Facile Nucleophilic Addition of Thioethers to $[Ru(\eta^5-C_5Me_5)(\eta^4-CH_2CHCHCH_2)Br_2]CF_3SO_3$. X-ray Structure of $[Ru(\eta^5-C_5Me_5)(\eta^3-CH_2CHCHCH_2SEt_2)Br_2]CF_3SO_3$

Jin-Yu Shen,[†] Kurt Mereiter,[‡] Roland Schmid,[†] and Karl Kirchner^{*,†}

Institute of Inorganic Chemistry and Institute of Mineralogy, Crystallography, and Structural Chemistry, Technical University of Vienna, Getreidemarkt 9, A-1060 Vienna, Austria

Received February 24, 1997[®]

Summary: $[Ru(\eta^5-C_5Me_5)(\eta^4-CH_2CHCHCH_2)Br_2]^+$ (1) reacts with 1 equiv of SR_2 (R = Et, i-Pr) at $-20 \circ C$ in CH_2Cl_2 to afford the new dibromo-containing $Ru(IV) \eta^3$ allyl complexes [Ru(ŋ⁵-C₅Me₅)(ŋ³-CH₂CHCHCH₂SR₂)Br₂]⁺ (2, 3) in good yields. Reaction of 1 with the cyclic thioether SC_4H_8 gave a mixture of the respective Ru(IV) η^3 -allyl complex and the cationic complex [Ru(η^5 - $C_5Me_5)(SC_4H_8)_2Br_2^+$ (5) in a ratio of about 2:1. 2 (as the syn isomer) has been characterized by X-ray crystallography.

Introduction

Cationic η^4 -diene complexes are considered to be among the substrates most receptive toward nucleophilic attack, this being favored at the terminal carbon atoms.¹ We have recently reported² that the diene fragment in the cationic Ru(IV) complexes [Ru(η^{5} - $C_5Me_5)(\eta^4$ -diene) Br_2 ⁺ (diene = butadiene, isoprene) is exceptionally susceptible to even very weak nucleophiles, such as Cl⁻, Br⁻, and CF₃COO⁻, generating dibromo-containing functionalized Ru(IV) η^3 -allyl complexes. Here, we report on the reactivity of $[Ru(\eta^5 C_5Me_5$)(η^4 -CH₂CHCHCH₂)Br₂]CF₃SO₃ toward the thioethers SR_2 (R = Et, *i*-Pr) and tetrahydrothiophene (SC₄H₈). Included is the X-ray structure of one of the products, viz. $[Ru(\eta^5-C_5Me_5)(\eta^3-CH_2CHCHCH_2SEt_2) Br_2$ CF₃SO₃. To our knowledge, this is the first report of a direct nucleophilic addition of thioethers onto a coordinated unsaturated hydrocarbon molecule.

Results and Discussion

Treatment of $[Ru(\eta^5-C_5Me_5)(\eta^4-CH_2CHCHCH_2)Br_2]^+$ (1) (introduced as the $CF_3SO_3^-$ salt) with 1 equiv of SEt_2 at -20 °C in CH₂Cl₂ affords, on workup, the new dibromo-containing Ru(IV) η^3 -allyl complex [Ru(η^5 - C_5Me_5)(η^3 -CH₂CHCHCH₂SEt₂)Br₂]⁺ (**2a**) in 76% isolated yield (Scheme 1). Nucleophilic attack of SEt₂ occurred regioselectively at the terminal carbon atom, apparently on the face of the *cisoid* η^4 -diene group opposite to the metal center. Under these reaction conditions, the addition is kinetically controlled, resulting exclusively in the formation of the *anti* η^3 -allyl isomer as drawn in Scheme 1. However, already at room temperature, slow

isomerization to the thermodynamically favored syn product **2b** takes place.^{3,4} Thus, when a solution of **2a** in CH₂Cl₂ was set aside for crystallization by vapor diffusion with diethyl ether, crystals of 2b were obtained. Complexes 2 have been characterized by elemental analysis and ¹H and ¹³C{¹H} NMR spectroscopy. The ¹H NMR spectra of **2a** shows the expected singlet resonance for the C₅Me₅ ring appearing at 1.25 ppm. The resonance of the central allyl proton appears as double doublet centered at 4.89 ppm (${}^{3}J_{34} =$ 6.4 Hz, ${}^{3}J_{23} = 6.4$ Hz, ${}^{3}J_{13} = 10.2$ Hz). The coupling constant of ${}^{3}J_{34} = 6.4$ Hz places the CH₂SEt₂ substituent anti with respect to the allyl moiety. In the ¹H NMR spectrum of 2b, the central allyl proton is found as a double double doublet centered at 5.21 ppm, but the larger coupling constant of ${}^{3}J_{34} = 8.5$ Hz suggests that the CH₂SEt₂ moiety takes the syn configuration around the C^3-C^4 bond. The ${}^{13}C{}^{1}H$ NMR spectra of **2** contain no surprising features, with the resonance of the sp³ carbon atom bearing the SEt₂ substituent observed in the range of 41.3-44.9 ppm. A structural view of 2b, as determined by X-ray crystallography, is shown in Figure 1, with important bond distances and angles reported in the caption. The allyl ligand is bonded asymmetrically to the metal center with the Ru-C bonds to the unsubstituted terminal and central allyl carbon atoms (C11) and C(12) (2.195(5) and 2.150(4) Å, respectively) being distinctly shorter than the Ru-C bond to the third allyl carbon atom C(13) (2.260(4) Å). The Ru-Br(1) and Ru-Br(2) distances are nearly identical, being 2.563(1) and 2.566(1) Å, respectively. The C(14)-S(1) bond distance is 1.816(5) Å. The asymmetric bonding of the allyl moiety to the metal center is in good agreement with observations on other substituted η^3 -allyl complexes.³⁻⁶

In a similar fashion to SEt₂, S-*i*-Pr₂ reacts with **1** to give the η^3 -allyl complex [Ru(η^5 -C₅Me₅)(η^3 -CH₂CHCH- CH_2S -*i*- Pr_2Br_2]⁺ (**3**) in 57% yield (Scheme 1). Under these reaction conditions, however, only the syn isomer **3b** could be obtained, as shown by the ¹H NMR spectroscopy. Indicative of this conformation is the *trans* coupling constant of ${}^{3}J_{34} = 8.5$ Hz unequivocally placing the CH₂S-*i*-Pr₂ substituent syn with respect to the allyl moiety.

^{*} Corresponding author. E-mail: kkirch@fbch.tuwien.ac.at.

[†] Institute of Inorganic Chemistry. [‡] Institute of Mineralogy, Crystallography, and Structural Chem-[⊗] Abstract published in *Advance ACS Abstracts*, May 1, 1997.

⁽¹⁾ Davies, S. G.; Green, M. L. H.; Mingos, D. M. P. Tetrahedron 1978, 34, 3047.

⁽²⁾ Gemel, C.; Kalt, D.; Sapunov, V. N.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1997, 16, 427.

⁽³⁾ Gemel, C.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1996, 15, 532.

⁽⁴⁾ Masuda, K.; Saitoh, M.; Aoki, K.; Itoh, K. J. Organomet. Chem. 1994, 473, 285.

⁽⁵⁾ Gemel, C.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1995, 14, 1405.

⁽⁶⁾ Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.; Watanabe, Y. Organometallics 1995, 14, 1945.

In contrast to SR_2 , with the cyclic thioether SC_4H_8 , no clean reaction takes place and a mixture of $[Ru(\eta^5 C_5Me_5$)(η^3 -CH₂CHCHCH₂SC₄H₈)Br₂]CF₃SO₃ as the syn isomer 4a and $[Ru(\eta^5-C_5Me_5)(SC_4H_8)_2Br_2]^+$ (5) in a ratio of about 2:1 is obtained. The formation of 5, i.e., attack of SC₄H₈ at the softer ruthenium center, may be explained by the higher π -donor strength of SC₄H₈ in comparison to the acyclic thioethers. Attempts to separate these complexes resulted in the complete decomposition of **4a** to several intractable materials, whereas 5 could be obtained in pure form, albeit in low yield. Thus, 4a has been characaterized only by ¹H NMR spectroscopy. Characterization of 5 was by elemental analysis and ¹H and ¹³C{¹H} NMR spectroscopy. The NMR spectra of 5 are very similar to the analogous chloro complex $[Ru(\eta^5-C_5Me_5)(SC_4H_8)_2Cl_2]^+$ reported previously,⁷ and are, therefore, not further discussed.

Experimental Section

General Information. All reactions were performed under an inert atmosphere of purified argon by using Schlenk

Figure 1. Structural view of $[Ru(\eta^5-C_5Me_5)(\eta^3-CH_2CH-CHCH_2SEt_2)Br_2]CF_3SO_3$ (**2b**). Selected bond lengths (Å) and angles (deg): $Ru-C(1-5)_{av} 2.242(4)$, Ru-C(11) 2.195(5), Ru-C(12) 2.150(4), Ru-C(13) 2.260(4), Ru-Br(1) 2.563(1), Ru-Br(2) 2.566(1), C(11)-C(12) 1.390(7), C(12)-C(13) 1.418(6), S(1)-C(14) 1.816(5), Br(1)-Ru-Br(2) 84.1(1), C(11)-C(12)-C(13) 114.7(4).

techniques. All chemicals were standard reagent grade and used without further purification. The solvents were purified and dried according to standard procedures and stored over 4 Å molecular sieves.⁸ The deuterated solvents were purchased from Aldrich and dried over 4 Å molecular sieves. [Ru(η^{5} -C₅Me₅)(η^{4} -CH₂CHCHCH₂)Br₂]CF₃SO₃ (1) was prepared according to the literature.² ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker AC-250 spectrometer operating at 250.13 and 62.86 MHz, respectively, and were referenced to SiMe₄. Microanalysis were done by Microanalytical Laboratories, University of Vienna.

Synthesis. [**Ru**(η^{5} -**C**₅**Me**₅)(η^{3} -**CH**₂**CHCHCH**₂**SEt**₂)**Br**₂]-**CF**₃**SO**₃. *anti*-**Isomer 2a.** A solution of **1** (86 mg, 0.143 mmol) in CH₂Cl₂ (3 mL) was treated with SEt₂ (15 mL, 0.143 mmol) at -20 °C for 1 h. Then, the volume of the solvent was reduced to about 1 mL. On addition of diethyl ether, a red precipitate was obtained, which was collected on a glass frit, washed with diethyl ether, and dried under vacuum. Yield: 75 mg (76%). Anal. Calcd for C₁₉H₃₁Br₂F₃O₃RuS₂: C, 33.10; H, 4.53. Found: C, 33.12; H, 4.56. ¹H NMR (δ , CDCl₃, 20 °C): 4.89 (ddd, 1H, J = 10.2 Hz, J = 6.4 Hz, J = 6.4 Hz), 4.72–4.56 (m, 1H), 3.69 (d, 1H, J = 6.1 Hz), 3.24 (dd, 1H, J = 12.2 Hz, J = 2.4 Hz), 3.06 (q, 4H, J = 7.3 Hz). 2.62 (t, 2H, J = 11.6 Hz), 1.25 (s, 15H), 0.96 (t, 6H, J = 7.3 Hz). ¹³C{¹H} NMR (δ , CDCl₃, 20 °C): 107.2 (C_5 Me₅), 96.3, 64.6, 60.2, 41.3 (CH_2 SEt₂), 34.4 (S CH_2 CH₃), 33.6 (S CH_2 CH₃), 11.0 (C₅ Me_5), 9.9 (SCH₂CH₃).

syn-Isomer 2b. A solution of 2a in CH₂Cl₂ was set aside for crystallization by vapor diffusion with diethyl ether. After 1 day, dark-red crystals of 2b were obtained. ¹H NMR (δ , CDCl₃, 20 °C): 5.29–5.18 (ddd, 1H, J = 8.5 Hz, J = 9.7 Hz, J= 6.1 Hz), 4.43 (dd, 1H, J = 10.4 Hz, J = 14.0 Hz), 4.26 (d, J= 6.1 Hz), 3.82–3.57 (m, 5H), 2.84 (dt, 1H, J = 10.4 Hz, J = 3.7 Hz), 2.45 (d, 1H, J = 9.7 Hz), 1.76 (m, 15H), 1.57 (t, 6H, J= 7.3 Hz). ¹³C{¹H} NMR (δ , CDCl₃, 20 °C): 106.5 (C_5 Me₅), 97.9, 66.0, 63.8, 44.9 (CH₂SEt₂), 34.8 (SCH₂CH₃), 34.1 (SCH₂CH₃), 10.5 (C_5Me_5), 9.7 (SCH₂CH₃).

[**Ru**(η^5 -**C**₅**Me**₅)(η^3 -**CH**₂**CHCHCH**₂**S**-*i***Pr**₂)**Br**₂]**CF**₃**SO**₃. *syn*-**Isomer 3b.** This complex has been prepared analogously to **2**, with **1** and S-*i*-**P**r₂ as the starting materials. Yield: 57%. Anal. Calcd for C₂₁H₃₅Br₂F₃O₃RuS₂: C, 35.15; H, 4.92. Found: C, 35.21; H, 4.88. ¹H NMR (δ , acetone- d_6 , 20 °C): 5.29 (ddd, 1H, J = 8.5 Hz, J = 8.5 Hz, J = 6.5 Hz), 4.59 (dd, 1H, J= 14.6 Hz, J = 8.5 Hz), 4.25 (m, 2H), 3.85 (dd, 1H, J = 14.6 Hz, J = 3.6 Hz), 3.00 (m, 2 H), 2.47 (d, 1H, J = 8.5 Hz), 1.79 (s, 15H), 1.20 (d, 12H, J = 6.1 Hz). ¹³C{¹H} NMR (δ , acetone d_6 , 20 °C): 107.6 (C_5 Me₅), 95.6, 65.7, 60.3, 46.1 (CH₂S), 34.0 (S*C*H), 11.5 (SCH*Me*₂), 11.4 (C₅*Me*₅).

[Ru(η^{5} -C₅Me₅)(η^{3} -CH₂CHCHCH₂SC₄H₈)Br₂]CF₃SO₃ (4a) and [Ru(η^{5} -C₅Me₅)(SC₄H₈)₂Br₂]CF₃SO₃ (5). Following the protocol above, treatment of **1** (86 mg, 0.143 mmol) and tetrahydrothiopene (12.6 mL, 0.143 mmol) led to a mixture of **4a** and **5** in a ratio of about 2:1. Overall yield: 64 mg. Attempts to separate these complexes by recrystallization from CH₂Cl₂ resulted in the complete decomposition of **4**. **5** was obtained in analytically pure form as a dark-red solid in 20% yield. Anal. Calcd for C₁₉H₃₁Br₂F₃O₃RuS₃: C, 31.63; H, 4.33. Found: C, 31.65; H, 4.31. **4a**: ¹H NMR (δ , CDCl₃, 20 °C) 5.47

⁽⁷⁾ Manzano, B. R.; Jalon, F. A.; Lahoz, F. J.; Chaudret, B.; Montauzon, D.d. J. Chem. Soc., Dalton Trans. **1992**, 977.

⁽⁸⁾ Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*, 3rd ed.; Pergamon: New York, 1988.

Table 1. Crystallographic Data for $[Ru(\eta^{\circ}-C_5Me_5)(\eta^{\circ}-CH_2CHCHCH_2SEt_2)Br_2]Cr_3SO_3$ (2B)"			
formula	$C_{19}H_{31}F_{3}O_{3}Br_{2}RuS_{2}$	$ heta_{\max}$, deg	25
fw	698.45	index ranges	$-18 \le h \le 18$
cryst size, mm	0.36 imes 0.36 imes 0.16	-	$0 \leq k \leq 11$
space group	$P2_1/n$		$0 \leq l \leq 32$
a, Å	13.147(2)	no. of rflns measd	18350
b, Å	8.462(1)	no. of unique rflns	4528
<i>c</i> , Å	23.401(4)	no. of rflns $F > 4\sigma(F)$	4025
β , deg	91.57(2)	no. of params	281
V, Å ³	2602.4(7)	$R(F)$ $(F > 4\sigma(F))$	0.035
F(000)	1368	R(F) (all data)	0.042
Ζ	4	$wR(F^2)$ (all data)	0.084
$\rho_{\rm calc}, {\rm g} {\rm cm}^{-3}$	1.760	diff Fourier peaks min/max, eÅ ⁻³	-0.41/0.47
Т, К	297	•	
μ , mm ⁻¹ (Mo K α)	3.872		
abs corr	empirical		

Table 1. Crystallographic Data for $[Ru(\eta^5-C_5Me_5)(\eta^3-CH_2CHCHCH_2SEt_2)Br_2]CF_3SO_3$ (2b)^a

^a $\mathbf{R}(F) = \sum ||F_0| - |F_c|| / \sum |F_0|, \ \mathbf{wR}(F^2) = [\sum (w(F_0^2 - F_c^2)^2) / \sum (w(F_0^2)^2)]^{1/2}.$

(ddd, 1H, J = 9.6 Hz, J = 6.1 Hz, J = 6.1 Hz), 5.07 (m, 2H), 4.36 (d, 1H, J = 6.1 Hz), 4.31 (m, 1H), 3.65 (m, 5H), 3.09 (d, 1H, J = 9.6 Hz), 1.82 (s, 15H), 1.76 (m, 4H). 5: ¹H NMR (δ , CDCl₃, 20 °C) 3.10 (t, 8H, J = 6.1 Hz), 2.15 (t, 8H, J = 6.1Hz), 1.65 (s, 15H). ¹³C{¹H} NMR (δ , CDCl₃, 20 °C): 112.0 (C_5Me_5), 41.5, 30.6, 10.7 (C₅Me₅).

X-ray Structure Determination for $[Ru(\eta^5-C_5Me_5)(\eta^3-CH_2CHCHCH_2SEt_2)Br_2]CF_3SO_3$ (2b). Crystal data and experimental details are given in Table 1. X-ray data have been collected with a Siemens Smart CCD area detector diffractometer using graphite-monochromated Mo K α radiation, a nominal crystal-to-detector distance of 3.88 cm, and 0.3° ω -scan frames. Corrections for Lorentz and polarization effects, crystal decay, and absorption were applied. The structure was solved with direct methods.⁹ All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were included in idealized positions.¹⁰ The structure was refined against F^2 .

Acknowledgment. J.-Y.S. thanks the Fonds zur Förderung der wissenschaftlichen Forschung for a Lise-Meitner Postdoctoral Research Fellowship (Project No. M00311-CHE).

Supporting Information Available: Tables of hydrogen atomic coordinates, anisotropic temperature factors, complete bond lengths and angles, and least-squares planes for complex **2b** (7 pages). Ordering information is given on any current masthead page.

OM9701332

Additions and Corrections

1997, Volume 16

David A. Brown,* John C. Burns, Cordula Mock-Knoblauch, and William K. Glass: Cyclodimerization of the Tropylium Ring by Reduction of $[(\eta^7 - C_7H_7)M_0(CO)_3]^+$ To Give $[\{M_0(CO)_3\}_2(\mu - \eta^5:\eta^5-C_7H_7-C_7H_7)]$ [PPN]₂.

Page 139. Reference 16 in the above paper was cited incorrectly and should be replaced by *Chem. Eur. J.* **1996**, *2*, 98. The authors in this reference remain the same.

OM970295Y

⁽⁹⁾ Sheldrick, G. M. SHELXS86: Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 1986. (10) Sheldrick, G. M. SHELXL93: Program for Crystal Structure Refinement; University of Göttingen, Göttingen, Germany, 1993.