Reaction of a C₆₀-Substituted Benzotetrasilacyclohexene with Bromine

Takahiro Kusukawa, Kenichi Ohkubo, and Wataru Ando*

Department of Chemistry, University of Tsukuba, Tsukuba 305, Japan

Received February 11, 1997[®]

Summary: Reaction of C_{60} -substituted benzotetrasilacyclohexene (**3**) and bromine gives rise to the 6,7:8,9dibenzo-3-oxo-1,2,2,4,4,5-hexaphenyl-1,2,4,5-tetrasilabicyclo[3.2.2]nonadiene (**5**) and C_{60} . Intramolecular cyclization of a silyl radical intermediate is proposed to account for the obtained products.

The chemistry of the 9,10-disilaanthracene derivative has been developed considerably for sometime by Jutzi¹ and Bickelhaupt² and modified by Corey,³ Nishiyama,⁴ and Chatgilialoglu.⁵ Previously, we reported the reaction of the 9,10-disilaanthracene dianion (1) with 1,2dichloro-1,1,2,2-tetramethyldisilane to give 5,6:7,8dibenzo-1,2,2,3,3,4-hexamethyl-1,2,3,4-tetrasilabicyclo[2.2.0]octadiene (2) in moderate yield, Scheme 1.6 Meanwhile, we have shown that the photolysis of cyclotetrasilanes in a solution containing C₆₀ afforded the C₆₀ adduct of benzotetrasilacyclohexadiene (**3**).⁷ In a continuation of our studies of the reactions of fullerenesilicon derivatives, we have prepared 6,7:8,9-dibenzo-3-oxo-1,2,2,4,4,5-hexaphenyl-1,2,4,5-tetrasilabicyclo[3.2.2]nonadiene (5) by the reaction of 3 with bromine. The cleavage of the Si-fullerene bond depends on the substituent on silicon, and the Si-Si bond of compound **3** is quite stable toward ionic and radical reagents. For example, di-tert-butyl peroxide, benzoyl peroxide, chlorine, and MeLi did not react with the silicon unit of 3 but gave complex product mixtures due to the reactions with the fullerene unit. On the other hand, compound 3 undergoes clevage of the silicon-fullerene bond on reaction with bromine.

Addition of bromine to a solution of **3** in carbon disulfide with exposure to daylight followed by purification of the products by gel-permeation chromatography afforded C_{60} and 6,7:8,9-dibenzo-3-oxo-1,2,2,4,4,5-hexaphenyl-1,2,4,5-tetrasilabicyclo[3.2.2]nonadiene (**5**) in yields of 93% and 45%,⁸ respectively (Scheme 2).

The reaction rate was promoted by external irradiation (>400 nm) but the yield of 5 became too low.⁹

(8) Formation of $C_{48}H_{38}Si_4O_2$ was determined by mass spectroscopy as a byproduct with an unknown structure.

5

However, the reaction did not occur in the dark. The EI-mass spectrum of 5 exhibits one peak at m/z 742 $(C_{48}H_{38}Si_4O, M^+)$. For the two *o*-phenylene groups, two doublets at δ 127.9 and 129.55 appear in the ¹³C NMR spectrum. As evidenced by homonuclear $(^{1}H^{-1}H)$ and heteronuclear (1H-13C) shift correlation (COSY) experiments, the corresponding methine protons resonate at δ 7.21 (dd, J = 5.5, 3.1 Hz), 7.33 (dd, J = 5.5, 3.1 Hz) in the ¹H NMR spectrum. The other six phenyl groups give rise to six doublets in the ¹³C NMR spectrum and two doublet and four triplet signals in the ¹H NMR spectrum. The ²⁹Si NMR spectrum of 5 shows two peaks at -33.6 and -11.2 ppm, which are assigned to the silicon atoms of **5**. The solid state structure of **5** was determined by X-ray crystallography. The ORTEP drawing is shown in Figure 1. Crystallographic data, positional parameters, and selected bond lengths and angles are given in Tables 1-2. Compound 5 crystallized in the $P2_1$ space group with two molecules of **5** and two benzene molecules per unit cell.

The most likely course of this conversion of **3** to **5** involves bromine atom abstraction of a fullerene-bonded hydrogen of **3**. The resulting radical then may undergo homolysis of the fullerene-silicon bond as shown in Scheme 3. The silyl radical thus formed then undergoes intermolecular cyclization to give **4**. While this type of intramolecular reaction occurs readily with radical species, it is not a common one in silicon ring systems. The Si–Si bond of **4** then must react with bromine, and hydrolysis to give siloxane **5** follows.

Experimental Section

General Procedure. Melting points were determined with a Yanaco micro melting point apparatus and are uncorrected.

[®] Abstract published in *Advance ACS Abstracts*, May 15, 1997. (1) (a) Jutzi, P. *Chem. Ber.* **1971**, *104*, 1455. (b) Jutzi, P. *Angew. Chem., Int. Ed. Engl.* **1975**, *14*, 232.

⁽²⁾ van den Winkel, Y.; van Baar, B. L. M.; Bickelhaupt, F.; Kulik, W.; Sierakowski, C.; Maier, G. *Chem. Ber.* **1991**, *124*, 185. (b) van den Winkel, Y.; van Baar, B. L. M.; Bastiaans, M. M.; Bickelhaupt, F. *Tetrahedron* **1990**, *46*, 1009. (c) Bickelhaupt, F.; van Mourik, G. L. J. Organomet. Chem. **1975**, *67*, 389.

^{(3) (}a) McCarthy, W. Z.; Corey, J. Y.; Corey, E. R. Organometallics
1984, 3, 255. (b) Corey, J. Y.; McCarthy, W. Z. J. Organomet. Chem.
1984, 271, 319. (c) Welsh, K. M.; Corey, J. Y. Organometallics 1987, 6, 1393.

⁽⁴⁾ Oda, M.; Nishiyama, K. J. Chem. Soc., Chem. Commun. 1994, 1703.

⁽⁵⁾ Gimisis, T.; Ballestri, M.; Ferreri, C.; Chatgilialoglu, C. Tetrahedron Lett. 1995, 36, 3897.

⁽⁶⁾ Ando, W.; Hatano, K.; Urisaka, R. *Organometallics* **1995**, *14*, 3625.

⁽⁷⁾ Kusukawa, T.; Kabe, Y.; Ando, W. Organometallics **1995**, *14*, 2142.

⁽⁹⁾ Probably because of the rapid bromo radical fromation to cause complexed reactions.

Figure 1. X-ray-determined structure of **5**. The ellipsoids represent 50% probability.

Table 1. Selected Bond Distances (Å) and Angles(deg)			
Si(1)-Si(2)	2.365(1)	Si(3)-Si(4)	2.360(1)
Si(1) - C(1)	1.888(4)	Si(4)-C(6)	1.888(4)
Si(1)-C(7)	1.876(4)	Si(4)-C(12)	1.888(4)
Si(2)-O(1)	1.649(2)	C(1) - C(6)	1.417(5)
Si(3)-O(1)	1.641(3)	C(7)-C(12)	1.413(5)
Si(2)-Si(1)-C(1)	103.3(1)	Si(3)-Si(4)-C(12)	109.5(1)
Si(2) - Si(1) - C(7)	112.4(1)	Si(2) - O(1) - Si(3)	144.4(2)
C(1) - Si(1) - C(7)	106.0(2)	Si(1) - C(1) - C(6)	119.2(3)
Si(1) - Si(2) - O(1)	106.8(1)	Si(4) - C(6) - C(1)	121.2(3)
Si(4)-Si(3)-O(1)	105.6(1)	Si(1) - C(7) - C(12)	121.3(3)
Si(3)-Si(4)-C(6)	106.3(1)	Si(4)-C(12)-C(7)	119.5(3)

Table 2. Crystallographic Data for 2

5	81
empirical formula	$C_{54}H_{46}Si_4O$
fW	823.31
cryst color, habit	colorless, needles
cryst dimens (mm)	0.20 imes 0.40 imes 0.40
cryst syst	monoclinic
space group	P2 ₁ (No. 4)
a (Å)	10.020(3)
<i>b</i> (Å)	14.580(4)
<i>c</i> (Å)	15.592(3)
α (deg)	99.81(2)
$V(Å^3)$	2244.7
Ζ	2
ρ_{calcd}	1.22
radiation	Mo K α ($\lambda = 0.710$ 74 Å)
temp (°C)	23
diffractometer	Enraf-Nonius CAD-4
scan type	$\omega - 2\theta$
rate (deg min ⁻¹ in ω)	1-5
scan width (deg)	$(0.4 + 0.350 \tan \theta)$
$2 heta_{ m max}$	50.0
total reflns no. of	4276
no. of unique reflcns	4117
struct soln, refinement	direct methods, full-matrix
	least squares
no. of obs $(I > 3.00\sigma(I))$	3748
no. of variables	531
$R; R_{\rm w}$	0.0043; 0.0044

¹H, ¹³C, and ²⁹Si NMR spectra were recorded on Bruker AM500 (500 and 125 MHz) and AC300 (300, 75, and 60 MHz) instruments. Infrared spectra were measured on a Jasco FT/ IR-5000 spectrometer. Mass spectra were obtained on a JEOL JMS SX102A mass spectrometer. Elemental analyses were carried out by the Chemical Analytical Center of the University of Tsukuba. For the column chromatography, Kieselgel 60 (Merck) was used. Gel-permeation chromatography (GPC) was performed on a LC 908 instrument (Japan Analytical Industry, Co. Ltd) with a series of Jaigel 1H and 2H columns, using toluene as the eluent. All solvents and reagents were purified according to standard procedures.

Reaction of C₆₀-Substituted Benzotetrasilacyclohexene (3) with Bromine. To a mixture of 52 mg of 3 (36 mmol)

and 50 mL of CS₂ was added a solution of Br₂ (108 mmol) in CS₂ (0.36 mL) over a period of 5 min with exposure to daylight at room temperature. After the mixture was stirred for 21 h, the solvent was evaporated and the residue was separated by gel-permeation chromatography (GPC) to give C₆₀ and **5** in 93% (24 mg) and 45% (12 mg) yields, respectively. Colorless needles; mp 252–253 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, 8H, J = 7.5 Hz), 7.21 (dd, 4H, J = 5.5, 3.1 Hz), 7.31 (t, 4H, J = 7.4 Hz), 7.33 (dd, 4H, J = 5.5, 3.1 Hz), 7.34 (d, 8H, J = 7.4 Hz), 7.40 (t, 4H, J = 7.6 Hz), 7.50 (t, 2H, J = 7.3 Hz), 7.68 (d, 4H, J = 6.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 127.6 (d), 127.9 (d), 128.3 (d), 129.5 (d), 130.0 (d), 133.1 (d), 134.8 (d), 135.3 (d), 137.1 (s), 137.4 (d), 142.8 (s); ²⁹Si NMR (60 MHz, CDCl₃) δ -33.6, -11.2; MS *m/e* 742 (M⁺). HRMS Calcd for C₄₈H₃₈Si₄O: 742.2000. Found: 742.2012.

Crystallographic Analysis. Crystals of suitable quality for X-ray analysis of the following dimensions were prepared by slowly cooling benzene solutions: $0.2 \times 0.4 \times 0.4$ mm for 5. Diffraction measurements were made on an Enraf-Nonius CAD4 computer-controlled κ axis diffractometer by using graphite-monochromatized Mo K α radiation. The unit cells were determined and refined from 25 randomly-selected reflections obtained by using the CAD4 automatic search, center, index, and least-squares routines. Crystal data and data collection parameters and the results of the analyses are listed in Table 2. All data processing was performed on a VAX 4000 computer by using the MOLEN structure solving program (Enraf-Nonius, Corp., Delft, The Netherlands). All intensities were corrected for Lorentz and polarization factors. Neutral atom scattering factors were calculated by the standard procedures.^{10a} An anomalous dispersion correction was applied to all non-hydrogen atoms.^{10b} Full-matrix least-squares refinements minimized the function $\sum w(|F_0| - |F_c|)^2$, w = 1.

Compound **5** crystallized in the monoclinic crystal system. The $\omega - 2\theta$ scan technique was adopted varying ω scan width as function of θ (ω scan width = 0.6 + 1.260 tan θ). Removal of the redundant data left 2700 unique data in the final data set. The structure was solved by direct methods (MULTAN) and refined via standard least-squares and difference Fourier techniques. Hydrogen atoms were located and added to the structure factor calculations, but their positions were not refined.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

Supporting Information Available: Text giving the details of data collection, reduction, and structure solution and refinement, tables of experimental details, positional and thermal parameters, general temperature factor expressions, root-mean-square amplitudes of thermal vibration, and bond distances and angles, and ORTEP diagram of **2** (27 pages). Ordering information is given on any current masthead page. OM970108W

^{(10) (}a) International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1975; Vol. IV, Table 2.2B, pp 99–101.
(b) International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1975; Vol. IV, Table 2.3.1, pp 149–150.