of the V₃ plane was 82.80 (3, 80)°, the mean Cl_a-V-Cl_b angle between Cl atoms on opposite sides of the V₃ plane was 77.60 (3, 34)°. The mean V–Cp distance, to the centroid of the C₅(Me₅) ring, was 1.980 (4, 4)°, and the planes of the C₅ rings made a mean angle of 90.5° with the V₃ plane.

The trimer $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$ is one of a small number of $[(\eta \text{-} \operatorname{arene})M(\mu \text{-} X)(\mu \text{-} Y)]_3$ trimers which are listed in Table 2. All have the same geometries, and even similar metrical parameters, when the differences in the atomic radii of the metal and X or Y atoms are taken into account. In particular, there is no correlation between the magnitude of the M-X-M and X-M-X angles and the identity of M or the number of electrons in the cluster (i.e., with the formal oxidation number of the metal). The molecular orbital model for compounds of this type, first proposed for $\{[(\eta - C_5Me_5)Re(\mu - O)_2]_3\}^{2+}$ by Hofmann, Rösch, and Schmidt on the basis of extended Hückel and Xa-SW calculations,19 and extended to $\{[(\eta - C_5Me_5)Nb(\mu - Cl)(\mu - O)]_3\}^+$ and $\{[(\eta - C_5Me_5) - (\eta - C_5Me_5)]_+$ Mo]₃(μ -OH)_n(μ -O)_{6-n}}²⁺ by ourselves on the basis of EXHUD and INDO calculations,^{9,20} shows that the cluster electrons reside in nonbonding orbitals which are derived from the metal d-orbitals (Figure 2). There are no localized M-M bonds. The M-M distances are determined primarily by the nature of X and Y. When X = Y = Cl the mean M–M distance (3.351 (4, 16) Å) is independent of M. The differences in the M-Cl distances (mean 2.501 (2, 54) Å) are compensated by

⁽¹⁴⁾ Kulpe, J.; Herdtweck, E.; Weichselbaumer, G.; Herrmann, W. A. J. Organomet. Chem. **1988**, 348, 369.

⁽¹⁵⁾ Herberhold, M.; Kuhnlein, M.; Ziegler, M. L.; Nuber, B. Organomet. Chem. 1988, 349, 131.
(16) Bottomley, F.; Sutin, L. J. Chem. Soc., Chem. Commun. 1987,

⁽¹⁶⁾ Bottomley, F.; Sutin, L. J. Chem. Soc., Chem. Commun. **1987** 1112.

⁽¹⁷⁾ Boyd, D. C.; Gebhard, M.; Mann, K. R. *Inorg. Chem.* **1986**, *25*, 119.

⁽¹⁸⁾ The first number in parentheses is the mean estimated standard deviation, the second number is the maximum deviation from the mean.

⁽¹⁹⁾ Hofmann, P.; Rösch, N.; Schmidt, H. R. *Inorg. Chem.* **1986**, *25*, 4470.

⁽²⁰⁾ Bottomley, F.; Chen, J.; Preston, K. F.; Thompson, R. C.; *J. Am. Chem. Soc.* **1994**, *116*, 7989.

⁽²¹⁾ Carofiglio, T.; Floriani, C.; Sgamellotti, A.; Rosi, M.; Chiesi-Villa, A.; Rizzoli, C. *J. Chem. Soc., Dalton Trans.* **1992**, 1081.

Table 2. Compounds of Type $[(\eta$ -arene)M(μ -A)(μ -B)] ₃									
compound	cluster electrons	M-M (Å)	M-X (Å)	X-M-X (deg)	M-X-M (deg)	ref			
$[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$	6	3.367 (2)	2.447 (1)	82.8 (3)	86.9 (1)	this work			
$\{[(\eta - C_6 Me_6)Nb(\mu - Cl)_2]_3\}^+$	8	3.347 (2)	2.508 (2)	83.1 (1)	84.3 (1)	51, 52			
$\{[(\eta - C_6 Me_6)Nb(\mu - Cl)_2]_3\}^{2+}$	7	3.335 (9)	2.494 (3)	83.4 (2)	83.8 (1)	53			
$\{ [\eta - C_6 Me_6) Zr(\mu - Cl)_2 \}^{2+}$	4	3.354 (2)	2.555(2)	85.1(1)	82.0(1)	59			
{ $[(\eta - C_5 Me_5)Mo]_3(\mu - OH)_n(\mu - O)_{6-n}$ } ²⁺	5/6/7	2.78 (1)	2.02 (4)	87.9 (18)	87.0 (16)	19			
$\{[(\eta - C_5 Me_5) Re(\mu - O)_2]_3\}^{2+}$	4	2.747 (2)	1.96 (2)	88.4 (1)	88.9 (1)	60			
$\{[(\eta - C_5 Me_5)Nb(\mu - Cl)(\mu - O)]_3\}^+$	2	2.876 (1)	2.542 (1) (Cl)	79.2 (5) (Cl)	68.8 (3) (Cl)	9			
			1.937 (3) (O)	95.5 (1) (O)	95.9 (1) (O)				
{ $[(\eta - C_5 Me_5)Nb]_3(\mu - Cl)_2(\mu - OH)(\mu - O)_3$ }+	2	2.853 (5) (×2)	2.530 (10) (Cl)	77.1 (3) (Cl)	68.6 (3) (Cl)	10			
		2.807 (4)	1.920 (20) (O)	94.4 (9) (O)	95.3 (O)				
			2.145 (20) (OH)		81.7 (7) (OH)				

variations in the M–Cl–M angle (mean 84.3 (1, 29)°). When X = O and Y = O, Cl, or OH, the mean M-M distance is 2.810 (4, 66) Å. The larger maximum deviation from the mean, compared to the case where X = Y = Cl, is caused by the variation in the M–O–M angle as a consequence of the accompanying oxide, chloride, or hydroxide bridge.

The trimeric structure **1a** adopted by $[(\eta - C_5 Me_5)V(\mu Cl_{2}_{3}$ and the other seven compounds listed in Table 2 is very unusual for a $(\eta$ -C₅R₅)MXY complex. There are

other trimers such as $[(\eta - C_5 Me_5)TiCl(\mu - O)]_{3}$,²¹ $[(\eta - C_5 - He_5)TiCl(\mu - O)]_{3}$,²¹ $[(\eta -$ Me₅)V(O)(μ -O)]₃,¹⁶ and [(η -C₅Me₅)TaCl(μ -N)]₃,²² but they have the structure **1b**. A few $(\eta$ -C₅R₅)MX₂ derivatives of the early transition metals are oligomeric (for example, $[(\eta - C_5 Me_5)ScCl_2]_n^{23})$ or tetrameric (for example $[(\mu_2 - \eta^5 - \eta^5 - (C_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - \eta^5 - (C_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - \eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - \eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - \eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - \eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - \eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - \eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2]_2(\mu - O)_4$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2SiMe_2)$,²⁴ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2SiMe_2)$,²⁵ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2SiMe_2)$,²⁵ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)(TiCl)_2SiMe_2)$,²⁵ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_4)_2SiMe_2)$,²⁵ and $[(\eta - C_5Me_5) - (\eta^5 - (Q_5H_5) - (\eta^5 -$ VCl(μ -O)]₄).¹¹ However, most (η -C₅R₅)MXY compounds are dimeric. A few, for example [(η-C₅Me₄Et)V]₂(μ-Br)₄,^{1,5,25,26} {[(η -C₆H₃Me₃)Nb]₂(μ -I)₄}^{*n*+} (*n* = 0, 1),²⁷ [(η - $C_5Me_5)Ta]_2(\mu-Br)_{4,}^{28} [(\eta-C_5Me_5)W]_2(\mu-Cl)_{4,}^{29}$ and several $[(\eta - C_5 R_5)Mo]_2(\mu - X)_4$ (X = halogen), ^{1,25,26,30-34} adopt the structure **2a**. The majority adopt the structure **2b**, for

- (24) Ciruelos, S.; Cuenca, T.; Flores, J. C.; Gómez, R.; Gómez-Sal, P.; Royo, P. Organometallics 1993, 12, 944.
- (25) Green, M. L. H.; Hubert, J. D.; Mountford, P. J. Chem. Soc., Dalton Trans. 1990, 3793.
- (26) Green, J. C.; Green, M. L. H.; Mountford, P.; Parkington, M. J. J. Chem. Soc., Dalton Trans. 1990, 3407.
- (27) Yoon, M.; Lin, J.; Young, V. G.; Miller, G. J. J. Organomet. Chem. 1996, 507, 31.
- (28) Ting, C.; Baenziger, N. C.; Messerle, L. J. Chem. Soc. Chem. Commun. 1988, 1133.
- (29) Harlan, C. J.; Jones, R. A.; Koschmieder, S. U.; Nunn, C. M. Polyhedron 1990, 9, 669.

 (30) Shin, J. H.; Parkin, G. *Polyhedron* **1994**, *13*, 1489.
 (31) Poli, R.; Gordon, J. C.; Desai, J. U.; Rheingold, A. L. *J. Chem.* (32) Desai, J. U.; Gordon, J. C.; Kraatz, H.-B.; Lee, V. C.; Owens-

- Waltermire, B. E.; Poli, R.; Rheingold, A. L.; White, C. B. *Inorg. Chem.* **1994**, *33*, 3752.
- (33) Grebenik, P. D.; Green, M. L. H.; Izquierdo, A.; Mtetwa, V. S. B.; Prout, K. J. Chem. Soc., Dalton Trans. 1987, 9.
- (34) Fromm, K.; Hey-Hawkins, E. Z. Anorg. Allgem. Chem. 1993, *619*, 261.

example, [(η-C₅H₂(SiMe₃)₃)TiCl(μ-O)]₂,³⁵ [(η-C₅Me₅)MX- $(\mu$ -Cl)]₂ (X = Cl; M = Cr, ^{1,36,37} Re, ³⁸ Ru, ^{39,40} Rh, ⁴¹ Ir; ⁴² X = Me; M = Cr^{43,44}), $[(\eta - C_5 R_5)M(O)(\mu - O)]_2$ (M = Cr,⁴⁵ Mo⁴⁶), and $[(\eta - C_5 R_5)M(E^1)(\mu - E^2)]_2$ (M = Mo, W; E¹ = O, S; $E^2 = S$, Se^{47-49}). In addition to the molecular orbital analyses of the trimers with structure 1a noted above, there has been an analysis of $[(\eta - C_5H_5)TaMe(\mu - N)]_3$ with structure **1b**⁵⁰ and detailed analyses of $[(\eta - C_5H_5)MX_2]_2$ with structures 2a and 2b.²⁶ An important conclusion from these analyses is that, in the dimers of both structures 2a and 2b, the lowest energy metal-based orbital represents a metal-metal σ -bonding interaction. For dimers of structure 2a, the orbital of the next highest energy represents a metal-metal δ -antibonding interaction, whereas for **2b**, it represents a π -bonding interaction.²⁶ For the trimers with structure **1a** or **1b**, all of the metal-based orbitals are essentially nonbonding.9,19,20,50 Thus, when the metal has d-electrons to occupy the M–M σ -bonding orbitals, there is a definite gain in energy for either of the dimeric structures compared to the trimers. A direct comparison between structures 1a and 2a or 1b and 2b can be made, because in each pair there are the same number and type of M-X bonds. The presence of metal-metal bonds in dimers of structure 2a and their absence in the trimers

(35) Okuda, J.; Herdtweck, E. Inorg. Chem. 1991, 30, 1516.

- (36) Köhler, F. H.; Lachmann, J.; Muller, G.; Zeh, H.; Brunner, H.; Pfauntsch, J.; Wachter, J. Organomet. Chem. 1989, 365, C15.
- (37) Morse, D. M.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 1988, 110, 8234.
- (38) Herrmann, W. A.; Fischer, R. A.; Herdtweck, E. J. Organomet. Chem. 1987, 329, C1.
- (39) Koelle, U.; Kossakowski, J. Organomet. Chem. 1989, 362, 383. (40) Fan, L.; Turner, M. L.; Hursthouse, M. B.; Malik, K. M. A.; Guisev, O. V.; Maitlis, P. M. *J. Am. Chem. Soc.* **1994**, *116*, 385.
- (41) Churchill, M. R.; Julius, S. A. Inorg. Chem. 1979, 18, 2918.
- (42) Churchill, M. R.; Julius, S. A. *Inorg. Chem.* **1979**, *18*, 1215.
 (43) Richeson, D. S.; Hsu, S.-W.; Fredd, N. H.; Van Duyne, G.; Theopold, K. H. *J. Am Chem. Soc.* **1986**, *108*, 8273.
- (44) Richeson, D. S.; Mitchell, J. F.; Theopold, K. H. Organometallics 1989, 8, 2570.
- (45) Herberhold, M.; Kremnitz, W.; Razavi, A.; Schöllhorn, H.;
 Thewalt, U. Angew. Chem., Int. Ed. Engl. 1985, 24, 601.
 (46) Isobe, K.; Kimura, S.; Nakamura, Y. J. Chem. Soc., Chem. Commun. 1985, 378.
- (47) Gorzellik, M.; Bock, H.; Gang, L.; Nuber, B.; Ziegler, M. L. J. Organomet. Chem. 1991, 412, 95.
- (48) Tanner, L. D.; Haltwanger, R. C.; Rakowski-DuBois, M. Inorg. Chem. 1988, 27, 1741.
- (49) Rakowski-DuBois, M.; DuBois, D. L.; VanDerveer, M. C.:
- Haltwanger, R. C. *Inorg. Chem.* **1981**, *20*, 3064. (50) Banaszak-Holl, M. M.; Kersting, M.; Pendley, B. D.; Wolczanski, P. T. *Inorg. Chem.* **1990**, *29*, 1518.

⁽²²⁾ Plenio, H.; Roesky, H. W.; Noltemeyer, M.; Sheldrick, G. M. Angew. Chem., Int. Ed. Engl. **1988**, 27, 1330. (23) Piers, W. E.; Bunel, E. E.; Bercaw, J. E. J. Organomet. Chem.

^{1991. 407. 51.}

of structure 1a is shown by the M-M distances. For example, the V–V distance in $[(\eta$ -C₅Me₄Et)V]₂(μ -Br)₄ is 2.565 (1) Å,²⁶ whereas in $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$ it is 3.367 (2) Å; in $\{ [\eta - C_6 H_3 Me_3) Nb \}_2 (\mu - I)_4 \}^{n+}$ the Nb–Nb distances are 2.855 (1) Å for n = 0 and 2.828 (4) Å for $n = 1,^{27}$ whereas in $\{[(\eta - C_6Me_6)Nb(\mu - Cl)_2]_3^{n+}$ the distances are 3.347 (2) Å for $n = 1^{51,52}$ and 3.335 (9) Å for n = 2.53

The nonbonded repulsive interactions between the hydrogen atoms of the η -C_nMe_n ligands also favor the dimeric over the trimeric structures. In the dimeric structures, the planes of the η -C_nMe_n rings lie parallel to one another, giving a minimum C····C distance between CH_3 groups of 6.0 Å. In the trimers, the planes of the η -C_nMe_n rings intersect, so that the CH₃ groups on adjacent η -C_nMe_n ligands abut one another. The shortest C···C distance in $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$ is 4.2 Å. There will be an attractive interaction between the hydrogen atoms of the η -C_nMe_n ligand and the X or Y atom of $[(\eta - C_n Me_n)MXY]_n$, which will favor the structures with a terminal X atom 1b and 2b. The interaction will be weak, as are all such C-H···X hydrogen bonds.54

The dimers of structure **2a** contain a $M(\mu-X)_4M$ unit, which is a distorted octahedron with apical M and equatorial X atoms. The trimers of structure 1a contain a $M(\mu-X)_2M$ unit, which is a distorted tetrahedron (butterfly). The M–M distances in **2a** are shorter than those in 1a. Thus, the nonbonded repulsive interactions between the bridging halide (X) atoms will be greater in 2a than in 1a, and this repulsion will increase with the size of X. It is therefore surprising to find that $(\eta$ - C_5Me_4Et)VBr₂ and {[(η -C₆H₃Me₃)NbI₂]ⁿ⁺ adopt structure $2a^{26,51-53}$ but (η -C₅Me₅)VCl₂ adopts structure 1a.

Whether $(\eta - C_n R_n)$ MXY compounds adopt the dimeric structure 2a or 2b, or the trimeric 1a or 1b, appears to depend on the opposing forces of the formation of metal-metal bonds in 2a and 2b, but not in 1a or 1b, versus the increased nonbonded repulsions between the X and Y atoms in **2a** (and to a lesser extent **2b**), compared to **1a** and **1b**. The only clear case is that in which the $(\eta$ -C_nR_n)MXY compound has zero d-electrons, since no metal-metal bond can be formed and the trimeric structures will be preferred. In fact, all (η - $C_n R_n$ MXY compounds with zero d-electrons do adopt the trimeric structure **1b**, except $[(\eta - C_5H_2(SiMe_3)_3)TiCl (\mu$ -O)]₂, which has the dimeric structure **2b**.³⁵ The {[$(\eta$ - C_5Me_5)Nb(μ -O)]₃(μ -Cl)₂(μ -X)}⁺ compounds in Table 2 do not have enough d-electrons to form Nb-Nb bonds as dimers, and are also trimers. It is not clear why other $(\eta - C_n R_n)$ MXY compounds exist as trimers or dimers.

There is the possibility that different oligomers of $(\eta$ -C₅Me₅)VCl₂ coexist. Doherty and co-workers found that an insoluble purple material was formed, along with $[(\eta$ - C_5Me_5 V(μ -Cl)₂]₃, when the preparation was run at elevated temperatures. They formulated this material as a higher oligomer $[(\eta - C_5 Me_5)VCl_2]_{n}$. We also observed small quantities of this insoluble purple material. However, when pure $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$ was refluxed

in xylenes (~140 °C) for several days, no precipitate formed and there was no change in the color of the solution or in the NMR spectrum. We concluded that $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$ does not convert into another oligomer under the conditions of the experiments described here and that the purple oligomer is a product of a side reaction occurring in the formation of $[(\eta - C_5 Me_5)V(\mu -$ Cl)₂]₃ from VCl₃(thf)₃ and Buⁿ₃SnC₅Me₅.

Magnetic Behavior of $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$. The extended Hückel calculations shown in Figure 2 suggest that the ground state of $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$ should be the diamagnetic $(1e')^4(1a_1)'^2(2a_1')^0(2e')^0$. At room temperature, the ¹H NMR spectrum showed a single broad resonance at -7.0 ppm, with a line width at half-height of 52 Hz, indicating a paramagnetic compound. In CDCl₃ solution at 291 K, the magnetic moment by the Evans NMR method 56,57 (200 MHz, field strength 47 kG) was 2.8 $\mu_{\rm B}$. In the solid state at 293 K, the moment was 2.92 $\mu_{\rm B}$ by the Faraday method. Using a SQUID instrument at a field strength of 20 kG, the moment was 2.78 $\mu_{\rm B}$ at 300 K and decreased with temperature, indicating antiferromagnetic behavior. The detailed magnetic behavior is unusual and complicated, and we are presently investigating and interpreting the data for this and other trimers of type 1a. This will be reported elsewhere.

Experimental Section

General Information. All manipulations were performed using a standard double-manifold vacuum line, under argon or vacuum. Samples were transferred in a dinitrogen-filled glovebag. All solvents were dried by standard methods. The starting materials Bun₃SnCl and C₅Me₅H were purchased from Aldrich Chemical Co. and used as received. The other starting materials, Bun₃SnC₅Me₅,⁷ and VCl₃(thf)₃,⁸ were prepared by the methods in the literature cited. Instruments used were a Varian XL200 for ¹H NMR spectra, and for the magnetic moment in solution by the Evans' method, Perkin-Elmer 683 for infrared spectra (as Nujol mulls or KBr disks) and Kratos MS50 for mass spectra (EI). Extended Hückel and INDO calculations were performed using the CAChe system. Microanalyses (C, H, Cl) were performed by Beller Laboratorium, Göttingen, Germany. Magnetic susceptibilities of powdered samples were measured using a Quantum Design (MPMS) SQUID magnetometer.

Preparation of $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$. To a warm (60 °C), stirred, solution of VCl₃(thf)₃ (6.0 g, 16.1 mmol) in toluene (100 cm³) was added Buⁿ₃SnC₅Me₅ (6.7 cm³, 17.7 mmol). The mixture was stirred for 12 h. The toluene was removed under vacuum, while the solution was maintained at 35 °C, leaving a red-brown oily residue. This was washed twice with hexane (80 cm³ portions), dried under vacuum, and extracted with hot (80 °C) toluene (100 cm³). The hot mixture was filtered and the filtrate reduced to a volume of 20 cm³ under vacuum. On cooling to -25 °C, adding hexane (80 cm³), and setting aside (at -25°) for 12 h, purple-black microcrystals of [(η -C₅Me₅)V-(*µ*-Cl)₂]₃ formed. Yield: 2.9 g, 70%. Anal. Found: C, 46.4; H, 6.0; Cl, 28.2. Anal. Calcd for C₃₀H₄₅Cl₆V₃: C, 46.7; H, 5.9; Cl, 27.6. ¹H NMR (200 MHz, $C_6^2H_6$ solution): -7.0 ppm ($\Delta v_{1/2}$ 52 Hz). Mass spectrum (m/e, % abundance, assignment): 257, 43, $\{C_{10}H_{16}V^{35}Cl_2\}^+$ ($\{(C_5Me_5)VCl_2H\}^+$); 221, 100, $\{C_{10}H_{15}V^{35}-$ Cl⁺ ({(C₅Me₅)VCl}⁺). The compound was also characterized by X-ray diffraction (see below).

Oxidation of $[(\eta - C_5 Me_5)V(\mu - Cl)_2]_3$ with O_2 : Formation of $(\eta - C_5 Me_5) VCl_2(O)$. A solution of $[(\eta - C_5 Me_5) V(\mu - Cl)_2]_3$ (2.1 g, 2.7 mmol) in tetrahydrofuran (100 cm³) was incubated, with

⁽⁵¹⁾ Churchill, M. R.; Chang, S. W.-Y. J. Chem. Soc., Chem. Commun. 1974. 248

⁽⁵²⁾ Stollmaier, F.; Thewalt, U. J. Organomet. Chem. 1981, 222, 227.

⁽⁵³⁾ Goldberg, S. Z.; Spivack, B.; Stanley, G; Eisenberg, R.; Braitsch,
D. M.; Miller, J. S.; Abkowitz, M. J. Am. Chem. Soc. 1977, 99, 110.
(54) Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond; W. H.
Freeman: San Francisco, 1960; p 197.

⁽⁵⁵⁾ Aistars, A.; Newton, C.; Rübenstahl, T.; Doherty, N. M. Orga-nometallics 1997, 16, 1994.

⁽⁵⁶⁾ Evans, D. F. J. Chem. Soc. 1959, 2003.

⁽⁵⁷⁾ Schubert, E. M. J. Chem. Educ. 1992, 69, 62.

stirring, under a mixture of argon and dioxygen (Ar/O₂, 4:1; total volume, 1500 cm³; total pressure, 1 atm) for 1.5 h. The pressure was maintained at 1 atm by addition of pure dioxygen at intervals. The solution changed from dark red to blue-green as the reaction proceeded. The solvent was removed under vacuum leaving an oily green residue. This was extracted with toluene (120 cm³); the extract was filtered (leaving a purple residue) and reduced in volume to 30 cm³. Hexane (100 cm³) was added. On setting aside at -25 °C for 12 h, bright green crystals of $(\eta$ -C₅Me₅)VCl₂(O) were obtained. These were collected by filtration and dried under vacuum. Yield: 1.45 g. 65%. The product was characterized by comparison of its spectroscopic properties to those reported in the literature. ¹H NMR (C²HCl₃ solution): 2.31 (s) (lit. 2.32,¹⁵ 2.33⁵⁵) ppm; ¹³C NMR: 13.3 (s, C₅(CH₃)₅), 133.5 (s, C₅(CH₃)₅) (lit.^{11,15} 13.3, 133.7) ppm. Infrared: 967 (v(V=O)) (lit. 965,¹¹ 967⁵⁵) cm⁻¹. Mass spectrum: m/e 272 ({(C₅Me₅)V³⁵Cl₂O}⁺).

Oxidation of $[(\eta - C_5Me_5)V(\mu - Cl)_2]_3$ with NaN₃: Formation of $[(\eta - C_5Me_5)VCl(\mu - N)]_2$. A solution of $[(\eta - C_5Me_5)V(\mu - N)]_2$ Cl)₂]₃ (2.43 g, 3.16 mmol) in tetrahydrofuran (100 cm³) was added to NaN₃ (0.63 g, 9.69 mmol) (the NaN₃ was dried and deareated by grinding slowly with a Teflon stir bar under dynamic vacuum for 0.5 h). The mixture was stirred for 12 h at 40 °C in a flask equipped with a pressure equalizing valve, since N_2 is evolved (eq 4). The solution changed from dark red to green-blue. The solvent was then removed under vacuum, leaving an oily black residue. This was extracted with hot (80 °C) toluene (150 cm³), and the resultant solution filtered twice through acid-free Celite to remove sodium chloride. The toluene solvent was removed under vacuum and hexane (50 cm³) added. On setting aside for 12 h at -25 °C, black microcrystals of $[(\eta - C_5 Me_5)VCl(\mu - N)]_2$ were deposited. These were collected by filtration and dried under vacuum. Yield: 1.61 g, 72%. The product was characterized by comparison of its spectroscopic properties with these reported in the literature. ¹H NMR ($C_6^2H_6$ solution): 2.05 (s) (lit.⁶ 2.05) ppm; ⁵¹V NMR: -144 (s) (lit.⁶ -144) ppm. Mass spectrum: $m/e 470 (\{(C_5Me_5)_2V_2N_2^{35}Cl_2\}^+)$. Infrared: 720 cm⁻¹; since all other bands in the spectrum can be assigned to vibrations of the $(\eta$ -C₅Me₅)V unit, we assign this band to ν (V–N–V); however, a band assigned to ν (Ta-N-Ta) in [(η -C₅Me₅)TaX- $(\mu$ -N)]₃ appears at 960 cm⁻¹ for X = Cl²² or Me,⁵⁰ and 964 cm⁻¹ for $\{[(\eta - C_5 Me_5)TaMe(\mu - N)]_3\}^{-.50}$

X-ray Crystallography. Large thin platelike crystals were obtained by setting aside saturated solutions of $[(\eta$ -C₅Me₅)V- $(\mu$ -Cl)₂]₃ in ether at 4 °C for several days. The gross structure

of the trimer was determined by processing data obtained from a crystal of dimensions $0.50 \times 0.10 \times 0.75$ mm using an Enraf-Nonius CAD4 diffractometer with Mo K α radiation. However, refinement did not proceed below R = 0.12, and there were several unreasonable thermal parameters, among other problems. After several abortive attempts at obtaining data from similar crystals, samples were examined using a Siemens P4/ SMART diffractometer with a rotating anode generator and a CCD detector. This revealed that the plates were in fact stacked sheets, each sheet rotated by a small angle with respect to its neighbor. A less platelike crystal of dimensions $0.6 \times 0.6 \times 0.25$ mm was used for data collection.

Crystal data for C₃₀H₄₅Cl₆V₃ (M_r = 771.18): triclinic, *P*1; *a* = 11.8187 (1) Å, *b* = 11.8395 (1) Å, *c* = 16.0141 (1) Å, α = 68.361 (1)°, β = 70.896 (1)°, γ = 60.160 (1)°; *Z* = 2; *D_c* = 1.44 Mg m⁻³; Mo K α radiation, λ = 0.710 73 Å; *T* = 290 K; θ = 1.39 - 26.38°; 10 s/frame exposure; 0.3°/frame; 14 394 reflections collected, 6611 unique reflections. Full matrix refinement⁵⁸ of 355 parameters (including one disordered η -C₅Me₅ group, with 80/20% occupancy in two positions) on *F*² gave *R*1 = 0.039, w*R*2 = 0.093, GoF 1.136. Max ΔF 0.345 e Å⁻³, min -0.256 e Å⁻³. An absorption correction based on multiple redundant data analysis was applied (maximum transmission factor 0.85, minimum 0.73).

Full details are given in the Supporting Information with selected distances and angles in Table 1.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support of this work, Dr. Jim Britten (McMaster University) for the use of the Siemens P4/SMART diffractometer, and a reviewer for helpful comments

Supporting Information Available: X-ray diffraction data for $[(\eta-C_5Me_5)V(\mu-Cl)_2]_3$: tables of crystal data, atomic coordinates, thermal parameters, hydrogen atom coordinates, and interatomic distances and angles (19 pages). Ordering information is given on any current masthead page.

OM960482G

⁽⁵⁸⁾ Sheldrick, G. M. SHELXL-93, Universität Göttingen, 1993.

⁽⁵⁹⁾ Stollmaier, F.; Thewalt, U. J. Organomet. Chem. 1981, 208, 327.
(60) Herrmann, W. A.; Serrano, R.; Küsthardt, U.; Guggolz, E.; Nuber, B.; Ziegler, M. L. J. Organomet. Chem. 1985, 287, 329.

⁽⁶¹⁾ Ting, C.; Hammer, M. S.; Baenziger, N. C.; Messerle, L.; Deak, J.; Li, S.; McElfresh, M. Organometallics **1997**, *16*, 1818.