(Phthalimidomethyl)- and (Phenoxymethyl)cobalt **Carbonyls.** Equilibria of CO Insertion[†]

Ildikó Nagy-Gergely, Gábor Szalontai, Ferenc Ungváry, and László Markó

Department of Organic Chemistry, University of Veszprém, H-8200 Veszprém, Hungary

Massimo Moret and Angelo Sironi

Department of Structural Chemistry, University of Milano, Milano, Italy

Claudia Zucchi, Attila Sisak,[‡] C. Matthias Tschoerner,[§] Aldo Martinelli, Angela Sorkau,[§] and Gyula Pályi^{*}

Department of Chemistry, University of Modena, Via Campi 183, I-41100 Modena, Italy

Received January 7, 1997[®]

Summary: Phthalimidomethyl and phenoxymethyl as well as corresponding acetyl cobalt tetracarbonyls (1-4) were prepared and characterized. The single-crystal X-ray diffraction molecular structure of 1 (the first X-ray structure of an alkylcobalt tetracarbonyl with a pure organic alkyl group) was determined. The equilibrium constants of the equilibria $1 \rightleftharpoons 2$ and $3 \rightleftharpoons 4$ were determined at 20–60 and 20–40 °C, respectively.

Cobalt carbonyls are the most traditional and even nowadays the most important type of carbonylation catalysts (e.g. for hydroformylation,² hydroxy- and alkoxycarbonylation,^{2e,3} homologation,⁴ cyclocarbonylation,⁵ etc.). It is generally accepted that the mechanisms⁶ of all of these reactions involve the formation of a cobalt-carbon bond in the reaction of the substrate (olefin, acetylene, functionalized alkyl or aryl derivatives) with the catalyst precursor cobalt compound, and an alkyl- or arylcobalt carbonyl is formed.

Surprisingly, in spite of the great practical importance of this reaction only a very limited amount of prepara-

[‡] On leave from the Department of Organic Chemistry, University of Veszprém, Veszprém, Hungary.

C.; Pályi, G.; Krümmling, T.; Happ, B.; Bartik, T. J. Organomet. Chem. 1991, 419, 205.

(2) (a) Pino, P.; Piacenti, F.; Bianchi, M. in *Organic Syntheses via Metal Carbonyls*, Wender, I., Pino, P., Eds.; Wiley-Interscience: New York, 1977; Vol. 2, p 43. (b) Falbe, J. *New Syntheses with Carbon* Monoxide; Springer: Heidelberg, Germany, 1980. (c) Markó, L. Fun-dam. Res. Homogeneous Catal. **1984**, 4, 1. (d) Henrici-Olivé, G.; Olivé, S. The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide; Springer: Berlin, 1984. (e) Cornils, B., Hermann, W. A., Eds. Applied Homogeneous Catalysis with Organometallic Compounds, VCH: Wein-

Homogeneous Catalysis with Organometallic Compounds, VCH: Weinheim, Germany, 1995.
(3) (a) Pino, P.; Piacenti, F.; Bianchi, M. in Organic Syntheses via Metal Carbonyls, Wender, I., Pino, P., Eds.; Wiley-Interscience: New York, 1977; Vol. 2, p 233. (b) Alper, H. Fundam. Res. Homogeneous Catal. 1984, 4, 79. (c) Alper, H. J. Organomet. Chem. 1986, 300, 1.
(4) (a) Röper, M.; Loevenich, H. In Catalysis in C₁ Chemistry, Keim, W., Ed; D. Reidel: Dordrecht, The Netherlands, 1983. (b) Tasi, M.; Pályi, G.; Margy. Kem. Lapja 1986, 41, 190.
(5) Pályi, G.; Váradi, G.; Markó, L. in Stereochemistry of Organometallic and Inocranic Compounds: Bernal L. Ed.; Elsevier: Amster-

metallic and Inorganic Compounds; Bernal, I., Ed.; Elsevier: Amsterdam. 1986; Vol. 1, p 358.

dam. 1986; Vol. 1, p 358.
(6) (a) Calderazzo, F. Angew. Chem. 1977, 89, 305; Angew. Chem., Int. Ed. Engl. 1977, 16, 299. (b) Kuhlman, L. J.; Alexander, J. J. Coord. Chem. Rev. 1980, 33, 195. (c) Flood, J. C. Top. Inorg. Organomet. Stereochem. 1981, 12, 37. (d) Galamb, V.; Pályi, G. Coord. Chem. Rev. 1984, 59, 203. (e) des Abbayes, H. New J. Chem. 1987, 11, 535. (f) Alper, H. Adv. Chem. Ser. 1987, No. 326, 8. (g) Solà, M.; Ziegler, T. Organometallics 1996, 15, 2611.

tive work has been reported with alkylcobalt carbonyls. Structurally characterized derivatives have been mostly phosphine-substituted alkylcobalt carbonyls7-13 and only one non-fluorinated alkyl complex: η^{1} -[η^{6} -(4-Me- $C_6H_4CH_2$)Cr(CO)₃]Co(CO)₄.⁷

Earlier studies of our groups showed that easy interconversion of sufficiently stable¹⁴ alkyl- and acylcobalt complexes can be expected for derivatives of the XCH₂- $Co(CO)_{3}L$ and $XCH_{2}C(O)Co(CO)_{3}L$ type, where X is a polar organic group^{7,11,12,15} or a heteroatom (Cl)⁸and L is CO or PPh₃. Although the decarbonylation of CH₃C- $(O)Co(CO)_4$ itself is disadvantageous under CO, its thermodynamic parameters could be determined.¹⁶ These precedents led us to the study of the phthalimidomethyl and phenoxymethyl cobalt tetracarbonyls and their acetyl derivatives (1-4), which will be reported in this paper.

Experimental Section

The standard Schlenk inert-atmosphere technique was used. $Na[Co(CO)_4]^{17,18b}$ and phenoxyacetyl chloride were prepared according to published procedures.

IR spectra were obtained by a Carl Zeiss Jena IR 75 spectrophotometer and a Bruker FT-IR IFS 113V. ¹H and ¹³C NMR spectra were registered on Varian Unity 300 MHz and Bruker AMX-400 (400 MHz) spectrometers.

1987, 6, 861.
(9) Milstein, D.; Huckaby, J. L. J. Am. Chem. Soc. 1982, 104, 6150.
(10) Krümmling, T.; Bartik, T.; Markó, L.; Boese, R.; Schmid, G.;
Vivarelli, P.; Pályi, G. J. Organomet. Chem. 1991, 421, 323.
(11) Galamb, V.; Pályi, G.; Cser, F.; Furmanova, M. G.; Struchkov,
Yu. T. J. Organomet. Chem. 1981, 209, 183.
(12) (a) Pályi, G.; Zucchi, C.; Bartik, T.; Herbrich, T.; Kriebel, C.;
Boese, R.; Sorkau A.; Fráter, G. Atti Accad. Sci. Bologna, Rend. Cl.
Sci. Fis 1992/93, 281 [14/10], 159 (b) Pályi, G.: Alberts, K.; Bartik, K.; Boese, R.; Sorkau A.; Frater, G. Atti Accad. Sci. Bologna, Kend. Cl. Sci. Fis. 1992/93, 281 [14/10], 159. (b) Pályi, G.; Alberts, K.; Bartik, T.; Boese, R.; Fráter, G.; Herbrich, T.; Herfurth, A.; Kriebel, C.; Sorkau, A.; Tschoerner, C. M.; Zucchi, C. Organometallics 1996, 15, 3253. (13) Ungváry, F.; Kovács, J.; Hammerschmitt, B.; Cordier, G. Organometallics 1993, 12, 2849. (14) We mean here the kinetic stability against CO insertion-dimensional dimensional constraints. Constraints of Williams

deinsertion, decomposition, or β-elimination in the sense of: Wilkinson, G. *Chimia* **1972**, *27*, 165.

(15) Sisak, A.; Sámpár-Szerencsés, E.; Galamb, V.; Németh, L.;
 (15) Sisak, A.; Sámpár-Szerencsés, E.; Galamb, V.; Németh, L.;
 Ungváry, F.; Pályi, G. *Organometallics* 1989, *8*, 1096.
 (16) Ungváry, F.; Markó, L. *Inorg. Chim. Acta* 1994, *227*, 211.
 (17) Co₂(CO)₈: Szabó, P.; Markó, L.; Bor, G. *Chem. Tech. (Leipzig)*

1961. 13. 549.

(18) (a) Hieber, W.; Vohler, O.; Braun, G. Z. Naturforsch. 1958, 13b, 192. (b) Galamb, V.; Pályi, G. In *Organometallic Syntheses* King, R. B., Eisch, J. J., Eds.; Elsevier: Amsterdam, 1986; Vol. 3, p 142.

[†] Alkylcobalt Carbonyls. 12. Part 11: Reference 1.

[§] On leave from the Department of Chemistry, Martin-Luther University, Halle-Merseburg, Germany. [®] Abstract published in *Advance ACS Abstracts*, May 1, 1997. (1) Somlyai-Haász, J.; Haász, F.; Galamb, V.; Benedetti, A.; Zucchi,

⁽⁷⁾ Galamb, V.; Pályi, G.; Ungváry, F.; Markó, L.; Boese, R.; Schmid, G. J. Am. Chem. Soc. **1986**, 108, 3344.

⁽⁸⁾ Galamb, V.; Pályi, G.; Boese, R.; Schmid, G. Organometallics 1987, 6, 861.

Table 1. Spectroscopic Data of Complexes 1-4

complex	IR ν (C—O) (hexane), cm ⁻¹	¹ H NMR, (benzene- d_6), δ	$^{13}\mathrm{C}\ \mathrm{NMR}$ (benzene- d_6), δ
1	2107 (m), 2040 (s), 2029 (vs), 2020 (vs),	4.24 (s, 2H, CH_2),	19.39 (CH ₂), 123.57 (C _{β}), 133.44 (C _{ipso}), 134.38 (C _{α}), 167.41 (N=C=O), 197.87 (C=O)
	1723 (3)	7.4 (m, 2H, α-CH)	107.41 (IV C=0), 197.87 (C=0)
2	2112 (m), ^a 2053 (s), 2038 (vs), 2017 (vs), 1735 (s), 1715 (w, broad)	4.56 (s, 2H, C <i>H</i> ₂), 6.8 (m, 2H, β-C <i>H</i>);	$\begin{array}{c} 60.47 \; (CH_2), \; 124.02 \; (C_\beta), \; 132.84 \; (C_{\rm ipso}), \; 134.4 \; 8 \; (C_\alpha), \\ 167.41 \; (N-C=O), \; 196.38 \; (C=O), \; 221.99 \; (C=O) \end{array}$
		7.35 (m, 2H, α-C <i>H</i>)	
3	2100 (m), 2042 (s), 2033 (vs, broad),	5.10 (s, CH ₂), 6.7–7.3	82.55 (CH ₂), 115.88 (C _m), 123.02 (C _p), 130.66(C ₀),
	2019 (vs)	(m, C <i>H</i>)	158.61 (C _{ipso}), 197.20 (C≡O)
4	2108 (m), 2055 (m, sh), 2011 (vs),	4.14 (s, CH_2), 6.7–7.3	$62.25 (CH_2), 117.98 (C_m), 123.56 (C_p), 199.24 (C=O),$

^{*a*} This band could be observed more clearly in a hexane-toluene mixture.

X-ray Structure Determination of 1: crystal dimensions $0.15 \times 0.17 \times 0.25$ mm; Enraf-Nonius CAD4 diffractometer; graphite-monochromatized Mo K α radiation ($\lambda = 0.710$ 73 Å) at 293(2) K; unit cell dimensions (from a least-squares fit of the setting angles of 25 randomly distributed reflections with $10^{\circ} < \theta < 14^{\circ}$ monoclinic, $P2_1/c$, a = 9.145(1) A, b = 8.458(2)Å, c = 17.605(9) Å, $\beta = 91.78(2)^{\circ}$, V = 1361.1(8) Å³, Z = 4; $F(000) = 664; D_{calcd} = 1.616 \text{ g cm}^{-3}; \mu(Mo \text{ K}\alpha) = 1.287 \text{ mm}^{-1};$ scan method ω scan; scan interval 1.0 + 0.35 tan θ ; θ range $3-25^{\circ}$; data collected $-10 \le h \le 10, 0 \le k \le 10, 0 \le l \le 20$; no. of reflections collected 2368; no. of independent reflections 2368; crystal decay 16%; absorption correction ψ scan; no. of azimuthal reflections 3; maximum and minimum transmission 1.00 and 0.95; refinement method full-matrix least squares on F_0^2 ; observed reflection criterion all reflections; data/restraints/ parameters 2366/0/214; *R* indices $(F_0 > 4\sigma(F_0))^{24} R(F) = 0.0392$, $R_{\rm w}({\rm F}^2) = 0.0727; R \text{ indices (all data) } R(F) 0.0684, R_{\rm w}({\rm F}^2) =$ 0.0854; goodness of fit on F_0^2 1.033; largest difference peak and hole 0.267 and -0.170 Å⁻³.

Molecular modeling calculations were performed with a 486 DX4-100 PC using the Hyperchem (Autodesk) program.

Preparation of the Complexes 1–4. To a solution of Na-[Co(CO)₄] prepared from 0.86 g of Co₂(CO)₈ (2.5 mmol) and 30 g of 1.5% Na[Hg] in 9 mL of THF was added 0.978 g (5.0 mmol) of *N*-(chloromethyl)phthalimide at -78 °C under Ar. The reaction mixture was stirred for 1 h and then warmed to room temperature with continuous stirring (~1.5 h). The solvent was removed at 0 °C under reduced pressure, and *n*-pentane (30 mL) was added. Complex **1** was crystallized from this solution at first at -18 °C and then at -78 °C. Recrystallization from *n*-pentane gave 0.45 g (55%) of pale yellow crystals of **1**. Anal. Calcd for C₁₃H₆CoNO₆: C, 47.16; H, 1.83; Co, 17.80. Found: C, 47.5; H, 1.85; Co, 17.3.

A 0.05 M solution of **1** in *n*-hexane-dichloromethane (1:1) was pressurized to 60 bar of CO at room temperature in a stainless steel autoclave for 2 h and then chilled to -78 °C. IR analysis of the solution at -50 °C showed the quantitative transformation of **1** to a species having a spectrum typical for an acylcobalt tetracarbonyl (**2**). The crystallization of **2** was unsuccessful.

The preparation of complexes **3** and **4** was realized similarly. Compounds **3** and **4** were identified by IR and NMR spectra as well as through the isolation of the PPh₃ derivative of **4**, PhOCH₂C(O)Co(CO)₃(PPh₃). Anal. Calcd for $C_{29}H_{22}O_5$ CoP: C, 64.46; H, 4.10. Found: C, 64.5; H, 4.2. IR ν (C–O) in *n*hexane: 2048 (m), 1984 (s), 1969 (s), 1712 (w) cm⁻¹. ¹H NMR in C₆D₆ (δ): 4.87 (s, 2H, CH₂) 6.8–6.9, 7.0–7.2, 7.5–7.6 (m, 20H, ar –CH) ppm. ¹³C NMR in C₆D₆ (δ): 83.17 (CH₂, J_{C-P} = 29.08 Hz), 115.45 (C_m, Ph), 121.63 (C_p, Ph), 129.87 (C_o, Ph), 129.26 (C_m, PPh₃, J_{C-P} = 10.18), 131.19 (C_p, PPh₃, J_{C-P} = 2.31), 133.46 (C_o, PPh₃, J_{C-P} = 11.24), 133.58 (C_{ipso}, PPh₃, J_{C-P} = 42.99), 158.93 (C_{ipso}, Ph), 199.70 (CO_{carb}, J_{C-P} = 19.51), 234.46 (CO_{acyl}, J_{C-P} = 32.66) ppm. ³¹P NMR in C₆D₆ (δ): 51.2 ppm.

Equilibrium Measurements. Approximately 0.05 M solutions were made from 1 (in toluene- d_8) and from the mixture of 3 and 4 (in benzene- d_6). Samples of the solutions (0.6 mL) were transferred by a gastight Hamilton syringe in a 5 mm 507-JY-7 NMR tube (Wilmad) under 750 mmHg pressure of

Scheme 1

Scheme 2

CO. The tube was closed and held in a water bath at 20 °C with occasional shakings for 10 min before running the ¹H NMR experiment. The measurements were performed at 20, 30, 40, 50, and 60 °C for **1** and **2** and at 20, 30, and 40 °C for **3** and **4**. The equilibrium constants were calculated from the average ratios of alkyl- and acylcobalt tetracarbonyls measured during heating and cooling, respectively.

Results and Discussion

Compounds 1 and 4 were smoothly obtained by ion metathesis,¹⁸ complex 2 was prepared by carbonylation of 1, while the alkyl derivative 3 was obtained by decarbonylation of the corresponding acyl complex 4 (Schemes 1 and 2). Complex 1 could be isolated in analytically pure form; 2 was stable only in solution under CO pressure.¹⁹ The reaction (2) shown in Scheme 2 yielded mixtures of complexes 3 and 4, which could be enriched in 3 by decarbonylation and in 4 by

⁽¹⁹⁾ Preparation of compounds 1 and 2 was attempted at first by Beck and Petri;²⁰ only the PPh₃-substituted derivative of 2 has been isolated and characterized.

Figure 1. ORTEP view of 1 as determined by X-ray diffraction. Selected interatomic distances (pm) and angles (deg): $Co-C(H_2)$, 207.5(3); $C(H_2)-N$, 144.1(4); $Co-C(O)_{eq}$, 181.3(5), 179.8(5), 179.6(4); Co-C(O)_{ax}, 181.8(4); Co-C(H₂)-N, 117.2(3); (O) C_{ax} -Co-C(H₂), 176.4(2); (O) C_{eq} -Co-C(H₂), 90.4(2), 83.4(2), 88.7(2).

Figure 2. Temperature dependence of the equilibrium constants of the equilibria $1 \rightleftharpoons 2$ (\Box) and $4 \rightleftharpoons 3$ (\blacklozenge).

carbonylation. All complexes were characterized by IR (v(C-O)) ¹H NMR, and ¹³C NMR spectroscopy (Table 1). Crystals suitable for X-ray diffraction analysis could be obtained from complex 1 (Figure 1).

Alkyl-acyl equilibria were studied by ¹H NMR. In the equilibrated mixture of 1 and 2 at 20 °C and under 1 bar of CO pressure in toluene- d_8 the ratio of the species was 1:1.5, while the ratio of 3 and 4 in benzene d_6 was found to be very near 1:1. In comparison, the data reported for acetyl- and methylcobalt tetracarbonyl showed that under similar conditions the share of the methyl complex was only about 1%.¹⁶ The qualitative or semiqualitative data published for phenyl-,^{6d,7} methoxy-,¹⁵ and ((trimethylsilyl)oxy)acetyl cobalt tetracarbonyls¹⁵ and the corresponding alkyl complexes showed a behavior which is in accordance with the results of the present work.

Figure 2 shows the temperature dependence of the equilibrium constants of the decarbonylation of 2 and 4 as well. The thermodynamic parameters of both

complex	10 ³ K (20 °C)	∆ <i>H</i> °, kJ/mol	ΔS° , J/(mol K)	source
2	5.3	16.2 ± 0.9	7.9 ± 1.5	this work
4	6.7	11.8 ± 2.8	9.6 ± 4.0	this work
MeC(O)Co(CO) ₄	0.06	46.9 ± 2.5	81.6 ± 8.4	ref 16

decarbonylations are listed in Table 2 together with literature data reported for the transformation of acetylinto methylcobalt tetracarbonyl. The decarbonylations of 2 and 4 are much less endothermic than that of MeC-(O)Co(CO)₄, which is in agreement with the qualitative preparative experience that the $1 \rightleftharpoons 2$ and $4 \rightleftharpoons 3$ equilibria can be much more easily shifted to one side or the other than in the case of the $CH_3C(O)C_0(CO)_4 \rightleftharpoons$ CH₃Co(CO)₄ equilibrium.^{16,18a,21}

In spite of the crucial importance of alkylcobalt tetracarbonyls in mechanistic speculations,⁶ the X-ray diffraction study on compound 1 is the first one concerning an alkylcobalt tetracarbonyl bound to a pure organic fragment. The ORTEP view of **1** shows that the cobalt has a trigonal-bipyramidal coordination geometry with an axial CH₂N alkyl group, as anticipated by spectroscopic analogies with related systems, staggered with respect to the equatorial (CO)₃ moiety.^{6d,21b} The Co-C(alkyl) distance (207.5(3) pm) is intermediate between that in $[\eta^1 - (\eta^6 - 4 - \text{MeC}_6 H_4 C H_2)Cr(CO)_3]Co(CO)_4$ (212.6 pm)^{22b} and in SF₅CH₂Co(CO)₄ (202.6(6) pm),^{22c} the latter being close to the sum of the pertinent covalent radii (202 pm).^{22,23}

The three equatorial carbonyl ligands are bent away from the axial one (average $C_{ax}-Co-C_{eq} = 92.6^{\circ}$), as commonly observed in such systems; however, only one of them is substantially bent toward the alkyl carbon atom $(C-Co-C(3) = 83.4(2)^\circ)$, since it can fit in the saddle of the CH₂ of the phthalimido group.

Molecular modeling calculations (Hyperchem, Autodesk), assuming tbp geometry around the Co, provided bond distance and bond angle values very close to those found experimentally by X-ray diffraction (cf. Supporting Information).

Supporting Information Available: Tables giving fractional atomic coordinates, anisotropic thermal parameters, bond distances and angles, and results of molecular mechanics calculations (4 pages). Ordering information is given on any current masthead page.

OM9700066

⁽²⁰⁾ Beck, W.; Petri, W. J. Organomet. Chem. 1977, 127, C14.

^{(21) (}a) Markó, L.; Bor, G.; Almásy, G.; Szabó, P. Brennst.-Chem. **1963**, 44, 184. (b) Bor, G. Inorg. Chim. Acta **1967**, 1, 81. (22) (a) For $[\eta^{1-}(\eta^{3}\text{-cyclo-}C_{5}F_{6})\text{Co}(\text{CO})_{3}]\text{Co}(\text{CO})_{4}$ (C-Co σ bond 197 pm), see: Hitchcock, P. B.; Mason, R. Chem. Commun. **1966**, 503. (b) For $[\eta^{1-}(\eta^{6}\text{-}4\text{-MeC}_{6}\text{H}_{4}\text{CH}_{2})\text{Cr}(\text{CO})_{3}]\text{Co}(\text{CO})_{4}$, see ref 7. (c) For F₅SCH₂ $C_{4}(CO)$ (C. Co σ bond 292 (c)) and compared by the set of the set Co(CO)₄ (C-Co σ bond 202.6(6) pm), see: Damerius, R.; Leopold, D.; Schulze, W.; Seppelt, K. Z. Anorg. Allg. Chem. **1989**, 578, 110. (23) (a) Capaccio, G.; Giacomello, P.; Giglio, E. Acta Crystallogr., Sect. A **1971**, 27, 229. (b) Cser, F. Acta Chim. Acad. Sci. Hung. **1974**,

^{80, 317. (}c) Allinger, N.; Hirsch, J. A.; Miller, M. A.; Tyminsky, I. J. J. Am. Chem. Soc. **1969**, *91*, 337.

⁽²⁴⁾ $R(F) = \sum ||F_0| - |F_c|| |\Sigma|F_0|$ and $R_w(F^2) = [\sum w(F_0^2 - F_c^2)^2 / \sum wF_0^4]^{1/2}$, where $w = \sigma^2(F_o^2) + (0.0347P)^2 + 0.5240P$ and $P = (F_0^2 + {}^2F_c^2)^2 / (SOF)^2 = [\sum w(F_0^2 - F_c^2)^2 / (n-p)]^{1/2}$, where *n* is the number of reflections and *p* is the number of reflections and *p* is the number of reflections.