Downloaded by CARLI CONSORTIUM on June 30, 2009
Published on June 10, 1997 on http://pubs.acs.org | doi: 10.1021/om9700066 Published on June 10, 1997 on http://pubs.acs.org | doi: 10.1021/om9700066Downloaded by CARLI CONSORTIUM on June 30, 2009

(Phthalimidomethyl)- and (Phenoxymethyl)cobalt Carbonyls. Equilibria of CO Insertion†

Ildikó Nagy-Gergely, Gábor Szalontai, Ferenc Ungváry, and László Markó

Department of Organic Chemistry, University of Veszpre´*m, H-8200 Veszpre*´*m, Hungary*

Massimo Moret and Angelo Sironi

Department of Structural Chemistry, University of Milano, Milano, Italy

Claudia Zucchi, Attila Sisak,‡ C. Matthias Tschoerner,§ Aldo Martinelli, Angela Sorkau,[§] and Gyula Pályi^{*}

Department of Chemistry, University of Modena, Via Campi 183, I-41100 Modena, Italy

Received January 7, 1997^X

Summary: Phthalimidomethyl and phenoxymethyl as well as corresponding acetyl cobalt tetracarbonyls (1- *4) were prepared and characterized. The single-crystal X-ray diffraction molecular structure of 1 (the first X-ray structure of an alkylcobalt tetracarbonyl with a pure organic alkyl group) was determined. The equilibrium constants of the equilibria* $1 \div 2$ *and* $3 \div 4$ *were determined at 20*-*60 and 20*-*40* °*C, respectively.*

Cobalt carbonyls are the most traditional and even nowadays the most important type of carbonylation catalysts (e.g. for hydroformylation,2 hydroxy- and alkoxycarbonylation,2e,3 homologation,4 cyclocarbonylation,⁵ etc.). It is generally accepted that the mechanisms6 of all of these reactions involve the formation of a cobalt-carbon bond in the reaction of the substrate (olefin, acetylene, functionalized alkyl or aryl derivatives) with the catalyst precursor cobalt compound, and an alkyl- or arylcobalt carbonyl is formed.

Surprisingly, in spite of the great practical importance of this reaction only a very limited amount of prepara-

‡ On leave from the Department of Organic Chemistry, University of Veszprém, Veszprém, Hungary.

(1) Somlyai-Haász, J.; Haász, F.; Galamb, V.; Benedetti, A.; Zucchi, : Pályi, G.; Krümmling, T.; Happ, B.; Bartik, T. *J. Organomet. Chem.* **1991**, *419*, 205.

(2) (a) Pino, P.; Piacenti, F.; Bianchi, M. in *Organic Syntheses via Metal Carbonyls*; Wender, I., Pino, P., Eds.; Wiley-Interscience: New York, 1977; Vol. 2, p 43. (b) Falbe, J. *New Syntheses with Carbon Monoxide*; Springer: Heidelberg, Germany, 1980. (c) Marko´, L. *Fun*dam. Res. Homogeneous Catal. **1984**, 4, 1. (d) Henrici-Olivé, G.; Olivé, S. *The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide*; Springer: Berlin, 1984. (e) Cornils, B., Hermann, W. A., Eds. *Applied Homogeneous Catalysis with Organometallic Compounds*; VCH: Weinheim, Germany, 1995.

(3) (a) Pino, P.; Piacenti, F.; Bianchi, M. in *Organic Syntheses via Metal Carbonyls*; Wender, I., Pino, P., Eds.; Wiley-Interscience: New York, 1977; Vol. 2, p 233. (b) Alper, H. *Fundam. Res. Homogeneous Catal.* **198**

W., Ed.; D. Reidel: Dordrecht, The Netherlands, 1983. (b) Tasi, M.;
Pályi, G. *Magy. Kem. Lapja* **1986**, *41*, 190.
(5) Pályi, G.; Váradi, G.; Markó, L. in *Stereochemistry of Organo*-

metallic and Inorganic Compounds; Bernal, I., Ed.; Elsevier: Amster-

dam. 1986; Vol. 1, p 358.

(6) (a) Calderazzo, F. *Angew. Chem.* **1977**, *89*, 305; *Angew. Chem., Ed. Engl. 1977*, *16*, 299. (b) Kuhlman, L. J.; Alexander, J. J. *Coord.*
 Chem. Rev. **1980**, 33, 195. (c) Flood, J. C. **1984**, *59*, 203. (e) des Abbayes, H. *New J. Chem*. **1987**, *11*, 535. (f) Alper, H. *Adv. Chem. Ser.* **1987**, *No. 326*, 8. (g) Sola`, M.; Ziegler, T. *Organometallics* **1996**, *15*, 2611.

tive work has been reported with alkylcobalt carbonyls. Structurally characterized derivatives have been mostly phosphine-substituted alkylcobalt carbonyls⁷⁻¹³ and only one non-fluorinated alkyl complex: *η*1-[*η*6-(4-Me- $C_6H_4CH_2)Cr(CO)_3]Co(CO)_4.^7$

Earlier studies of our groups showed that easy interconversion of sufficiently stable14 alkyl- and acylcobalt complexes can be expected for derivatives of the XCH2- $Co(CO)_{3}L$ and $XCH_{2}C(O)Co(CO)_{3}L$ type, where X is a polar organic group^{7,11,12,15} or a heteroatom (Cl)⁸and L is CO or PPh₃. Although the decarbonylation of CH_3C - $(O)Co(CO)₄$ itself is disadvantageous under CO, its thermodynamic parameters could be determined.16 These precedents led us to the study of the phthalimidomethyl and phenoxymethyl cobalt tetracarbonyls and their acetyl derivatives (**1**-**4**), which will be reported in this paper.

Experimental Section

The standard Schlenk inert-atmosphere technique was used. Na[Co(CO)4]17,18b and phenoxyacetyl chloride were prepared according to published procedures.

IR spectra were obtained by a Carl Zeiss Jena IR 75 spectrophotometer and a Bruker FT-IR IFS 113V. ¹H and ¹³C NMR spectra were registered on Varian Unity 300 MHz and Bruker AMX-400 (400 MHz) spectrometers.

(9) Milstein, D.; Huckaby, J. L. *J. Am. Chem. Soc.* **1982**, *104*, 6150.

(10) Krümmling, T.; Bartik, T.; Markó, L.; Boese, R.; Schmid, G.; Vivarelli, P.; Pályi, G. *J. Organomet. Chem.* **1991**, *421*, 323.
(11) Galamb, V.; Pályi, G. *J. Organomet. Chem.* **1991**, *421*, 323.
(11) Galamb, V.; Pál

(12) (a) Pályi, G.; Zucchi, C.; Bartik, T.; Herbrich, T.; Kriebel, C.; Boese, R.; Sorkau A.; Fráter, G. *Atti Accad. Sci. Bologna, Rend. Cl.
<i>Sci. Fis.* **1992/93**, *281* [14/10], 159. (b) Pályi, G.; Alberts, K.; Bartik,
T.; Boese, R.; Fráter, G.; Herbrich, T.; Herfurth, A.; Kriebel, C.; Sorka

A.; Tschoerner, C. M.; Zucchi, C. *Organometallics* **1996**, *15*, 3253. (13) Ungváry, F.; Kovács, J.; Hammerschmitt, B.; Cordier, G.

Organometallics **1993**, *12*, 2849. (14) We mean here the kinetic stability against CO insertiondeinsertion, decomposition, or *â*-elimination in the sense of: Wilkinson, G. *Chimia* **1972**, *27*, 165.

(15) Sisak, A.; Sámpár-Szerencsés, E.; Galamb, V.; Németh, L.; Ungváry, F.; Pályi, G. *Organometallics* **1989**, *8*, 1096.
(16) Ungváry, F.; Markó, L. *Inorg. Chim. Acta* **1994**, *227*, 211.
(17) Co₂(CO)₈: Szabó, P.; M

1961, *13*, 549.

(18) (a) Hieber, W.; Vohler, O.; Braun, G. *Z. Naturforsch.* **1958**, *13b*, 192. (b) Galamb, V.; Pályi, G. In *Organometallic Syntheses* King, R. B., Eisch, J. J., Eds.; Elsevier: Amsterdam, 1986; Vol. 3, p 142.

[†] Alkylcobalt Carbonyls. 12. Part 11: Reference 1.

[§] On leave from the Department of Chemistry, Martin-Luther University, Halle-Merseburg, Germany.
[©] Abstract published in *Advance ACS Abstracts,* May 1, 1997.

⁽⁷⁾ Galamb, V.; Pályi, G.; Ungváry, F.; Markó, L.; Boese, R.; Schmid, G. *J. Am. Chem. Soc.* **1986**, *108*, 3344.

⁽⁸⁾ Galamb, V.; Pályi, G.; Boese, R.; Schmid, G. *Organometallics* **1987**, *6*, 861.

Table 1. Spectroscopic Data of Complexes 1-**4**

complex	IR $v(C=0)$ (hexane), cm ⁻¹	¹ H NMR, (benzene- d_6), δ	¹³ C NMR (benzene- d_6), δ
	2107 (m), 2040 (s), 2029 (vs), 2020 (vs), 1723 (s)	4.24 (s, 2H, $CH2$), 6.8 (m, 2H, β -C <i>H</i>); 7.4 (m, 2H, α -C <i>H</i>)	19.39 (CH ₂), 123.57 (C _β), 133.44 (C _{ipso}), 134.38 (C _α), 167.41 (N-C=O), 197.87 (C=O)
2	2112 (m), a 2053 (s), 2038 (vs), 2017 (vs), 1735 (s), 1715 (w, broad)	4.56 (s, 2H, $CH2$), 6.8 (m, 2H, β -C <i>H</i>); 7.35 (m, 2H, α -C <i>H</i>)	60.47 (CH ₂), 124.02 (C _β), 132.84 (C _{ipso}), 134.4 8 (C ₀), 167.41 (N-C=O), 196.38 (C=O), 221.99 (C=O)
3	2100 (m), 2042 (s), 2033 (vs. broad), 2019 (vs)	5.10 (s, $CH2$), 6.7-7.3 (m. CH)	82.55 (CH ₂), 115.88 (C _m), 123.02 (C _p), 130.66(C ₀), 158.61 (C _{ipso}), 197.20 (C=O)
	2108 (m), 2055 (m, sh), 2011 (vs), 1710 (w)	4.14 (s, $CH2$), 6.7-7.3 (m, CH)	62.25 (CH ₂), 117.98 (C _m), 123.56 (C _p), 199.24 (C=O), 226.72 (C=O)

^a This band could be observed more clearly in a hexane-toluene mixture.

X-ray Structure Determination of 1: crystal dimensions $0.15 \times 0.17 \times 0.25$ mm; Enraf-Nonius CAD4 diffractometer; graphite-monochromatized Mo K α radiation ($\lambda = 0.71073$ Å) at 293(2) K; unit cell dimensions (from a least-squares fit of the setting angles of 25 randomly distributed reflections with $10^{\circ} < \theta < 14^{\circ}$ monoclinic, $P2_1/c$, $a = 9.145(1)$ A, $b = 8.458(2)$ Å, $c = 17.605(9)$ Å, $\beta = 91.78(2)$ °, $V = 1361.1(8)$ Å³, $Z = 4$; $F(000) = 664$; $D_{\text{caled}} = 1.616$ g cm⁻³; $\mu(\text{Mo K}\alpha) = 1.287$ mm⁻¹; scan method *ω* scan; scan interval 1.0 + 0.35 tan *θ*; *θ* range 3-25°; data collected $-10 \le h \le 10$, $0 \le k \le 10$, $0 \le l \le 20$; no. of reflections collected 2368; no. of independent reflections 2368; crystal decay 16%; absorption correction *ψ* scan; no. of azimuthal reflections 3; maximum and minimum transmission 1.00 and 0.95; refinement method full-matrix least squares on F_0^2 ; observed reflection criterion all reflections; data/restraints/ parameters 2366/0/214; *R* indices $(F_o > 4\sigma(F_o))^{24}$ *R*(*F*) = 0.0392, $R_w(F^2) = 0.0727$; *R* indices (all data) $R(F)$ 0.0684, $R_w(F^2) =$ 0.0854; goodness of fit on F_0^2 1.033; largest difference peak and hole 0.267 and -0.170 Å^{-3} .

Molecular modeling calculations were performed with a 486 DX4-100 PC using the Hyperchem (Autodesk) program.

Preparation of the Complexes 1-**4.** To a solution of Na- $[C₀(CO)₄]$ prepared from 0.86 g of $Co₂(CO)₈$ (2.5 mmol) and 30 g of 1.5% Na[Hg] in 9 mL of THF was added 0.978 g (5.0 mmol) of *N*-(chloromethyl)phthalimide at -78 °C under Ar. The reaction mixture was stirred for 1 h and then warmed to room temperature with continuous stirring (∼1.5 h). The solvent was removed at 0 °C under reduced pressure, and *n*-pentane (30 mL) was added. Complex **1** was crystallized from this solution at first at -18 °C and then at -78 °C. Recrystallization from *n*-pentane gave 0.45 g (55%) of pale yellow crystals of **1**. Anal. Calcd for C13H6CoNO6: C, 47.16; H, 1.83; Co, 17.80. Found: C, 47.5; H, 1.85; Co, 17.3.

A 0.05 M solution of **1** in *n*-hexane-dichloromethane (1:1) was pressurized to 60 bar of CO at room temperature in a stainless steel autoclave for 2 h and then chilled to -78 °C. IR analysis of the solution at -50 °C showed the quantitative transformation of **1** to a species having a spectrum typical for an acylcobalt tetracarbonyl (**2**). The crystallization of **2** was unsuccessful.

The preparation of complexes **3** and **4** was realized similarly. Compounds **3** and **4** were identified by IR and NMR spectra as well as through the isolation of the PPh₃ derivative of 4, PhOCH₂C(O)Co(CO)₃(PPh₃). Anal. Calcd for C₂₉H₂₂O₅CoP: C, 64.46; H, 4.10. Found: C, 64.5; H, 4.2. IR *ν*(C-O) in *n*hexane: 2048 (m), 1984 (s), 1969 (s), 1712 (w) cm⁻¹. ¹H NMR in C6D6 (*δ*): 4.87 (s, 2H, C*H*2) 6.8-6.9, 7.0-7.2, 7.5-7.6 (m, 20H, ar – *CH*) ppm. ¹³C NMR in C₆D₆ (δ): 83.17 (*CH*₂, *J*_{C-P} = 29.08 Hz), 115.45 (C_m, Ph), 121.63 (C_p, Ph), 129.87 (C_o, Ph), 129.26 (C_m, PPh₃, $J_{C-P} = 10.18$), 131.19 (C_p, PPh₃, $J_{C-P} = 2.31$), 133.46 (C₀, PPh₃, $J_{C-P} = 11.24$), 133.58 (C_{ipso}, PPh₃, $J_{C-P} =$ 42.99), 158.93 (C_{ipso}, Ph), 199.70 (CO_{carb}, $J_{C-P} = 19.51$), 234.46 (CO_{acyl}, $J_{C-P} = 32.66$) ppm. ³¹P NMR in C₆D₆ (δ): 51.2 ppm.

Equilibrium Measurements. Approximately 0.05 M solutions were made from 1 (in toluene- d_8) and from the mixture of **3** and **4** (in benzene- d_6). Samples of the solutions (0.6 mL) were transferred by a gastight Hamilton syringe in a 5 mm 507-JY-7 NMR tube (Wilmad) under 750 mmHg pressure of

Scheme 1

Scheme 2

CO. The tube was closed and held in a water bath at 20 °C with occasional shakings for 10 min before running the ¹H NMR experiment. The measurements were performed at 20, 30, 40, 50, and 60 °C for **1** and **2** and at 20, 30, and 40 °C for **3** and **4**. The equilibrium constants were calculated from the average ratios of alkyl- and acylcobalt tetracarbonyls measured during heating and cooling, respectively.

Results and Discussion

Compounds **1** and **4** were smoothly obtained by ion metathesis,18 complex **2** was prepared by carbonylation of **1**, while the alkyl derivative **3** was obtained by decarbonylation of the corresponding acyl complex **4** (Schemes 1 and 2). Complex **1** could be isolated in analytically pure form; **2** was stable only in solution under CO pressure.¹⁹ The reaction (2) shown in Scheme 2 yielded mixtures of complexes **3** and **4**, which could be enriched in **3** by decarbonylation and in **4** by

⁽¹⁹⁾ Preparation of compounds **1** and **2** was attempted at first by Beck and Petri;20 only the PPh3-substituted derivative of **2** has been isolated and characterized.

Figure 1. ORTEP view of **1** as determined by X-ray diffraction. Selected interatomic distances (pm) and angles (deg): $Co-C(H_2)$, 207.5(3); $C(H_2) - N$, 144.1(4); $Co-C(O)_{eq}$, 181.3(5), 179.8(5), 179.6(4); Co-C(O)_{ax}, 181.8(4); Co-C(H₂)-N, 117.2(3); (O)C_{ax}-Co-C(H₂), 176.4(2); (O)C_{eq}-Co-C(H₂), 90.4(2), 83.4(2), 88.7(2).

Figure 2. Temperature dependence of the equilibrium constants of the equilibria $1 \rightleftharpoons 2$ (\Box) and $4 \rightleftharpoons 3$ (\blacklozenge).

carbonylation. All complexes were characterized by IR (*ν*(C-O)) 1H NMR, and 13C NMR spectroscopy (Table 1). Crystals suitable for X-ray diffraction analysis could be obtained from complex **1** (Figure 1).

Alkyl-acyl equilibria were studied by ${}^{1}H$ NMR. In the equilibrated mixture of **1** and **2** at 20 °C and under 1 bar of CO pressure in toluene-*d*⁸ the ratio of the species was 1:1.5, while the ratio of **3** and **4** in benzene d_6 was found to be very near 1:1. In comparison, the data reported for acetyl- and methylcobalt tetracarbonyl showed that under similar conditions the share of the methyl complex was only about 1%.16 The qualitative or semiqualitative data published for phenyl- $,6d,7$ methoxy-,15 and ((trimethylsilyl)oxy)acetyl cobalt tetracarbonyls¹⁵ and the corresponding alkyl complexes showed a behavior which is in accordance with the results of the present work.

Figure 2 shows the temperature dependence of the equilibrium constants of the decarbonylation of **2** and **4** as well. The thermodynamic parameters of both

Table 2. Thermodynamic Parameters of the Decarbonylation of Acylcobalt Tetracarbonyls

complex	$10^3 K$ (20 °C)	ΔH° . kJ/mol	ΔS° . J/(mol K)	source
2	5.3	16.2 ± 0.9	$7.9 + 1.5$	this work
$\boldsymbol{4}$	6.7	11.8 ± 2.8	9.6 ± 4.0	this work
MeC(O)Co(CO) ₄	0.06	46.9 ± 2.5	81.6 ± 8.4	ref 16

decarbonylations are listed in Table 2 together with literature data reported for the transformation of acetylinto methylcobalt tetracarbonyl. The decarbonylations of **2** and **4** are much less endothermic than that of MeC- $(O)Co(CO)₄$, which is in agreement with the qualitative preparative experience that the $1 \div 2$ and $4 \div 3$ equilibria can be much more easily shifted to one side or the other than in the case of the $CH_3C(O)Co(CO)_4 \rightleftharpoons$ $CH₃Co(CO)₄$ equilibrium.^{16,18a,21}

In spite of the crucial importance of alkylcobalt tetracarbonyls in mechanistic speculations, 6 the X-ray diffraction study on compound **1** is the first one concerning an alkylcobalt tetracarbonyl bound to a pure organic fragment. The ORTEP view of **1** shows that the cobalt has a trigonal-bipyramidal coordination geometry with an axial $CH₂N$ alkyl group, as anticipated by spectroscopic analogies with related systems, staggered with respect to the equatorial $(CO)_{3}$ moiety.^{6d,21b} The $Co-C(alkyl)$ distance $(207.5(3)$ pm) is intermediate between that in $[\eta^1-(\eta^6-4-MeC_6H_4CH_2)Cr(CO)_3]Co(CO)_4$ $(212.6 \text{ pm})^{22b}$ and in SF₅CH₂Co(CO)₄ (202.6(6) pm),^{22c} the latter being close to the sum of the pertinent covalent radii (202 pm).^{22,23}

The three equatorial carbonyl ligands are bent away from the axial one (average $C_{ax}-C_0-C_{eq} = 92.6^{\circ}$), as commonly observed in such systems; however, only one of them is substantially bent toward the alkyl carbon atom $(C-C_0-C(3) = 83.4(2)^\circ)$, since it can fit in the saddle of the $CH₂$ of the phthalimido group.

Molecular modeling calculations (Hyperchem, Autodesk), assuming tbp geometry around the Co, provided bond distance and bond angle values very close to those found experimentally by X-ray diffraction (cf. Supporting Information).

Supporting Information Available: Tables giving fractional atomic coordinates, anisotropic thermal parameters, bond distances and angles, and results of molecular mechanics calculations (4 pages). Ordering information is given on any current masthead page.

OM9700066

⁽²⁰⁾ Beck, W.; Petri, W. *J. Organomet. Chem.* **1977**, *127*, C14.

^{(21) (}a) Markó, L.; Bor, G.; Almásy, G.; Szabó, P. *Brennst.-Chem.*
1963, 44, 184. (b) Bor, G. *Inorg. Chim. Acta* **1967**, *I*, 81.
(22) (a) For [7]-(7³-cyclo-C₅F₆)Co(CO)₃]Co(CO)₄ (C-Co σ bond 197
pm), see: Hit

For $[\eta^1-(\eta^6-4-\text{MeC}_6\text{H}_4\text{CH}_2)\text{Cr}(\text{CO})_3]\text{Co}(\text{CO})_4$, see ref 7. (c) For F₅SCH₂-

 $Co(\text{CO})_4$ (C-Co σ bond 202.6(6) pm), see: Damerius, R.; Leopold, D.;
Schulze, W.; Seppelt, K. Z. Anorg. Allg. Chem. 1989, 578, 110.
(23) (a) Capaccio, G.; Giacomello, P.; Giglio, E. Acta Crystallogr.,
Sect. A 1971, 27 *Am. Chem. Soc.* **1969**, *91*, 337.

⁽²⁴⁾ $R(F) = \sum ||F_0| - |F_c||/\sum |F_0|$ and $R_w(F^2) = \sum w(F_0^2 - F_c^2)^2/\sum wF_0^4|^{1/2}$,
where $w = \sigma^2(F_0^2) + (0.0347P)^2 + 0.5240P$ and $P = (F_0^2 + {}^2F_c^2)/3$. GOF $= [\sum w(F_0^2 - F_c^2)^2/(n-p)]^{1/2}$, where *n* is the number of reflections and *p* is the number of refined parameters.