Facile Nucleophilic Addition of Thioethers to $\left[\mathbf{Ru}(\eta^5\text{-}C_5\mathbf{Me}_5)(\eta^4\text{-}CH_2\text{-}CHCHCH_2)\mathbf{Br}_2\right]\mathbf{CF}_3\mathbf{SO}_3.$ X-ray **Structure of** $[\mathbf{Ru}(\eta^5\text{-}\mathbf{C}_5\mathbf{Me}_5)(\eta^3\text{-}\mathbf{CH}_2\mathbf{CHCHCH}_2\mathbf{SEt}_2)\mathbf{Br}_2]\mathbf{CF}_3\mathbf{SO}_3$

Jin-Yu Shen,† Kurt Mereiter,‡ Roland Schmid,† and Karl Kirchner*,†

Institute of Inorganic Chemistry and Institute of Mineralogy, Crystallography, and Structural Chemistry, Technical University of Vienna, Getreidemarkt 9, A-1060 Vienna, Austria

*Received February 24, 1997*⁸

Summary: [Ru(η5-C5Me5)(η4-CH2CHCHCH2)Br2]⁺ *(1) reacts with 1 equiv of* SR_2 $(R = Et, i-Pr)$ *at* -20 *°C in CH2Cl2 to afford the new dibromo-containing Ru(IV) η3 allyl complexes [Ru(η5-C5Me5)(η3-CH2CHCHCH2SR2)Br2]* + *(2, 3) in good yields. Reaction of 1 with the cyclic thioether SC4H8 gave a mixture of the respective Ru(IV) η3-allyl complex and the cationic complex [Ru(η5- C5Me5)(SC4H8)2Br2]*⁺ *(5) in a ratio of about 2:1. 2 (as the syn isomer) has been characterized by X-ray crystallography.*

Introduction

Cationic *η*4-diene complexes are considered to be among the substrates most receptive toward nucleophilic attack, this being favored at the terminal carbon atoms.¹ We have recently reported² that the diene fragment in the cationic Ru(IV) complexes $\left[\text{Ru}(n^5-\right)$ $C_5Me_5(\eta^4$ -diene)Br₂]⁺ (diene = butadiene, isoprene) is exceptionally susceptible to even very weak nucleophiles, such as Cl^- , Br^- , and CF_3COO^- , generating dibromo-containing functionalized Ru(IV) *η*3-allyl complexes. Here, we report on the reactivity of $\left[\text{Ru}(n^5-\right)$ C_5Me_5)(η ⁴-CH₂CHCHCH₂)Br₂]CF₃SO₃ toward the thioethers SR_2 ($R = Et$, *i*-Pr) and tetrahydrothiophene $SC₄H₈$. Included is the X-ray structure of one of the products, *viz*. [Ru(*η*5-C5Me5)(*η*3-CH2CHCHCH2SEt2)- $Br_2|CF_3SO_3$. To our knowledge, this is the first report of a direct nucleophilic addition of thioethers onto a coordinated unsaturated hydrocarbon molecule.

Results and Discussion

Treatment of [Ru(*η*5-C5Me5)(*η*4-CH2CHCHCH2)Br2]⁺ (1) (introduced as the $CF_3SO_3^-$ salt) with 1 equiv of SEt_2 at -20 °C in CH_2Cl_2 affords, on workup, the new dibromo-containing Ru(IV) *η*3-allyl complex [Ru(*η*5- C_5Me_5)(η^3 -CH₂CHCHCH₂SEt₂)Br₂]⁺ (2a) in 76% isolated yield (Scheme 1). Nucleophilic attack of SEt_2 occurred regioselectively at the terminal carbon atom, apparently on the face of the *cisoid* η ⁴-diene group opposite to the metal center. Under these reaction conditions, the addition is kinetically controlled, resulting exclusively in the formation of the *anti η*3-allyl isomer as drawn in Scheme 1. However, already at room temperature, slow

isomerization to the thermodynamically favored *syn* product **2b** takes place.3,4 Thus, when a solution of **2a** in CH2Cl2 was set aside for crystallization by vapor diffusion with diethyl ether, crystals of **2b** were obtained. Complexes **2** have been characterized by elemental analysis and ¹H and ¹³C{¹H} NMR spectroscopy. The 1H NMR spectra of **2a** shows the expected singlet resonance for the C_5Me_5 ring appearing at 1.25 ppm. The resonance of the central allyl proton appears as double double doublet centered at 4.89 ppm $(^3J_{34} =$ 6.4 Hz, ${}^3J_{23} = 6.4$ Hz, ${}^3J_{13} = 10.2$ Hz). The coupling constant of ${}^3J_{34} = 6.4$ Hz places the CH₂SEt₂ substituent *anti* with respect to the allyl moiety. In the 1H NMR spectrum of **2b**, the central allyl proton is found as a double double doublet centered at 5.21 ppm, but the larger coupling constant of ${}^3J_{34} = 8.5$ Hz suggests that the CH₂SEt₂ moiety takes the *syn* configuration around the $C^3 - C^4$ bond. The ¹³C{¹H} NMR spectra of **2** contain no surprising features, with the resonance of the $sp³$ carbon atom bearing the $SEt₂$ substituent observed in the range of 41.3-44.9 ppm. A structural view of **2b**, as determined by X-ray crystallography, is shown in Figure 1, with important bond distances and angles reported in the caption. The allyl ligand is bonded asymmetrically to the metal center with the Ru-C bonds to the unsubstituted terminal and central allyl carbon atoms (C11) and C(12) (2.195(5) and 2.150(4) Å, respectively) being distinctly shorter than the Ru-C bond to the third allyl carbon atom $C(13)$ $(2.260(4)$ Å). The Ru-Br(1) and Ru-Br(2) distances are nearly identical, being 2.563(1) and 2.566(1) Å, respectively. The $C(14)-S(1)$ bond distance is 1.816(5) Å. The asymmetric bonding of the allyl moiety to the metal center is in good agreement with observations on other substituted η^3 -allyl complexes.³⁻⁶

In a similar fashion to SEt_2 , $S-i Pr_2$ reacts with **1** to give the η^3 -allyl complex $\left[\text{Ru}(\eta^5\text{-}C_5\text{Me}_5)(\eta^3\text{-}CH_2\text{CHCH}\right]$ - $CH_2S\text{-}i\text{-}Pr_2Br_2]^+$ (3) in 57% yield (Scheme 1). Under these reaction conditions, however, only the *syn* isomer **3b** could be obtained, as shown by the ¹H NMR spectroscopy. Indicative of this conformation is the *trans* coupling constant of ${}^{3}J_{34} = 8.5$ Hz unequivocally placing the CH2S-*i*-Pr2 substituent *syn* with respect to the allyl moiety.

^{*} Corresponding author. E-mail: kkirch@fbch.tuwien.ac.at.

[†] Institute of Inorganic Chemistry. ‡ Institute of Mineralogy, Crystallography, and Structural Chemistry. ^X Abstract published in *Advance ACS Abstracts,* May 1, 1997.

⁽¹⁾ Davies, S. G.; Green, M. L. H.; Mingos, D. M. P. *Tetrahedron* **1978**, *34*, 3047. (2) Gemel, C.; Kalt, D.; Sapunov, V. N.; Mereiter, K.; Schmid, R.;

Kirchner, K. *Organometallics* **1997**, *16*, 427.

⁽³⁾ Gemel, C.; Mereiter, K.; Schmid, R.; Kirchner, K. *Organometallics* **1996**, *15*, 532.

⁽⁴⁾ Masuda, K.; Saitoh, M.; Aoki, K.; Itoh, K. *J. Organomet. Chem.* **1994**, *473*, 285.

⁽⁵⁾ Gemel, C.; Mereiter, K.; Schmid, R.; Kirchner, K. *Organometallics* **1995**, *14*, 1405.

⁽⁶⁾ Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.; Watanabe, Y. *Organometallics* **1995**, *14*, 1945.

In contrast to $SR₂$, with the cyclic thioether $SC₄H₈$, no clean reaction takes place and a mixture of [Ru(*η*5- C_5Me_5)(η^3 -CH₂CHCHCH₂SC₄H₈)Br₂]CF₃SO₃ as the *syn* isomer **4a** and $\text{Ru}(n^5\text{-}C_5\text{Me}_5)(\text{SC}_4\text{H}_8)_2\text{Br}_2]^+$ (5) in a ratio of about 2:1 is obtained. The formation of **5**, i.e., attack of SC_4H_8 at the softer ruthenium center, may be explained by the higher π -donor strength of SC₄H₈ in comparison to the acyclic thioethers. Attempts to separate these complexes resulted in the complete decompostion of **4a** to several intractable materials, whereas **5** could be obtained in pure form, albeit in low yield. Thus, **4a** has been characaterized only by 1H NMR spectroscopy. Characterization of **5** was by elemental analysis and ¹H and ¹³C{¹H} NMR spectroscopy. The NMR spectra of **5** are very similar to the analogous chloro complex $\text{[Ru}(n^5\text{-}C_5\text{Me}_5)(\text{SC}_4\text{H}_8)_2\text{Cl}_2]^+$ reported previously,7 and are, therefore, not further discussed.

Experimental Section

General Information. All reactions were performed under an inert atmosphere of purified argon by using Schlenk

Figure 1. Structural view of $\left[\text{Ru}(\eta^5 \text{-} \text{C}_5 \text{Me}_5)(\eta^3 \text{-} \text{CH}_2 \text{CH}_2)\right]$ $CHCH_2SEt_2)Br_2]CF_3SO_3$ (2b). Selected bond lengths (Å) and angles (deg): $Ru-C(1-5)_{av}$ 2.242(4), $Ru-C(11)$ 2.195(5), $Ru-C(12)$ 2.150(4), $Ru-C(13)$ 2.260(4), $Ru-Br(1)$ 2.563(1), $Ru-Br(2)$ 2.566(1), $C(11)-C(12)$ 1.390(7), $C(12)-C(13)$ 1.418(6), $S(1) - C(14)$ 1.816(5), $Br(1) - Ru - Br(2)$ 84.1(1), $C(11)-C(12)-C(13)$ 114.7(4).

techniques. All chemicals were standard reagent grade and used without further purification. The solvents were purified and dried according to standard procedures and stored over 4 Å molecular sieves.⁸ The deuterated solvents were purchased from Aldrich and dried over 4 Å molecular sieves. [Ru(*η*5- C₅Me₅)($η$ ⁴-CH₂CHCHCH₂)Br₂]CF₃SO₃ (1) was prepared according to the literature.² ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker AC-250 spectrometer operating at 250.13 and 62.86 MHz, respectively, and were referenced to SiMe4. Microanalysis were done by Microanalytical Laboratories, University of Vienna.

Synthesis. [Ru(*η***5-C5Me5)(***η***3-CH2CHCHCH2SEt2)Br2]-** $CF₃SO₃$. *anti***-Isomer 2a.** A solution of 1 (86 mg, 0.143) mmol) in CH_2Cl_2 (3 mL) was treated with SEt_2 (15 mL, 0.143 mmol) at -20 °C for 1 h. Then, the volume of the solvent was reduced to about 1 mL. On addition of diethyl ether, a red precipitate was obtained, which was collected on a glass frit, washed with diethyl ether, and dried under vacuum. Yield: 75 mg (76%). Anal. Calcd for C19H31Br2F3O3RuS2: C, 33.10; H, 4.53. Found: C, 33.12; H, 4.56. ¹H NMR (δ , CDCl₃, 20 °C): 4.89 (ddd, 1H, $J = 10.2$ Hz, $J = 6.4$ Hz, $J = 6.4$ Hz), 4.72-4.56 (m, 1H), 3.69 (d, 1H, $J = 6.1$ Hz), 3.24 (dd, 1H, $J = 12.2$ Hz, $J = 2.4$ Hz), 3.06 (q, 4H, $J = 7.3$ Hz), 2.62 (t, 2H, $J = 11.6$ Hz), 1.25 (s, 15H), 0.96 (t, 6H, $J = 7.3$ Hz). ¹³C{¹H} NMR (δ , CDCl₃, 20 °C): 107.2 (C_5Me_5), 96.3, 64.6, 60.2, 41.3 (CH_2SEt_2), 34.4 (S*C*H2CH3), 33.6 (S*C*H2CH3), 11.0 (C5*Me*5), 9.9 (SCH2*C*H3).

syn-Isomer 2b. A solution of **2a** in CH₂Cl₂ was set aside for crystallization by vapor diffusion with diethyl ether. After 1 day, dark-red crystals of **2b** were obtained. 1H NMR (*δ*, CDCl₃, 20 °C): 5.29-5.18 (ddd, 1H, $J = 8.5$ Hz, $J = 9.7$ Hz, J $= 6.1$ Hz), 4.43 (dd, 1H, $J = 10.4$ Hz, $J = 14.0$ Hz), 4.26 (d, *J* $= 6.1$ Hz), 3.82-3.57 (m, 5H), 2.84 (dt, 1H, $J = 10.4$ Hz, $J =$ 3.7 Hz), 2.45 (d, 1H, $J = 9.7$ Hz), 1.76 (m, 15H), 1.57 (t, 6H, J $= 7.3$ Hz). ¹³C{¹H} NMR (δ , CDCl₃, 20 °C): 106.5 (*C*₅Me₅), 97.9, 66.0, 63.8, 44.9 (*C*H2SEt2), 34.8 (S*C*H2CH3), 34.1 (SCH_2CH_3) , 10.5 (C_5Me_5) , 9.7 (SCH_2CH_3) .

[Ru(*η***5-C5Me5)(***η***3-CH2CHCHCH2S-***i***-Pr2)Br2]CF3SO3.** *syn***-Isomer 3b.** This complex has been prepared analogously to **2**, with **1** and S -*i*-Pr₂ as the starting materials. Yield: 57%. Anal. Calcd for $C_{21}H_{35}Br_2F_3O_3RuS_2$: C, 35.15; H, 4.92. Found: C, 35.21; H, 4.88. 1H NMR (*δ*, acetone-*d*6, 20 °C): 5.29 (ddd, 1H, $J = 8.5$ Hz, $J = 8.5$ Hz, $J = 6.5$ Hz), 4.59 (dd, 1H, J $= 14.6$ Hz, $J = 8.5$ Hz), 4.25 (m, 2H), 3.85 (dd, 1H, $J = 14.6$ Hz, $J = 3.6$ Hz), 3.00 (m, 2 H), 2.47 (d, 1H, $J = 8.5$ Hz), 1.79 (s, 15H), 1.20 (d, 12H, $J = 6.1$ Hz). ¹³C{¹H} NMR (δ , acetone*d*₆, 20 °C): 107.6 (*C*₅Me₅), 95.6, 65.7, 60.3, 46.1 (*C*H₂S), 34.0 (S*C*H), 11.5 (SCH*Me2),* 11.4 (C5*Me*5).

[Ru(*η***5-C5Me5)(***η***3-CH2CHCHCH2SC4H8)Br2]CF3SO3 (4a) and** $\left[\mathbf{Ru}(\eta^5\text{-C}_5\mathbf{M}\mathbf{e}_5)(\mathbf{SC}_4\mathbf{H}_8)_2\mathbf{Br}_2\right]\mathbf{CF}_3\mathbf{SO}_3$ **(5). Following the** protocol above, treatment of **1** (86 mg, 0.143 mmol) and tetrahydrothiopene (12.6 mL, 0.143 mmol) led to a mixture of **4a** and **5** in a ratio of about 2:1. Overall yield: 64 mg. Attempts to separate these complexes by recrystallization from CH_2Cl_2 resulted in the complete decomposition of **4**. **5** was obtained in analytically pure form as a dark-red solid in 20% yield. Anal. Calcd for C₁₉H₃₁Br₂F₃O₃RuS₃: C, 31.63; H, 4.33. Found: C, 31.65; H, 4.31. **4a**: ¹H NMR (δ , CDCl₃, 20 °C) 5.47

⁽⁷⁾ Manzano, B. R.; Jalon, F. A.; Lahoz, F. J.; Chaudret, B.; Montauzon, D.d. *J. Chem. Soc., Dalton Trans.* **1992**, 977.

⁽⁸⁾ Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*, 3rd ed.; Pergamon: New York, 1988.

Table 1. Crystallographic Data for [Ru(*η***5-C5Me5)(***η***3-CH2CHCHCH2SEt2)Br2]CF3SO3 (2b)***^a*

 $a \text{ } R(F) = \sum ||F_0| - |F_c||/\sum |F_0|, \text{ } wR(F^2) = [\sum (w(F_0^2 - F_c^2)^2)/\sum (w(F_0^2)^2)]^{1/2}.$

(ddd, 1H, $J = 9.6$ Hz, $J = 6.1$ Hz, $J = 6.1$ Hz), 5.07 (m, 2H), 4.36 (d, 1H, $J = 6.1$ Hz), 4.31 (m, 1H), 3.65 (m, 5H), 3.09 (d, 1H, $J = 9.6$ Hz), 1.82 (s, 15H), 1.76 (m, 4H). **5**: ¹H NMR (δ, CDCl₃, 20 °C) 3.10 (t, 8H, $J = 6.1$ Hz), 2.15 (t, 8H, $J = 6.1$ Hz), 1.65 (s, 15H). ¹³C{¹H} NMR (δ, CDCl₃, 20 °C): 112.0 (C_5Me_5) , 41.5, 30.6, 10.7 (C_5Me_5) .

X-ray Structure Determination for [Ru(*η***5-C5Me5)(***η***3- CH2CHCHCH2SEt2)Br2]CF3SO3 (2b).** Crystal data and experimental details are given in Table 1. X-ray data have been collected with a Siemens Smart CCD area detector diffractometer using graphite-monochromated Mo $K\alpha$ radiation, a nominal crystal-to-detector distance of 3.88 cm, and 0.3° *ω*-scan frames. Corrections for Lorentz and polarization effects, crystal decay, and absorption were applied. The structure was solved with direct methods.⁹ All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were included in idealized positions.10 The structure was refined against *F*2.

Acknowledgment. J.-Y.S. thanks the Fonds zur Förderung der wissenschaftlichen Forschung for a Lise-Meitner Postdoctoral Research Fellowship (Project No. M00311-CHE).

Supporting Information Available: Tables of hydrogen atomic coordinates, anisotropic temperature factors, complete bond lengths and angles, and least-squares planes for complex **2b** (7 pages). Ordering information is given on any current masthead page.

OM9701332

Additions and Corrections

1997, Volume 16

David A. Brown,* John C. Burns, Cordula Mock-Knoblauch, and William K. Glass: Cyclodimerization of the Tropylium Ring by Reduction of [(*η*7- C_7H_7)Mo(CO)₃]⁺ To Give [{Mo(CO)₃}₂(μ - η ⁵: η ⁵-C₇H₇- C_7H_7][PPN]₂.

Page 139. Reference 16 in the above paper was cited incorrectly and should be replaced by *Chem*. *Eur*. *J*. **1996**, *2*, 98. The authors in this reference remain the same.

OM970295Y

⁽⁹⁾ Sheldrick, G. M. *SHELXS86*: *Program for the Solution of Crystal Structures*; University of Göttingen: Göttingen, Germany, 1986.
(10) Sheldrick, G. M. *SHELXL93: Program for Crystal Structure*

Refinement; University of Göttingen, Göttingen, Germany, 1993.